• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Spectrum Quantitative Analysis Based on Bootstrap-SVM Model with Small Sample Set

    2016-07-12 12:43:43MAXiaoZHAOZhongXIONGShanhai
    光譜學(xué)與光譜分析 2016年5期
    關(guān)鍵詞:針入度方根光譜

    MA Xiao, ZHAO Zhong, XIONG Shan-hai

    College of Information Science and Technology, Bejing University of Chemical Technology, Beijing 100029, China

    Spectrum Quantitative Analysis Based on Bootstrap-SVM Model with Small Sample Set

    MA Xiao, ZHAO Zhong*, XIONG Shan-hai

    College of Information Science and Technology, Bejing University of Chemical Technology, Beijing 100029, China

    A new spectrum quantitative analysis method based on Bootstrap-SVM model with small sample set is proposed in this paper.To build the spectrum quantitative analysis model for bitumen penetration index, altogether 29 bitumen samples were collected from 6 companies.Based on the collected 29 bitumen samples, spectrum quantitative analysis model with proposed method for predicting bitumen penetration index has been built.To verify the feasibility and effectiveness of the proposed method, the comparative experiments of predicting the bitumen sample penetration index with the proposed method, partial least squares (PLS) and support vector machine (SVM) have also been done.Comparative experiment results have verified that the minimum prediction root mean squared error (RMSE) is achieved by using the proposed Bootstrap-SVM model with the small sample set.The proposed method provides a new way to solve the problem of building the spectrum quantitative analysis model with small sample set.

    Spectrum quantitative analysis; Small sample set; Bootstrap; Support vector machines; Partial least squares

    Introduction

    Spectrum quantitative analysis is an important research area in spectroscopy.Building a stable and accurate prediction model is the premise of spectrum quantitative analysis for unknown samples.Successful applications of spectrum quantitative analysis methods can now be seen in a wide variety areas, such as multiple linear regression (MLR)[1], principle component regression (PCR)[2], partial least squares (PLS)[3], artificial neural networks (ANN)[4]and support vector machine(SVM)[4].MLR, PCR and PLS are usually applied to build the linear prediction model and ANN, SVM can be applied to build the nonlinear prediction model.In the real applications, it is often difficult to obtain complete information from samples due to the limitations of the sample sources.It is noticed that less effort has been made to the studies of spectrum quantitative analysis based on small sample set, while the spectrum quantitative analysis based on large sample set has been well studied[1-4].In the cases of small sample set, it is usually difficult to build the stable and accurate prediction models for spectrum quantitative analysis with traditional methods.Hence, it is important to study the modeling methods for spectrum quantitative analysis with small sample set.

    In this paper, how to build quantitative analysis model of the bitumen penetration index spectrum with small sample set is studied.Bitumen as pavement gumming material is widely used in road engineering.Bitumen penetration index is one of the important indicators which reflect the hardness of the pitch, consistency and ability to resist shear failure.Although the bitumen penetration index is a physical property, it is closely related with the content of the bitumen components.Aromatics saturation and aromatics have the high penetration indexes,while the penetration indexes of the resin and asphaltene are very low.According to the JTGF40-2004 issued by Ministry of Transportation of the People's Republic of China, the bitumen penetration index is measured by “Standard Test Methods of Bitumen and Bituminous Mixtures for Highway Engineering (JTJ 052—2000)”.This is time-consuming, difficult to operate and is also found of using toxic solvents.Therefore, it is necessary to work out a fast, clean and convenient method to measure the bitumen penetration index.Infrared spectroscopy analysis is a nondestructive detection and also a rapid analysis method, which can be applied to measure the bitumen penetration index.In this paper, a new spectrum quantitative analysis method based on Bootstrap-SVM model with small sample set is proposed for building the bitumen penetration index prediction model.The paper is organized as follows: in Section 1, the sample processing with Bootstrap algorithm and machine learning with SVM are presented.The detailed description of the experiment is presented in Section 2.Section 3 is devoted to comparative experiments and discussion.The paper is concluded in Section 4.

