• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Interaction Study of Ferrocene Derivatives and Heme by UV-Vis Spectroscopy

    2016-07-12 12:46:06HANGuochengFENGXiaozhenLIANGJintaoXIAOWenxiangCHENZhencheng
    光譜學(xué)與光譜分析 2016年5期
    關(guān)鍵詞:二茂鐵血紅素光譜法

    HAN Guo-cheng, FENG Xiao-zhen, LIANG Jin-tao, XIAO Wen-xiang, CHEN Zhen-cheng

    School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China

    Interaction Study of Ferrocene Derivatives and Heme by UV-Vis Spectroscopy

    HAN Guo-cheng, FENG Xiao-zhen, LIANG Jin-tao, XIAO Wen-xiang, CHEN Zhen-cheng*

    School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China

    The interaction between ferrocene derivatives, such as Fc(COOH)2(λmax=286 nm), Fc(OBt)2(λmax=305 nm), Fc(Cys)(λmax=289 nm) and heme(λmax=386 nm) were studied by UV-Vis spectroscopy, respectively.The results show that, when the concentration of heme is fixed, the absorbance of heme increases with the increase of Fc(COOH)2and Fc(Cys) concentration, the absorbance of heme almost keep the same when Fc(OBt)2concentration increases; when the concentration of ferrocene derivatives are fixed, the absorbance of Fc(COOH)2and Fc(Cys) also increases with the increase of heme concentration, the absorbance of Fc(OBt)2almost keep the same when heme concentration increase.It is demonstrated that the hydrogen bonding interactions happen between Fc(COOH)2, Fc(Cys) and heme, none of Fc(OBt)2, the formation of hydrogen bonding lead to the growth of molecular chain, the bigger molecule can absorb more energy and increase the absorbance.Meanwhile, the stability of molecule is affected by the formation of hydrogen bonding, when the reaction time increases from 0.5 h to 18 h and 48 h, the absorbance atλmax=384 nm change from 2.64 to 2.53 and 2.51 with fixed concentration of Fc(COOH)2, the absorbance atλmax=384 nm change from 1.76 to 1.72 and 1.68 with fixed concentration of heme, the absorbance atλmax=397 nm change from 2.74 to 2.63 and 2.55 with fixed concentration of Fc(Cys), and the absorbance atλmax=397 nm change from 1.82 to 1.58 and 1.49 with fixed concentration of heme, respectively.

    UV-Vis spectroscopy; Ferrocene derivatives; Heme; Hydrogen bond

    Introduction

    Hemoglobin can transport oxygen in higher organisms, this kind of protein is composed of four chains, twoαand twoβchains, each chain has a ring of heme, which is the active center of hemoglobin[1].It is also related with many clinical diseases, such as diabetes, leukemia, anemia and heart diseases[2-4].Therefore, it has great significance to quantitative detect hemoglobin.Several analytical methods for detecting hemoglobin in pharmaceutical or biological systems have been reported.These methods include capillary electrophoresis[5], electrochemistry[6], spectrophotometry[7], spectrofluorimetry[8-9], chemiluminescence[10], and high performance liquid chromatography[11]and so on.

    It is well known that ferrocene (Fc) is an organometallic compound consisting of two cyclopentadienyl rings bound on opposite sides of a central metal Fe atom.The rapid growth of organometallic chemistry is attributed to the discovery of ferrocene and its many derivatives.Most importantly, ferrocene and its derivatives have lots of applications, for examples, they can be used in asymmetric catalysis and enantioselective synthesis and are widely used as redox sensors which can be incorporated into large proteins to act as redox relays[12].They are convenient for protein labelling based on amide bond formation between the ferrocene carboxylic acid and amino acids.Ferrocenes exhibit a well-characterized one-electron reversible oxidation wave and are useful as an electrochemical probe in the development of electrochemical sensor technologies that enabled the detection of a wide range of biomolecules[13].Furthermore, ferrocene can be used as a molecular scaffold that supports B-sheet-like interactions between two peptide chains[14].

    Herein, we take advantage of ferrocene derivatives as yellow compounds, heme as red compound which show optical property, and they all have some functional groups.Therefore, the UV-Vis spectroscopy can be used for the studies of interaction between ferrocene derivatives and heme, which can provide a new way to explore the quantitative detection of hemoglobin based on the reaction of ferrocene derivatives and heme.

    1 Experimental

    1.1 Apparatus and chemicals

    A UV-2550 spectrophotometer was used to perform all spectral experiments.All reagents used were of analytical grade.The ferrocene derivatives, such as Fc(COOH)2, Fc(OBt)2, Fc(Cys) were synthesized according to reported procedures, which structure are shown in Fig.1[15-16].Heme and ethylenediamine (EDA) were purchased from Aladdin Company (Shanghai, China).All aqueous solutions were prepared with Milli-Q water.

    Fig.1 The structure of four compounds

    1.2 Preparation of solutions

    1.0 mmol·L-1stock solution of Fc(COOH)2was prepared by dissolving Fc(COOH)2in 10.0 mmol·L-1EDA solution (pH 8.5).1.0 mmol·L-1stock solution of Fc(OBt)2was prepared by dissolving Fc(OBt)2in 10.0 mmol·L-1EDA solution.0.5 mmol·L-1stock solution of Fc(Cys) was prepared by dissolving Fc(Cys) in 10.0 mmol·L-1EDA solution.0.5 mmol·L-1stock solution of heme was prepared by dissolving heme in 10.0 mmol·L-1EDA solution.

    2 Results and discussion

    2.1 Interaction of Fc(COOH)2 and heme

    2.1.1 UV-Vis spectra of Fc(COOH)2, heme and their interaction

    Because most ferrocene derivatives and heme are fat soluble, they do not dissolve in water easily, so it should find suitable promoter to dissolve the above stuffs for experiments.First, we try some organic solvents, such as methanol and acetonitrile, ferrocene derivatives can dissolve these organic solvents easily, but heme does not.Second, we consider that Fc(COOH)2and heme have free —COOH group, they can dissolve alkaline solution, we try triethylamine.Although triethylamine can dissolve Fc(COOH)2and heme, there are no signals when do UV-Vis scan.Then we try ethylenediamine, it works, so ethylenediamine was taken as the promoter for experiments.Fig.2 shows the UV-Vis spectra of 250 μmol·L-1Fc(COOH)2, 25 μmol·L-1heme and their interaction (taken H2O as baseline).

    Fig.2 UV-Vis spectra of Fc(COOH)2, heme and their interaction

    It can be seen that UV-Vis spectra of Fc(COOH)2, heme are different from their interaction as shown in Fig.2.From the review of maximum absorption wavelength, theλmaxof Fc(COOH)2and heme are 286 and 386 nm, respectively.After the reaction, it shows threeλmaxof 288, 355 and 384 nm, which are corresponding to characteristic peak of Fc(COOH)2and heme, respectively.From the review of absorbance, before the reaction, the absorbance of Fc(COOH)2and heme are 0.92 and 2.55, respectively.After the reaction, the absorbance of three peaks is about 1.53.So it exists interaction between Fc(COOH)2and heme.

    2.1.2 Fix concentration of Fc(COOH)2

    In order to figure out the mechanism interaction of Fc(COOH)2and heme, a titration experiment was carried out, that is to fix the concentration of Fc(COOH)2as 250 μmol·L-1, react with different concentration of heme (1~50 μmol·L-1), Fig.3 shows UV-Vis spectra of 250 μmol·L-1Fc(COOH)2and different concentration of heme reaction for 0.5 h.

    Fig.3 UV-Vis spectra of 250 μmol·L-1Fc(COOH)2and different concentration of heme reaction for 0.5 h

    Table 1 Absorbance of ferrocence derivatives and heme reaction for different time

    From Fig.3, it can be seen that when the concentration of Fc(COOH)2is fixed, not only the absorbance of heme increases with the increase of hemeconcentration, but also the absorbance of Fc(COOH)2increases with the increase of hemeconcentration.When the reaction time increases from 0.5 h to 48 h, the absorbance at maximum absorption wavelength (λmax=384 nm) has a little change, taken 50 μmol·L-1heme as example, the absorbance change from 2.64 to 2.53 and 2.51 as shown in Table 1, after 18 h and 48 h reaction, respectively.So it can conclude that the whole solution is unstable to show it exists interaction between Fc(COOH)2and heme.

    2.1.3 Fix concentration of heme

    Now the concentration of heme is fixed as 25 μmol·L-1, react with different concentration of Fc(COOH)2(10~450 μmol·L-1), Fig.4 shows UV-Vis spectra of 25 μmol·L-1heme and different concentration of Fc(COOH)2reaction for 0.5 h.

    Fig.4 UV-Vis spectra of different concentration of Fc(COOH)2and 25 μmol·L-1heme reaction for 0.5 h

    From Fig.4, it can be seen that when the concentration of heme is fixed, not only the absorbance of Fc(COOH)2increases with the increase of Fc(COOH)2concentration, but also the absorbance of heme increases with the increase of Fc(COOH)2concentration.When the reaction time increases from 0.5 h to 48 h, the absorbance at maximum absorption wavelength (λmax=384 nm) has a little change, taken 25 μmol·L-1heme as example, the absorbance change from 1.76 to 1.72 and 1.68 as shown in Table 1, after 18 h and 48 h reaction, respectively.So it can conclude that the whole solution is unstable to show it exists interaction between Fc(COOH)2and heme as shown as results of fixed Fc(COOH)2concentration.

    2.1.4 Mechanism study

    From Fig.2, after the reaction of Fc(COOH)2and heme, the UV-Vis spectra is different from UV-Vis spectra of Fc(COOH)2, and UV-Vis spectra of heme.Fc(COOH)2and heme show theirλmaxat 286 and 386 nm, respectively.After the reaction, it shows threeλmaxat 288, 355, 384 nm.From the review of absorbance, before the reaction, the absorbance of Fc(COOH)2and heme are 0.92 and 2.55, respectively.After the reaction, the absorbance of three peaks is about 1.53.From results of fixed concentration of Fc(COOH)2and heme, although one stuff concentration is fixed, its absorbance increases with increase of another stuff concentration, when consider that Fc(COOH)2and heme have free —COOH group, so the hydrogen bonding interactions happen between Fc(COOH)2and heme to form intermolecular hydrogen bond[17], lead to the growth of molecular chain, the bigger molecular can absorb more energy and increase the absorbance.Meanwhile, bigger molecules are more unstable, so the absorbance decreases with the increase of reaction time.

    2.2 Interaction of Fc(OBt)2 and heme

    2.2.1 UV-Vis spectra of Fc(OBt)2, heme and their interaction

    Fig.5 shows the UV-Vis spectra of 250 μmol·L-1Fc(OBt)2, 25 μmol·L-1heme and their interaction.

    Fig.5 UV-Vis spectra of Fc(OBt)2, heme and their interaction

    It can be seen that UV-Vis spectra of Fc(OBt)2and heme are similar to their interaction except for absorbance as shown in Fig.5.For the difference of heme absorbance at 397 nm, it shows one half of heme absorbance duo to the concentration of heme is diluted double when it mixture with Fc(OBt)2solution.For the difference of heme absorbance at 304 nm, it shows about two-thirds of Fc(OBt)2absorbance when it mixture with heme solution.So there is no reaction happen between Fc(OBt)2and heme.

    2.2.2 Fix concentration of Fc(OBt)2

    In order to figure out whether there exists reaction between Fc(OBt)2and heme, we also carried out titration experiments, to fix the concentration of Fc(OBt)2as 250 μmol·L-1, react with different concentration of heme (1~50 μmol·L-1), Fig.6 shows UV-Vis spectra of 250 μmol·L-1Fc(OBt)2and different concentration of heme reaction for 0.5 h.