    1 Algorithms and theory

    1.1 Sample processing

    In the sample processing, Bootstrap resampling was applied to expand the sample set.Bootstrap resampling was proposed by Professor Efron[6].It is essentially a non-parametric resampling method which needs no assumption of the sample distribution.The basic idea of Bootstrap resampling is to simulate the sample generation process by repeating resampling data .Due to the limitations of the sample sources, the spectrum quantitative analysis model for predicting the bitumen penetration index has to be built based on small sample set.In this paper, Bootstrap resampling is applied to expand the sample set.The steps of sample processing with Bootstrap resampling are as follows:

    (1) Define the original sample set asX=(X1,X2,…,Xn).Randomly generate the integers asi1,i2,…,in∈[1,n];

    1.2 Noise injection

    In order to simulate the sampling process and improve the stability of the spectrum quantitative analysis model, noise injection[7-8]was applied to the expanded samples after resampling.Noise injected to the input values, output values and both input and output values are three ways of injection.The noise injection can be described as

    ZV=Z+V

    (1)

    ZVis the data matrix after the noise injection,Zis the source data matrix andVrepresents the noise matrix.So,

    then,

    (2)

    Mis the total number of samples.pis the length of each data sample.zvijdenotes the data items after noise injection.zijdenotes the original data item andvijdenotes the noise which is added tozij.In this paper, Gaussian white noise matrix withVi∈N(0,σ2) was chosen as the noise matrix.The noise intensity can be adjusted byσ.

    1.3 Support Vector Machine

    Support vector machine (SVM) was proposed based on statistical learning by Vapnik[9].The SVM is a machine learning method based on structural risk minimization which can be used to deal with small sample set, nonlinear and high dimensional machine learning problems.In order to obtain the best generalization ability, the precision of data approximation and the complexity of approximation functions are compromised during the machine learning process in SVM and the learning process is transferred into solving a convex quadratic programming problem.Therefore, the global optima can be gained.The problem of local minima can be avoided compared with the traditional machine learning methods with multilayer feed forward neural networks.In SVM, the nonlinear transformation is applied to transfer the samples into the high-dimensional feature space and the linear decision function can be constructed to classify the original samples in the high-dimensional feature space.Therefore, the complexity of learning process has nothing to do with the dimensions of sample set.In this paper, SVM is applied to build the spectrum quantitative analysis model for predicting the bitumen penetration index.

    2 Experiment

    2.1 Sample information

    29 bitumen samples have been collected from different factories.According to crude oil producers, the collected samples can be divided into two classes, the South America’s heavy oil and Xin Jiang’s thickened oil.The bitumen penetration indexes of the samples penetration were measured under the “Standard Test Methods of Bitumen and Bituminous Mixtures for Highway Engineering (JTJ 052-2000)”.The calibration set and validation set are shown in the table 1.

    Tabel 1 Bitumen samples category and distribution

    2.2 Instrument and working conditions

    The spectrum of bitumen was collected by attenuated total reflectance infrared spectroscopy in the analytical instrumentation center of Beijing University of Chemical Technology.The instrument parameters were set as follows: the wave number range was 4000~650 cm-1, resolution was 4 cm-1and scan times were 32.The samples needed to be heated to 70 ℃ when the infrared spectrum was measured and a few samples were evenly coated on the surface of the ATR crystal.The same sample was repeated three times and then the average spectrum was used as the infrared spectrum of the sample.

    2.3 Data processing

    The quantitative models of PLS, SVM and Bootstrap-SVM have been compared in this paper.The methods of first-order differential, data smoothing and mean center were applied to PLS.The data normalization was applied to SVM and Bootstrap-SVM.

    3 Result and discussion

    3.1 Spectrum analysis

    The main components of the road bitumen samples studied in this work are hydrocarbon, hydroxyl compound!and oxygenated compound.The penetration index is one of the physical properties of bitumen, but it is closely related to the chemical composition and content in bitumen.The infrared spectrum reflects the molecular vibration and rotational basic information of material.Therefore, the penetration index quantitative predicting model can be built with infrared spectrum analysis.The bitumen infrared absorption spectrum is shown in figure 1.