    From Fig.6, it can be seen that when the concentration of Fc(OBt)2is fixed, the absorbance of heme increases with the increase of hemeconcentration, but the absorbance of Fc(OBt)2almost keep the same when concentration of heme increases.When the reaction time increases from 0.5 h to 48 h, the absorbance at maximum absorption wavelength do not change obviously (Table 1), so it can conclude that the whole solution is stable and there is no interaction between Fc(OBt)2and heme.

    2.2.3 Fix concentration of heme

    In order to verify there is no interaction between Fc(OBt)2and heme, now the concentration of heme is fixed as 25 μmol·L-1, react with different concentration of Fc(OBt)2(10~500 μmol·L-1), Fig.7 shows UV-Vis spectra of 25 μmol·L-1heme and different concentration of Fc(OBt)2reaction for 0.5 h.

    Fig.6 UV-Vis spectra of 250 μmol·L-1Fc(OBt)2and different concentration of heme reaction for 0.5 h

    Fig.7 UV-Vis spectra of different concentration of Fc(OBt)2and 25 μmol·L-1heme reaction for 0.5 h

    From Fig.7, it can be seen that when the concentration of heme is fixed, only the absorbance of Fc(OBt)2increases with the increase of Fc(OBt)2concentration, the absorbance of heme increases almost keep the same.When the reaction time increases from 0.5 h to 48 h, the absorbance at maximum absorption wavelength do not change obviously (Table 1), so it can conclude that the whole solution is stable and there is no interaction between Fc(OBt)2and heme.

    2.2.4 Mechanism study

    From above discussion of interaction of Fc(OBt)2and heme, and combine the structure of Fc(OBt)2, this compound has no free —H, so it can’t form intermolecular hydrogen bond between two molecules and there is no interaction between Fc(OBt)2and heme.

    2.3 Interaction of Fc(Cys) and heme

    2.3.1 UV-Vis spectra of Fc(Cys), heme and their interaction

    Fig.8 shows the UV-Vis spectra of 100 μmol·L-1Fc(Cys), 25 μmol·L-1heme and their interaction.

    Fig.8 UV-Vis spectra of Fc(Cys), heme and their interaction

    It can be seen that UV-Vis spectra of Fc(Cys), heme are different from their interaction as shown in Fig.16.From the review of maximum absorption wavelength, theλmaxof Fc(Cys) and heme are 289 and 386 nm, respectively.After the reaction, it shows threeλmaxat 288, 350 and 397 nm, which are corresponding to characteristic peak of Fc(Cys) and heme.From the review of absorbance, before the reaction, the absorbance of Fc(Cys) and heme are 0.71 and 2.55, respectively.After the reaction, the absorbance of two peaks is about 1.02 and 1.46, respectively.So, there exist interaction between Fc(Cys) and heme.

    2.3.2 Fix concentration of Fc(Cys)

    In order to figure out the mechanism interaction of Fc(Cys) and heme, a titration experiment was carried out.First, fix the concentration of Fc(Cys) as 100 μmol·L-1, react with different concentration of heme (1~50 μmol·L-1), Fig.9 shows UV-Vis spectra of 100 μmol·L-1Fc(Cys) and different concentration of heme reaction for 0.5 h.

    From Fig.9, it can be seen that when the concentration of Fc(Cys) is fixed, not only the absorbance of heme increases with the increase of heme concentration, but also the absorbance of Fc(Cys) increases with the increase of heme concentration.When the reaction time increases from 0.5 h to 48 h, the absorbance at maximum absorption wavelength (λmax=397 nm) change obviously, taken 50 μmol·L-1heme as example, the absorbance change from 2.74 to 2.63 and 2.55 as shown in Table 1, after 18 h and 48 h reaction, respectively.So it can conclude that the whole solution is unstable to show there exist interaction between Fc(Cys) and heme.

    2.3.3 Fix concentration of heme

    Now the concentration of heme is fixed as 25 μmol·L-1, react with different concentration of Fc(Cys) (1~200 μmol·L-1), Fig.10 shows UV-Vis spectra of 25 μmol·L-1heme and different concentration of Fc(Cys) reaction for 0.5 h.

    Fig.9 UV-Vis spectra of 100 μmol·L-1Fc(Cys) and different concentration of heme reaction for 0.5 h

    Fig.10 UV-Vis spectra of different concentration of Fc(Cys) and 25 μmol·L-1heme reaction for 0.5 h

    From Fig.10, it can be seen that when the concentration of heme is fixed, not only the absorbance of Fc(Cys) increases with the increase of Fc(Cys) concentration, but also the absorbance of heme increases with the increase of Fc(Cys) concentration.When the reaction time increases from 0.5 h to 48 h, the absorbance at maximum absorption wavelength (λmax=397 nm) also change obviously, taken 25 μmol·L-1heme as example, the absorbance change from 1.82 to 1.58 and 1.49 as shown in Table 1, after 18 h and 48 h reaction, respectively.So it can conclude that the whole solution is unstable to show there exists interaction between Fc(Cys) and heme as shown as results of fixed Fc(Cys) concentration.

    2.3.4 Mechanism study

    From Fig.8, after the reaction of Fc(Cys) and heme, the UV-Vis spectra is different from UV-Vis spectra of Fc(Cys), and UV-Vis spectra of heme.Fc(Cys) and heme show theirλmaxat 289 and 386 nm, respectively.After the reaction, it shows threeλmaxat 288, 350, 397 nm.From the review of absorbance, before the reaction, the absorbance of Fc(Cys) and heme are 0.71 and 2.55, respectively.After the reaction, the absorbance of three peaks is about 1.02 and 1.46, respectively.From results of fixed concentration of Fc(Cys) and heme, although one stuff concentration is fixed, its absorbance increases with increase of another stuffconcentration, when consider that Fc(Cys) has free —NH group and heme has —COOH group, so the hydrogen bonding interactions happen between Fc(Cys) and heme to form intermolecular hydrogen bond, lead to the growth of molecular chain, the bigger molecular can absorb more energy and increase the absorbance.Meanwhile, bigger molecules are more unstable, so the absorbance decreases with the increase of reaction time as results of interaction between Fc(COOH)2and heme.