    Fig.1 ATR IR spectrum of Bitumen samples

    3.2 The spectrum quantitative analysis model with PLS

    PLS is widely applied to the quantitative analysis of infrared spectrum currently.The PLS model in this paper was built with the data after pre-processing.The first three principal components were selected by cross-validation and the input and output data mapping.The input and output principle components and the proportion of eigenvalues are shown in figure 2 and in figure 3 respectively.The prediction result of PLS is show in table 2.

    Fig.2 Eigenvalue vs.PC Number

    Fig.3 Eigenvalue vs.PC Number

    Table 2 Result of PLS

    sampleprediction16567.021268.865.729369.863.918462.164.19856667.74467073.296766.966.65887168.87496567.094106567.842RMSE2.889

    3.3 The spectrum quantitative analysis model with SVM

    For convenience,the Libsvm tools developed by Professor Lin Chih-Jen were applied to build the spectrum quantitative model with SVM.The parameter settings are as follows: the SVM model type selected as ε-SVR, the kernel function selected as RBF, the parameters set as -p1.5,-c0.01.The prediction results are shown in table 3.

    Table 3 Result of SVM

    3.4 The spectrum quantitative analysis model with Bootstrap-SVM

    Firstly, the original sample set was expanded by resampling method as described in 1.1.The calibration set of 19 samples was expanded to 200.Then, the 200 samples were injected with noise as described in 1.2.The noise intensity should be adjusted because the noise level has a great influence on the accuracy of the analysis model.If the intensity of noise is too small, the samples after noise injection are similar to the original samples.And if the intensity of noise is too large, it would generate the abnormal samples.Man-made factors, instrument factors, temperature and other factors may result in subtle differences in measurement of the spectrum.It is found that the subtle differences of spectrum would cause large errors of prediction.So the intensity of noise can be determined by several tests.In this paper, the intensity of noise was taken asσx=0.001,σy=0.1.The SVM model was built by using Libsvm tool.The parameters were chosen as -p2.0,-c0.03.The prediction results with 10 validation samples are shown in table 4.

    Table 4 Result of Bootstrap-SVM

    4 Conclusion

    In this paper, a new spectrum quantitative analysis method based on Bootstrap-SVM model with small sample set is proposed.Based on the collected 29 bitumen samples, spectrum quantitative analysis model with proposed method for predicting bitumen penetration index has been built.The comparative experiments of predicting the bitumen sample penetration index with the proposed method, partial least squares (PLS) and support vector machine (SVM) have also been done.Comparative experiment results have verified that the minimum prediction root mean squared error (RMSE) is achieved by using the proposed Bootstrap-SVM model with the small sample set.In this paper, it is found that the nonlinear models such as SVM and Bootstrap-SVM could predict the bitumen penetration index more precisely.Though SVM based on statistical learning theory can be applied to build the predicting model with small sample set, the accuracy and generalization ability of SVM model with small sample set can be improved obviously by Bootstrap resampling and noise injection.

    [1] BIAN Zhao-qi,ZHANG Xue-gong.Pattern Recognition.Beijing: Tsinghua University Publishing Company, 2000.192.

    [2] Luo Wentao, Liu Guili.Modern Scientific Instruments, 2013, 6(3): 94.

    [3] Roggo Y, Roeseler C, Ulmschneider M.J.Pharm.Biomed.Anal., 2004, 36(4): 777.

    [4] Fontalvo-Gomez M, Colucci J A, Velez Natasha, Romanach R J.Applied Spectroscopy, 2013, 67(10): 1142.

    [5] Mao R, Zhu H, Zhang L.A.Chen.Proc.ISDA, 2006, (1): 17.

    [6] Lanouette R, Thibault J, Valade J L.Comput.Chem.Eng.,1999, 23(9): 1167.

    [7] Luigi Fortuna, Salvatore Graziani, Maria Gabriella Xibilia.IEEE Transaction on Instrumentation and Measurement, 2009, 58(8): 2444.

    [8] Efron B.The Annals and Statistics,1979, 7(1): 1.