    3 Conclusions

    In this work, the interaction between Fc(COOH)2, Fc(OBt)2, Fc(Cys) and heme were studied by UV-Vis spectroscopy, respectively.The results show that the interactions happen between Fc(COOH)2, Fc(Cys) and heme to form intermolecular hydrogen bond based on —COOH/—NH— and —COOH group, none of Fc(OBt)2.It can provide a new way to explore the quantitative detection of hemoglobin based on the reaction of ferrocene derivatives and heme.

    [1] Bluher S, Markert J, Herget S, et al.Current Diabetes Reports, 2012, 12(2): 147.

    [2] Khera P K, Joiner, C H, Carruthers A, et al.Diabetes, 2008, 57(9): 2445.

    [3] Sun W, Jiang H, Jiao K.Journal of Chemical Sciences, 2005, 117(4): 317.

    [4] Bodei L, Kidd M, Paganelli G, et al.European Journal of Nuclear Medicine and Molecular Imaging, 2015, 42: 5.

    [5] Tunc S, Duman O, Soylu I, et al.Journal of Hazardous Materials, 2014, 273: 36.

    [6] Matysiak E, Donten M, Kowalczyk A, et al.Biosensors and Bioelectronics, 2015, 64: 554.

    [7] Zhan T R, Yang Q, Zhang Y M, et al.Journal of Colloid and Interface Science, 2014, 433: 49.

    [8] Madrakian T, Bagheri H, Afichami A, et al.Journal of Luminescence, 2014, 155: 218.

    [9] Liu B S, Yang C, Yan X N, et al.Spectroscopy Letters, 2012, 45(3): 175.

    [10] Cao Juntao, Wang Hui, Chen Yonghong, et al.Spectroscopy and Spectral Analysis, 2014, 34(1): 241.

    [11] Lan H Z, Gan N, Pan D D, et al.Journal of Chromatography A, 2014, 1365: 34.

    [12] Lin L L, Berces A, Kraatz H B.Journal of Organometallic Chemistry, 1998, 556: 11.

    [13] Shipman P O, Lafreniere M A, Colquhoun C D S, et al.Inorganica Chimica Acta, 2012, 391: 195.

    [14] Chowdhury S, Schatte G, Kraatz H B.Angewandte Chemie International Edition, 2008, 47: 7056.

    [15] Zhang D, Zhang Q, Sua J H, et al.Chemical Communication, 2009, 1700.

    [16] Han G C, Ferranco A, Feng X Z, et al.European Journal of Inorganic Chemistry, 2014, 31: 5337.

    [17] Beheshti S, Lataifeh A, Kraatz H B.Journal of Organometallic Chemistry, 2011, 696(5): 1117.

    *通訊聯(lián)系人

    O657.3

    A

    紫外-可見(jiàn)光譜法研究二茂鐵衍生物與血紅素的相互作用

    韓國(guó)成,馮小珍,梁晉濤,肖文香,陳真誠(chéng)*

    桂林電子科技大學(xué)生命與環(huán)境科學(xué)學(xué)院,廣西 桂林 541004

    采用紫外-可見(jiàn)光譜法(UV-Vis)研究三種二茂鐵衍生物[Fc(COOH)2(λmax=286 nm), Fc(OBt)2(λmax=305 nm), Fc(Cys)(λmax=289 nm)]與血紅素(heme,λmax=386 nm)的相互作用。實(shí)驗(yàn)結(jié)果表明:當(dāng)固定heme濃度時(shí),heme的吸光度隨著Fc(COOH)2和Fc(Cys)濃度的增加而增大,而heme的吸光度隨著Fc(OBt)2的濃度的增加幾乎沒(méi)有增大; 當(dāng)分別固定Fc(COOH)2, Fc(Cys)和Fc(OBt)2的濃度時(shí),F(xiàn)c(COOH)2和Fc(Cys)的吸光度隨著heme濃度的增加而增大,而Fc(OBt)2的吸光度隨著heme濃度的增加沒(méi)有變化,說(shuō)明Fc(COOH)2和Fc(Cys)與heme存在分子間的相互作用,主要是由于Fc(COOH)2和 Fc(Cys)與heme能形成氫鍵,分子鏈增長(zhǎng),吸收的能量增加,導(dǎo)致吸光度增大; 而Fc(OBt)2與heme沒(méi)有分子間的相互作用,是由于Fc(OBt)2沒(méi)有自由的氫,不能與heme形成分子間的氫鍵。同時(shí)考察了三種二茂鐵衍生物與heme 的吸光度隨時(shí)間的變化,F(xiàn)c(COOH)2和 Fc(Cys)與heme的吸光度隨著時(shí)間的增加而減少,而Fc(OBt)2與heme的吸光度隨時(shí)間的變化幾乎沒(méi)有變化。Fc(COOH)2與Fc(Cys)和heme的反應(yīng)時(shí)間為0.5,18和48 h,當(dāng)固定Fc(COOH)2濃度時(shí),在λmax=384 nm處的吸光度由2.64分別變?yōu)?.53和2.51; 當(dāng)固定heme的濃度時(shí),在λmax=384 nm處的吸光度由1.76分別變?yōu)?.72和1.68; 當(dāng)固定Fc(Cys)濃度時(shí),在λmax=397 nm處的吸光度由2.74分別變?yōu)?.63和2.55; 當(dāng)固定heme的濃度時(shí),在λmax=397 nm處的吸光度由1.82分別變?yōu)?.58和1.49。