    [9] Grandvalet Y, Boucheron S.Neural Comput.,1997, 9(5): 1093.

    *通訊聯(lián)系人

    O657.3

    A

    基于Bootstrap-SVM在小樣本條件下光譜定量分析研究

    馬 嘯,趙 眾*,熊善海

    北京化工大學(xué)信息科學(xué)與技術(shù)學(xué)院,北京 100029

    提出了一種在小樣本條件下建立光譜定量分析的新方法-Bootstrap-SVM模型。以道路瀝青為研究對(duì)象,共收集29個(gè)來自6個(gè)不同單位的瀝青樣本,利用所提方法建立了瀝青針入度定量分析模型。Bootstrap-SVM由Bootstrap重抽樣、噪聲注入及SVM三個(gè)步驟組成。為了對(duì)比所提方法的優(yōu)勢(shì),對(duì)比了目前常用的PLS模型以及SVM模型。研究結(jié)果表明Bootstrap-SVM,PLS,SVM預(yù)測(cè)均方根誤差分別為0.773 5,2.889,1.784 4,所提方法預(yù)測(cè)精度最好,為小樣本條件下光譜定量分析提供了一種新的有效方法。

    小樣本; Bootstrap; 支持向量機(jī)

    2015-03-02,

    2015-07-09)

    Foundation item:Fundamental Research Founds for Central Universities (YS1404)

    10.3964/j.issn.1000-0593(2016)05-1571-05

    Received:2015-03-02; accepted:2015-07-09

    Biography:MA Xiao, (1990—), Master degree candidate in Beijing University of Chemical Technology e-mail: maxiao2014job@163.com *Corresponding author e-mail: zhaozhong@mail.buct.edu.cn

    猜你喜歡
    針入度方根光譜
    方根拓展探究
    基于三維Saab變換的高光譜圖像壓縮方法
    道路瀝青材料針入度與溫度的關(guān)聯(lián)及其數(shù)學(xué)模型的驗(yàn)證
    石油瀝青(2022年1期)2022-04-19 13:10:32
    道路石油瀝青針入度與溫度的關(guān)聯(lián)優(yōu)化及其數(shù)學(xué)模型的建立
    石油瀝青(2021年3期)2021-08-05 07:41:06
    改善SBS改性瀝青產(chǎn)品針入度指數(shù)的方法探究
    石油瀝青(2019年4期)2019-09-02 01:41:50
    瀝青針入度測(cè)量不確定度評(píng)定
    均方根嵌入式容積粒子PHD 多目標(biāo)跟蹤方法
    揭開心算方根之謎
    星載近紅外高光譜CO2遙感進(jìn)展
    數(shù)學(xué)魔術(shù)
    女人高潮潮喷娇喘18禁视频| 国产一区二区激情短视频| 国产成人啪精品午夜网站| 午夜福利视频1000在线观看| 欧美日本亚洲视频在线播放| 熟妇人妻久久中文字幕3abv| 精品久久久久久久久久久久久| 好男人在线观看高清免费视频| 国产精品一区二区三区四区久久| 日韩精品中文字幕看吧| 国产 一区 欧美 日韩| 青草久久国产| 99精品欧美一区二区三区四区| 国内少妇人妻偷人精品xxx网站 | 看免费av毛片| 成人性生交大片免费视频hd| 天堂√8在线中文| 黄色 视频免费看| 欧美乱色亚洲激情| 国产探花在线观看一区二区| 成人无遮挡网站| 亚洲性夜色夜夜综合| 97人妻精品一区二区三区麻豆| 成人特级黄色片久久久久久久| 国产精品99久久久久久久久| 精品久久久久久久久久久久久| 性色avwww在线观看| 亚洲av第一区精品v没综合| 成人国产综合亚洲| 国产 一区 欧美 日韩| 亚洲av电影不卡..在线观看| 精品一区二区三区四区五区乱码| 国产亚洲av嫩草精品影院| 日韩av在线大香蕉| 亚洲国产精品成人综合色| 国产免费av片在线观看野外av| 国产精品1区2区在线观看.| 国产伦在线观看视频一区| 免费观看精品视频网站| 亚洲男人的天堂狠狠| 午夜福利视频1000在线观看| 精品国产乱码久久久久久男人| 免费电影在线观看免费观看| 国产精品久久久久久亚洲av鲁大| 欧美绝顶高潮抽搐喷水| 国产aⅴ精品一区二区三区波| 在线观看免费午夜福利视频| 99久久无色码亚洲精品果冻| 久久香蕉国产精品| 国内揄拍国产精品人妻在线| 每晚都被弄得嗷嗷叫到高潮| 欧美绝顶高潮抽搐喷水| 国产激情欧美一区二区| 色综合欧美亚洲国产小说| 国产精品爽爽va在线观看网站| 色综合亚洲欧美另类图片| 国产一区二区三区视频了| 国产伦一二天堂av在线观看| 日本在线视频免费播放| 法律面前人人平等表现在哪些方面| 亚洲五月婷婷丁香| 91av网站免费观看| 天堂动漫精品| 91麻豆精品激情在线观看国产| 亚洲成人精品中文字幕电影| 在线观看66精品国产| 熟女少妇亚洲综合色aaa.| 日本一二三区视频观看| 久久久国产精品麻豆| 精品久久久久久,| 免费在线观看影片大全网站| 欧美zozozo另类| av中文乱码字幕在线| 国语自产精品视频在线第100页| netflix在线观看网站| www.精华液| 亚洲天堂国产精品一区在线| 十八禁人妻一区二区| 久久中文看片网| 一级a爱片免费观看的视频| 人人妻,人人澡人人爽秒播| 日韩国内少妇激情av| 最新美女视频免费是黄的| x7x7x7水蜜桃| 在线观看免费午夜福利视频| 欧美激情在线99| 男女视频在线观看网站免费| 国产精品自产拍在线观看55亚洲| 一个人观看的视频www高清免费观看 | 亚洲熟妇中文字幕五十中出| 成人三级做爰电影| 国产麻豆成人av免费视频| 在线观看日韩欧美| 最近在线观看免费完整版| 在线观看免费午夜福利视频| 国产成人精品无人区| 