    紫外-可見(jiàn)光譜法; 二茂鐵衍生物; 血紅素; 氫鍵

    2015-01-15,

    2015-04-21)

    Foundation item:The National Natural Science Foundation of China (61301038), Natural Science Foundation of Guangxi Province (2015GXNSFBA139041), National Undergraduate Training Programs for Innovation and Entrepreneurship (201510595044)

    10.3964/j.issn.1000-0593(2016)05-1585-07

    Received:2015-01-15; accepted:2015-04-21

    Biography:HAN Guo-cheng, (1981—), assoicate professor, School of Life and Environmental Sciences, Guilin University of Electronic Technology e-mail: hangc81@guet.edu.cn *Corresponding author e-mail: chenzhcheng@163.com

    猜你喜歡
    二茂鐵血紅素光譜法
    直讀光譜法測(cè)定熱作模具鋼中硫的不確定度評(píng)定
    辛基二茂鐵分子結(jié)構(gòu)特性的量子化學(xué)計(jì)算
    紅外光譜法研究TPU/SEBS的相容性
    原子熒光光譜法測(cè)定麥味地黃丸中砷和汞
    中成藥(2016年8期)2016-05-17 06:08:22
    原子熒光光譜法測(cè)定銅精礦中鉍的不確定度
    雙核二茂鐵有機(jī)硅接枝HTPB的合成及其性能研究
    血紅素氧合酶-1與急性腎損傷研究新進(jìn)展
    血紅素加氧酶-1對(duì)TNF-α引起內(nèi)皮細(xì)胞炎癥損傷的保護(hù)作用
    N-苯基-1,7-二硒雜-4-氮雜[7]二茂鐵環(huán)蕃的合成、晶體結(jié)構(gòu)及其光電性質(zhì)研究
    一鍋法合成雙二茂鐵基取代的(E)-1-烯4-炔-3-醇
    一级a爱片免费观看的视频| 久久久久久久久久久久大奶| 男女床上黄色一级片免费看| 纯流量卡能插随身wifi吗| 国产精品免费视频内射| 99国产精品一区二区三区| 国产成人精品久久二区二区免费| 成人18禁高潮啪啪吃奶动态图| 欧美丝袜亚洲另类 | 亚洲专区中文字幕在线| 国产一区二区三区视频了| 水蜜桃什么品种好| 国产精品免费视频内射| 建设人人有责人人尽责人人享有的| 精品福利观看| www日本在线高清视频| 欧美国产精品va在线观看不卡| 99国产精品一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| 成年版毛片免费区| 国产精品免费视频内射| 欧美日韩精品网址| 国产亚洲精品一区二区www | 真人做人爱边吃奶动态| 国产av精品麻豆| 在线天堂中文资源库| 99在线人妻在线中文字幕 | 两个人看的免费小视频| 日韩欧美三级三区| 精品高清国产在线一区| 黄色怎么调成土黄色| 高清在线国产一区| 91老司机精品| 人妻丰满熟妇av一区二区三区 | 久久 成人 亚洲| 成人18禁高潮啪啪吃奶动态图| 久久人妻av系列| 老熟妇仑乱视频hdxx| 国产亚洲一区二区精品| 国产精品亚洲一级av第二区| 变态另类成人亚洲欧美熟女 | 日韩欧美免费精品| 欧美日本中文国产一区发布| av有码第一页| 亚洲人成77777在线视频| 欧美日韩中文字幕国产精品一区二区三区 | 免费日韩欧美在线观看| a级毛片黄视频| 侵犯人妻中文字幕一二三四区| 黄网站色视频无遮挡免费观看| 久久久久久免费高清国产稀缺| 日韩免费av在线播放| av线在线观看网站| 天天躁狠狠躁夜夜躁狠狠躁| 免费少妇av软件| 国产不卡一卡二| 另类亚洲欧美激情| 黄片小视频在线播放| 亚洲av美国av| 国产精品九九99| 极品教师在线免费播放| 性色av乱码一区二区三区2| a级毛片在线看网站| 青草久久国产| 国产极品粉嫩免费观看在线| 免费在线观看亚洲国产| 日本vs欧美在线观看视频| 可以免费在线观看a视频的电影网站| 午夜成年电影在线免费观看| www.熟女人妻精品国产| 夜夜躁狠狠躁天天躁| 色播在线永久视频| 国产精品久久久久成人av| 少妇 在线观看| 三上悠亚av全集在线观看| 波多野结衣av一区二区av| 色在线成人网| 一区二区日韩欧美中文字幕| 国产一区二区三区综合在线观看| 99精国产麻豆久久婷婷| 黄频高清免费视频| 免费看十八禁软件| 久久午夜亚洲精品久久| 精品无人区乱码1区二区| 亚洲精品乱久久久久久| 久久久久精品国产欧美久久久| 精品少妇久久久久久888优播| 色综合婷婷激情| 欧美性长视频在线观看| 亚洲欧美日韩另类电影网站| 黄色 视频免费看| 人人妻,人人澡人人爽秒播| videos熟女内射| 免费少妇av软件| 热99久久久久精品小说推荐| 亚洲久久久国产精品| 精品国产一区二区三区久久久樱花| 精品福利永久在线观看| 一区在线观看完整版| 99久久国产精品久久久| 亚洲第一欧美日韩一区二区三区| 色尼玛亚洲综合影院| 亚洲精品av麻豆狂野| 亚洲自偷自拍图片 自拍| 狠狠狠狠99中文字幕| 国产亚洲欧美在线一区二区| 中文字幕另类日韩欧美亚洲嫩草| 精品福利永久在线观看| tocl精华| 亚洲综合色网址| 亚洲在线自拍视频| 老司机深夜福利视频在线观看| 妹子高潮喷水视频| 女人高潮潮喷娇喘18禁视频| 国产不卡一卡二| 久久久久精品人妻al黑| 亚洲一码二码三码区别大吗| 青草久久国产| 精品欧美一区二区三区在线| 亚洲 欧美一区二区三区| 免费日韩欧美在线观看| 精品国产超薄肉色丝袜足j| 亚洲美女黄片视频| 热99久久久久精品小说推荐| 午夜福利在线免费观看网站| 亚洲精品自拍成人| 精品国产一区二区久久| 久久久国产一区二区| 久久青草综合色| 老司机深夜福利视频在线观看| 麻豆乱淫一区二区| 亚洲国产欧美日韩在线播放| 国产又色又爽无遮挡免费看| 精品乱码久久久久久99久播| 国产野战对白在线观看| 午夜免费观看网址| 捣出白浆h1v1| cao死你这个sao货| 久久这里只有精品19| 美女扒开内裤让男人捅视频| 亚洲精品久久午夜乱码| 91九色精品人成在线观看| 建设人人有责人人尽责人人享有的| 人人妻,人人澡人人爽秒播| 亚洲视频免费观看视频| 久久精品人人爽人人爽视色| 日韩人妻精品一区2区三区| 日本一区二区免费在线视频| av一本久久久久| 亚洲一区二区三区不卡视频| 久久久久久免费高清国产稀缺| 国产淫语在线视频| 午夜亚洲福利在线播放| 欧美成狂野欧美在线观看| 免费在线观看亚洲国产| 久久久国产一区二区| 黄色毛片三级朝国网站| 9热在线视频观看99| 国产亚洲一区二区精品| 巨乳人妻的诱惑在线观看| 亚洲久久久国产精品| 最近最新中文字幕大全免费视频| 久久久国产成人免费| 亚洲精品国产一区二区精华液| 在线国产一区二区在线| 久久久久久免费高清国产稀缺| 久久国产精品男人的天堂亚洲| 日本黄色日本黄色录像| 国产精品 国内视频| 国产极品粉嫩免费观看在线| 亚洲精品国产一区二区精华液| 免费观看精品视频网站| 亚洲国产精品合色在线| 亚洲 国产 在线| 国产欧美日韩一区二区三| 黄色视频,在线免费观看| 久久性视频一级片| 可以免费在线观看a视频的电影网站| 国产高清国产精品国产三级| 曰老女人黄片| 在线观看www视频免费| 在线观看一区二区三区激情| 国产欧美亚洲国产| 中亚洲国语对白在线视频| 日本撒尿小便嘘嘘汇集6| 久久国产精品人妻蜜桃| 国产成+人综合+亚洲专区| 日本黄色视频三级网站网址 | 中文欧美无线码| 久久久久久亚洲精品国产蜜桃av| 看免费av毛片| 亚洲欧美日韩另类电影网站| tube8黄色片| 亚洲熟妇熟女久久| 亚洲av熟女| 亚洲一区高清亚洲精品| 国产99久久九九免费精品| 757午夜福利合集在线观看| 亚洲 国产 在线| 亚洲久久久国产精品| 中亚洲国语对白在线视频| 亚洲精品乱久久久久久| 国产在线精品亚洲第一网站| 美女国产高潮福利片在线看| 久久国产乱子伦精品免费另类| 天堂√8在线中文| 日本a在线网址| 很黄的视频免费| 最近最新中文字幕大全电影3 | 国产高清国产精品国产三级| 欧美国产精品va在线观看不卡| 午夜视频精品福利| 日韩精品免费视频一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 欧美人与性动交α欧美精品济南到| 欧美中文综合在线视频| 免费一级毛片在线播放高清视频 | 免费在线观看黄色视频的| 免费久久久久久久精品成人欧美视频| 在线观看免费高清a一片| 悠悠久久av| 亚洲熟妇熟女久久| 亚洲五月天丁香| 久久精品国产99精品国产亚洲性色 | av天堂久久9| 久热爱精品视频在线9| 一区二区日韩欧美中文字幕| 电影成人av| 老司机福利观看| 欧美人与性动交α欧美软件| 精品亚洲成国产av| 亚洲精品粉嫩美女一区| 久久性视频一级片| 国内久久婷婷六月综合欲色啪| 欧美精品啪啪一区二区三区| 黑人巨大精品欧美一区二区蜜桃| 亚洲av成人av| 成年人黄色毛片网站| 精品久久久久久久久久免费视频 | 女人精品久久久久毛片| 久久人人爽av亚洲精品天堂| 精品少妇一区二区三区视频日本电影| 亚洲片人在线观看| 国产成人啪精品午夜网站| 久久精品国产综合久久久| 老熟女久久久| 亚洲精品美女久久av网站| 高清毛片免费观看视频网站 | 成年人黄色毛片网站| 欧美激情高清一区二区三区| 高清黄色对白视频在线免费看| 老司机午夜十八禁免费视频| 啦啦啦视频在线资源免费观看| 妹子高潮喷水视频| 99精品欧美一区二区三区四区| 色精品久久人妻99蜜桃| 美女扒开内裤让男人捅视频| 色婷婷久久久亚洲欧美| 无遮挡黄片免费观看| 中文字幕人妻丝袜制服| 久久久国产成人免费| 啦啦啦视频在线资源免费观看| 美女视频免费永久观看网站| 91精品三级在线观看| 