亚洲国产精品成人综合色| cao死你这个sao货| 日本a在线网址| 听说在线观看完整版免费高清| 色吧在线观看| 亚洲av成人不卡在线观看播放网| 麻豆成人av在线观看| 国产成+人综合+亚洲专区| 亚洲av中文字字幕乱码综合| 男女那种视频在线观看| 99久久综合精品五月天人人| 97超级碰碰碰精品色视频在线观看| 亚洲色图 男人天堂 中文字幕| 老鸭窝网址在线观看| 亚洲七黄色美女视频| 国内揄拍国产精品人妻在线| 日韩免费av在线播放| 老熟妇仑乱视频hdxx| 精品国产超薄肉色丝袜足j| 亚洲最大成人中文| 国产激情偷乱视频一区二区| 欧美一级a爱片免费观看看| 可以在线观看毛片的网站| 亚洲国产精品久久男人天堂| 法律面前人人平等表现在哪些方面| 99久国产av精品| 女人被狂操c到高潮| 最新在线观看一区二区三区| 性欧美人与动物交配| 在线播放国产精品三级| 操出白浆在线播放| 成人av在线播放网站| 中国美女看黄片| 91久久精品国产一区二区成人 | 天堂av国产一区二区熟女人妻| 99精品在免费线老司机午夜| 国产精品一区二区免费欧美| 亚洲男人的天堂狠狠| 成熟少妇高潮喷水视频| 99久国产av精品| 久久这里只有精品19| 亚洲国产色片| 国产欧美日韩一区二区精品| av女优亚洲男人天堂 | 天堂av国产一区二区熟女人妻| 精品一区二区三区av网在线观看| 黄色丝袜av网址大全| 国产精品永久免费网站| 亚洲一区高清亚洲精品| 午夜激情福利司机影院| 久久九九热精品免费| 国产欧美日韩一区二区精品| 久久性视频一级片| 亚洲aⅴ乱码一区二区在线播放| 亚洲七黄色美女视频| 久久久久久大精品| 久久精品影院6| 国产精品久久久久久精品电影| 亚洲精品在线观看二区| 2021天堂中文幕一二区在线观| 成人三级黄色视频| 草草在线视频免费看| 中文字幕人成人乱码亚洲影| 俺也久久电影网| 麻豆av在线久日| 亚洲精品美女久久av网站| 美女午夜性视频免费| 色噜噜av男人的天堂激情| 99re在线观看精品视频| 国产伦精品一区二区三区视频9 | svipshipincom国产片| 国产又黄又爽又无遮挡在线| 精品熟女少妇八av免费久了| 久久久色成人| av女优亚洲男人天堂 | 99国产精品一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| 国内精品一区二区在线观看| 日日夜夜操网爽| xxx96com| 国产精品野战在线观看| 搡老熟女国产l中国老女人| 免费无遮挡裸体视频| 变态另类成人亚洲欧美熟女| 亚洲 欧美 日韩 在线 免费| 日韩人妻高清精品专区| 亚洲专区中文字幕在线| 一区二区三区高清视频在线| 12—13女人毛片做爰片一| 12—13女人毛片做爰片一| 无遮挡黄片免费观看| 成人国产一区最新在线观看| 亚洲成人精品中文字幕电影| 免费av毛片视频| 琪琪午夜伦伦电影理论片6080| 日本a在线网址| 高清毛片免费观看视频网站| 欧美3d第一页| 麻豆av在线久日| 欧美乱妇无乱码| 最近最新免费中文字幕在线| 亚洲五月婷婷丁香| 国产亚洲av嫩草精品影院| 国产美女午夜福利| 性欧美人与动物交配| 国内精品久久久久久久电影| 久久精品91无色码中文字幕| 国产欧美日韩一区二区精品| 最新在线观看一区二区三区| 高潮久久久久久久久久久不卡| 国产午夜精品论理片| 国产亚洲精品久久久久久毛片| 大型黄色视频在线免费观看| 黄片小视频在线播放| 久久这里只有精品中国| 午夜免费观看网址| 国产高清视频在线观看网站| 九九热线精品视视频播放| 亚洲精品久久国产高清桃花| 日韩有码中文字幕| 欧美极品一区二区三区四区| 国产探花在线观看一区二区| 老司机深夜福利视频在线观看| 夜夜看夜夜爽夜夜摸| 大型黄色视频在线免费观看| www日本黄色视频网| 亚洲18禁久久av| 91av网站免费观看| 国产亚洲精品久久久com| 女人被狂操c到高潮| 淫妇啪啪啪对白视频| 欧美精品啪啪一区二区三区| 国产午夜福利久久久久久| 午夜福利18| 最新中文字幕久久久久 | 最新中文字幕久久久久 | 18禁美女被吸乳视频| 中亚洲国语对白在线视频| 在线观看免费午夜福利视频| 婷婷丁香在线五月| 中文在线观看免费www的网站| 国产精品电影一区二区三区| 无限看片的www在线观看| 精品福利观看| 好男人电影高清在线观看| 男女午夜视频在线观看| 国产高清视频在线观看网站| 日本a在线网址| 日韩有码中文字幕| 特大巨黑吊av在线直播| 91老司机精品| 国产精品一区二区精品视频观看| 我的老师免费观看完整版| 成人三级黄色视频| 欧美黑人欧美精品刺激| 母亲3免费完整高清在线观看| 国产精品美女特级片免费视频播放器 | 亚洲avbb在线观看| 最新美女视频免费是黄的| netflix在线观看网站| 又黄又爽又免费观看的视频| 麻豆久久精品国产亚洲av| 国产精品久久久av美女十八| 男女床上黄色一级片免费看| 国产激情偷乱视频一区二区| 欧美日韩国产亚洲二区| 日韩免费av在线播放| 最好的美女福利视频网| 老汉色av国产亚洲站长工具| 一个人观看的视频www高清免费观看 | 91av网一区二区| 国产精品,欧美在线| 叶爱在线成人免费视频播放| 久久久久国内视频| 精品久久久久久成人av| 日韩大尺度精品在线看网址| 在线a可以看的网站| 国产成人系列免费观看| 国产一区二区激情短视频| 两性夫妻黄色片| 亚洲成a人片在线一区二区| 法律面前人人平等表现在哪些方面| 国产欧美日韩精品一区二区| 老司机深夜福利视频在线观看| 熟女电影av网| 成人三级黄色视频| 美女高潮喷水抽搐中文字幕| 久久天躁狠狠躁夜夜2o2o| 好男人在线观看高清免费视频| 国内精品久久久久久久电影| 国产精品电影一区二区三区| 黄色成人免费大全| 国产又色又爽无遮挡免费看| av在线天堂中文字幕| 国产欧美日韩一区二区精品| 观看免费一级毛片| 国产亚洲精品一区二区www| 亚洲人成网站在线播放欧美日韩| 婷婷精品国产亚洲av在线| 亚洲精品色激情综合| 91在线精品国自产拍蜜月 | 日本精品一区二区三区蜜桃| 国产一区二区在线av高清观看| 又大又爽又粗| 亚洲av电影不卡..在线观看| www.熟女人妻精品国产| 特级一级黄色大片| 精品国产超薄肉色丝袜足j| 亚洲成人精品中文字幕电影| 一二三四社区在线视频社区8| 色精品久久人妻99蜜桃| 色av中文字幕| 欧美激情久久久久久爽电影| 午夜福利18| 免费大片18禁| 免费在线观看亚洲国产| 欧美乱码精品一区二区三区| 在线观看免费视频日本深夜| 少妇人妻一区二区三区视频| 亚洲av电影在线进入| 男人的好看免费观看在线视频| 精品国产乱子伦一区二区三区| 亚洲午夜精品一区,二区,三区| 久久久久久人人人人人| 国产高清视频在线观看网站| 免费观看的影片在线观看| 级片在线观看| 免费av不卡在线播放| 国产精品久久久久久精品电影| 男女视频在线观看网站免费| 欧美日韩亚洲国产一区二区在线观看| 色尼玛亚洲综合影院| 国产精品亚洲av一区麻豆| 国产1区2区3区精品| 亚洲一区二区三区色噜噜| 国产午夜福利久久久久久| 亚洲 国产 在线| 免费av毛片视频| 69av精品久久久久久| 人妻久久中文字幕网| 天天一区二区日本电影三级| 最新中文字幕久久久久 | 亚洲国产精品成人综合色| 久久久久国产一级毛片高清牌| 一个人看视频在线观看www免费 | 精品久久久久久久人妻蜜臀av| 999精品在线视频| 99精品欧美一区二区三区四区| 18禁裸乳无遮挡免费网站照片| 欧美3d第一页| 国产午夜精品论理片| 美女免费视频网站| 亚洲18禁久久av| 日韩有码中文字幕| 国产av一区在线观看免费| 在线十欧美十亚洲十日本专区| 小说图片视频综合网站| 日韩欧美 国产精品| 一二三四社区在线视频社区8| 久久久久九九精品影院| 法律面前人人平等表现在哪些方面| 欧美绝顶高潮抽搐喷水| 国产不卡一卡二| 国产高清有码在线观看视频| 午夜福利成人在线免费观看| 国内精品一区二区在线观看| 欧美在线黄色| 