午夜精品久久久久久毛片777| 高潮久久久久久久久久久不卡| 午夜两性在线视频| 中文字幕人妻丝袜一区二区| 国产熟女午夜一区二区三区| 国产激情欧美一区二区| 午夜视频精品福利| 国产精品一区二区在线观看99| 精品熟女少妇八av免费久了| 国产成人免费无遮挡视频| 亚洲av成人不卡在线观看播放网| 91成年电影在线观看| 精品国产一区二区久久| netflix在线观看网站| 人人妻,人人澡人人爽秒播| 日韩视频一区二区在线观看| 操美女的视频在线观看| 欧美乱色亚洲激情| 人人妻,人人澡人人爽秒播| 成人亚洲精品一区在线观看| 老司机午夜十八禁免费视频| 亚洲欧美一区二区三区久久| 男女午夜视频在线观看| 国产免费现黄频在线看| 一进一出抽搐动态| 午夜日韩欧美国产| 精品一区二区三卡| 亚洲九九香蕉| 99热国产这里只有精品6| av国产精品久久久久影院| 老司机靠b影院| 亚洲av成人av| 日本wwww免费看| 午夜福利影视在线免费观看| 中文亚洲av片在线观看爽 | 中出人妻视频一区二区| 757午夜福利合集在线观看| 欧美在线黄色| 亚洲av欧美aⅴ国产| www.精华液| 亚洲五月色婷婷综合| 亚洲精品一二三| 免费观看a级毛片全部| 少妇猛男粗大的猛烈进出视频| 国产深夜福利视频在线观看| 天天添夜夜摸| 在线av久久热| 亚洲午夜精品一区,二区,三区| 精品一品国产午夜福利视频| 黄片大片在线免费观看| 欧美最黄视频在线播放免费 | 免费在线观看视频国产中文字幕亚洲| 精品久久久久久,| 大型av网站在线播放| 一级片'在线观看视频| 精品少妇一区二区三区视频日本电影| 日本精品一区二区三区蜜桃| 女警被强在线播放| 欧美乱码精品一区二区三区| 国产男靠女视频免费网站| 最近最新中文字幕大全免费视频| 夫妻午夜视频| 国产一区二区三区视频了| 日韩三级视频一区二区三区| 美女 人体艺术 gogo| 老司机深夜福利视频在线观看| 久久亚洲精品不卡| 成人手机av| 色播在线永久视频| 国产又色又爽无遮挡免费看| 亚洲黑人精品在线| 久久热在线av| av线在线观看网站| 日本a在线网址| 欧美大码av| 久久久久久久国产电影| 亚洲性夜色夜夜综合| 法律面前人人平等表现在哪些方面| 国产精品99久久99久久久不卡| 午夜福利,免费看| 国产极品粉嫩免费观看在线| 女人爽到高潮嗷嗷叫在线视频| 日本欧美视频一区| 国产精品 国内视频| 我的亚洲天堂| 国产高清视频在线播放一区| 精品国产一区二区三区久久久樱花| 欧美日韩亚洲国产一区二区在线观看 | 黑人欧美特级aaaaaa片| 午夜精品国产一区二区电影| 大陆偷拍与自拍| 国产精品 欧美亚洲| 婷婷成人精品国产| 精品国产乱码久久久久久男人| 欧洲精品卡2卡3卡4卡5卡区| 变态另类成人亚洲欧美熟女 | 99久久99久久久精品蜜桃| 新久久久久国产一级毛片| 免费人成视频x8x8入口观看| 人人澡人人妻人| 国产在线一区二区三区精| 人成视频在线观看免费观看| 最新在线观看一区二区三区| 美女扒开内裤让男人捅视频| 超碰97精品在线观看| 一级片免费观看大全| 国产精品久久久久成人av| 欧美黄色片欧美黄色片| 人人澡人人妻人| 一级黄色大片毛片| 午夜免费成人在线视频| 亚洲视频免费观看视频| 欧美亚洲 丝袜 人妻 在线| 久99久视频精品免费| 精品一区二区三区av网在线观看| 成人国产一区最新在线观看| 老鸭窝网址在线观看| 9色porny在线观看| 纯流量卡能插随身wifi吗| 久久人妻福利社区极品人妻图片| 国产欧美日韩综合在线一区二区| 欧美乱色亚洲激情| 亚洲av美国av| 两人在一起打扑克的视频| 高清欧美精品videossex| 欧美黑人精品巨大| 99久久国产精品久久久| 亚洲欧美一区二区三区久久| 亚洲国产看品久久| 久久九九热精品免费| 亚洲一区二区三区不卡视频| av视频免费观看在线观看| 国产国语露脸激情在线看| 777久久人妻少妇嫩草av网站| 国产精品九九99| 一级片'在线观看视频| 超碰97精品在线观看| 丝袜美腿诱惑在线| 国产日韩一区二区三区精品不卡| 无遮挡黄片免费观看| 男人操女人黄网站| 欧美国产精品va在线观看不卡| 中文字幕人妻丝袜一区二区| 国产亚洲欧美98| 日韩中文字幕欧美一区二区| 黄色视频,在线免费观看| 中文字幕最新亚洲高清| 免费黄频网站在线观看国产| 大香蕉久久成人网| 欧美乱色亚洲激情| 深夜精品福利| 色综合欧美亚洲国产小说| 飞空精品影院首页| 久久99一区二区三区| 99精品在免费线老司机午夜| 国产不卡一卡二| 99久久国产精品久久久| 欧美日韩精品网址| 午夜福利在线免费观看网站| 久久国产精品人妻蜜桃| 日韩制服丝袜自拍偷拍| 狠狠婷婷综合久久久久久88av| 欧美精品av麻豆av| 色在线成人网| 在线观看日韩欧美| 国产精品一区二区精品视频观看| 久久精品人人爽人人爽视色| 色综合欧美亚洲国产小说| www.自偷自拍.com| 亚洲一区二区三区欧美精品| 黑人操中国人逼视频| 欧美午夜高清在线| 欧美黄色淫秽网站| 不卡一级毛片| 男女下面插进去视频免费观看| 色综合婷婷激情| 国产精品久久久人人做人人爽| aaaaa片日本免费| 天天躁日日躁夜夜躁夜夜| 人人妻人人爽人人添夜夜欢视频| 国产成人av教育| 精品国产超薄肉色丝袜足j| 狠狠狠狠99中文字幕| 黑人操中国人逼视频| 捣出白浆h1v1| 男女高潮啪啪啪动态图| 新久久久久国产一级毛片| 久久性视频一级片| 国产免费男女视频| 国产三级黄色录像| 人人澡人人妻人| 精品国产一区二区三区四区第35| 久99久视频精品免费| 一边摸一边做爽爽视频免费| 99国产精品一区二区蜜桃av | 久久中文看片网| 777米奇影视久久| ponron亚洲| 制服诱惑二区| 一边摸一边做爽爽视频免费| 少妇裸体淫交视频免费看高清 | 91精品三级在线观看| 丰满人妻熟妇乱又伦精品不卡| 天天躁狠狠躁夜夜躁狠狠躁| bbb黄色大片| 欧美亚洲日本最大视频资源| 国产成人影院久久av| 亚洲va日本ⅴa欧美va伊人久久| 欧美日韩中文字幕国产精品一区二区三区 | 国产激情欧美一区二区| 国产蜜桃级精品一区二区三区 | 极品少妇高潮喷水抽搐| 久久久国产成人免费| 一区二区三区激情视频| 日韩人妻精品一区2区三区| 国产精品久久久久成人av| 日本黄色日本黄色录像| 国产人伦9x9x在线观看| 成年动漫av网址| 久久久国产成人精品二区 | 婷婷精品国产亚洲av在线 | 国产成人免费无遮挡视频| 国产日韩欧美亚洲二区| 一区在线观看完整版| 9热在线视频观看99| 男女之事视频高清在线观看| 中文字幕最新亚洲高清| 国产一区在线观看成人免费| x7x7x7水蜜桃| 亚洲全国av大片| 成人黄色视频免费在线看| 日本黄色视频三级网站网址 | 免费观看精品视频网站| av视频免费观看在线观看| 中出人妻视频一区二区| 伊人久久大香线蕉亚洲五| 欧美人与性动交α欧美精品济南到| 女同久久另类99精品国产91| cao死你这个sao货| 欧美乱色亚洲激情| 精品国产一区二区三区久久久樱花| 一区二区三区国产精品乱码| 天堂√8在线中文| 亚洲情色 制服丝袜| 国产精品国产av在线观看| 亚洲国产中文字幕在线视频| 美女午夜性视频免费| 18禁裸乳无遮挡动漫免费视频| 免费看a级黄色片| 国产欧美日韩综合在线一区二区| 在线观看www视频免费| 色精品久久人妻99蜜桃| 激情在线观看视频在线高清 | 欧美人与性动交α欧美软件| 国产精品自产拍在线观看55亚洲 | 男女床上黄色一级片免费看| 91老司机精品| 人人妻人人爽人人添夜夜欢视频| 最近最新中文字幕大全电影3 | 亚洲精品在线观看二区| 欧美日韩福利视频一区二区| 亚洲精品国产区一区二| 嫁个100分男人电影在线观看| 老熟妇乱子伦视频在线观看| 久久人妻熟女aⅴ| 欧美乱色亚洲激情| 18禁美女被吸乳视频| 午夜福利影视在线免费观看| 国产午夜精品久久久久久| 国产精品电影一区二区三区 | 日日爽夜夜爽网站| 欧美日本中文国产一区发布| 亚洲 欧美一区二区三区| 久久香蕉国产精品| 一级毛片高清免费大全| 欧美日韩中文字幕国产精品一区二区三区 | 成人永久免费在线观看视频| 国内毛片毛片毛片毛片毛片| 高清欧美精品videossex| 亚洲精品中文字幕一二三四区| 老司机深夜福利视频在线观看| 国产av精品麻豆| 搡老熟女国产l中国老女人| 久久中文字幕人妻熟女| 9191精品国产免费久久| 国产免费现黄频在线看| 亚洲中文日韩欧美视频| 午夜福利免费观看在线| 午夜91福利影院| 欧美激情高清一区二区三区| 亚洲专区字幕在线| 叶爱在线成人免费视频播放| 高清欧美精品videossex| 高清黄色对白视频在线免费看| 不卡av一区二区三区| 亚洲av欧美aⅴ国产| 激情在线观看视频在线高清 | 下体分泌物呈黄色| 亚洲aⅴ乱码一区二区在线播放 | 精品久久蜜臀av无| 一级a爱片免费观看的视频| 一级片'在线观看视频| 国产主播在线观看一区二区| 久久久久精品国产欧美久久久| 久久精品国产清高在天天线| 中文字幕最新亚洲高清| 一本一本久久a久久精品综合妖精| 精品一区二区三区av网在线观看| 亚洲成av片中文字幕在线观看| 亚洲 欧美一区二区三区| 国产精品.久久久| 午夜91福利影院| 久久精品国产亚洲av高清一级| 激情在线观看视频在线高清 | 麻豆成人av在线观看| 青草久久国产| 亚洲 国产 在线| 亚洲免费av在线视频| 美女午夜性视频免费| 国产成人啪精品午夜网站| 黄色女人牲交| 精品国产乱子伦一区二区三区| 久久香蕉国产精品| 搡老熟女国产l中国老女人| 久久人妻熟女aⅴ| 麻豆成人av在线观看| 午夜精品在线福利| 亚洲av成人不卡在线观看播放网| 亚洲免费av在线视频| 久久国产精品男人的天堂亚洲| 高清在线国产一区| 亚洲av成人av| 少妇猛男粗大的猛烈进出视频| 国内毛片毛片毛片毛片毛片| 757午夜福利合集在线观看| 亚洲av熟女| 亚洲成人免费电影在线观看| 久9热在线精品视频| 国产在线一区二区三区精| 久久久久国产一级毛片高清牌| 一区福利在线观看| 国产高清国产精品国产三级| 捣出白浆h1v1| 亚洲一区二区三区不卡视频| 久久亚洲真实| 身体一侧抽搐| 18禁黄网站禁片午夜丰满| 午夜影院日韩av| 午夜久久久在线观看| 99精品欧美一区二区三区四区| 精品高清国产在线一区|