色播亚洲综合网| 久久午夜综合久久蜜桃| 国产精品乱码一区二三区的特点| 午夜影院日韩av| 欧美性猛交╳xxx乱大交人| 久久九九热精品免费| 黑人欧美特级aaaaaa片| 国产毛片a区久久久久| 亚洲国产看品久久| cao死你这个sao货| 日韩欧美在线二视频| 国产精品98久久久久久宅男小说| av天堂在线播放| 黄色视频,在线免费观看| 欧美日韩中文字幕国产精品一区二区三区| 国产精华一区二区三区| 日韩大尺度精品在线看网址| 日本成人三级电影网站| 久久精品夜夜夜夜夜久久蜜豆| 国产精品爽爽va在线观看网站| 亚洲欧美激情综合另类| 亚洲最大成人中文| 男女做爰动态图高潮gif福利片| 毛片女人毛片| 国产伦精品一区二区三区四那| 欧美+亚洲+日韩+国产| 国产精品女同一区二区软件 | 又黄又粗又硬又大视频| 欧美日韩精品网址| 久久99热这里只有精品18| 亚洲五月天丁香| 中文在线观看免费www的网站| 精品不卡国产一区二区三区| 欧美黄色片欧美黄色片| 在线观看日韩欧美| 看黄色毛片网站| 精华霜和精华液先用哪个| 日日干狠狠操夜夜爽| 国内精品久久久久精免费| 男人舔女人的私密视频| 午夜福利免费观看在线| 国产欧美日韩一区二区精品| 99久久精品一区二区三区| 亚洲专区中文字幕在线| 天天添夜夜摸| 国产v大片淫在线免费观看| 在线观看舔阴道视频| 国产av在哪里看| 男女视频在线观看网站免费| 久久久久久久久免费视频了| 久久精品人妻少妇| 在线观看美女被高潮喷水网站 | 丁香六月欧美| 午夜福利高清视频| 一二三四社区在线视频社区8| 18禁黄网站禁片午夜丰满| 在线观看舔阴道视频| 国产一区在线观看成人免费| 久久天躁狠狠躁夜夜2o2o| 亚洲av成人精品一区久久| 黄色 视频免费看| 精品久久久久久久毛片微露脸| 一个人观看的视频www高清免费观看 | 看免费av毛片| 亚洲电影在线观看av| 国产精品九九99| 久久精品国产99精品国产亚洲性色| 亚洲专区国产一区二区| 天堂√8在线中文| 国产v大片淫在线免费观看| 午夜福利在线观看免费完整高清在 | 深夜精品福利| x7x7x7水蜜桃| 免费在线观看影片大全网站| 国产精品久久视频播放| 日本熟妇午夜| 91av网站免费观看| 中文字幕av在线有码专区| 亚洲精品美女久久av网站| 丰满人妻熟妇乱又伦精品不卡| 成人国产一区最新在线观看| 青草久久国产| 特级一级黄色大片| 国产精品久久久久久精品电影| av女优亚洲男人天堂 | 精品久久久久久久毛片微露脸| 99久久成人亚洲精品观看| 国产精品久久久久久亚洲av鲁大| 在线观看午夜福利视频| 中文字幕av在线有码专区| 一区福利在线观看| 久9热在线精品视频| 超碰成人久久| 日韩欧美三级三区| 久久久久性生活片| 国产精品99久久99久久久不卡| 久久久水蜜桃国产精品网| 日韩欧美在线二视频| 亚洲真实伦在线观看| 一本久久中文字幕| 搞女人的毛片| 国产亚洲欧美在线一区二区| 99久国产av精品| 熟女电影av网| 国产精品爽爽va在线观看网站| 欧美日韩亚洲国产一区二区在线观看| 久久精品91蜜桃| 一个人免费在线观看电影 | 国产三级在线视频| 一个人观看的视频www高清免费观看 | 成人性生交大片免费视频hd| 少妇熟女aⅴ在线视频| 久久香蕉国产精品| 亚洲avbb在线观看| 999久久久国产精品视频| 亚洲aⅴ乱码一区二区在线播放| 国产高清三级在线| av国产免费在线观看| 后天国语完整版免费观看| 99国产精品一区二区三区| 哪里可以看免费的av片| 狂野欧美激情性xxxx| 久久久久久人人人人人| 国产成人精品无人区| 国产精品野战在线观看| 色噜噜av男人的天堂激情| 在线观看日韩欧美| av天堂中文字幕网| bbb黄色大片| 中文字幕高清在线视频| 国产蜜桃级精品一区二区三区| 可以在线观看的亚洲视频| 国产精品一区二区精品视频观看| 国产三级黄色录像| 在线播放国产精品三级| 神马国产精品三级电影在线观看| 国产精品久久久久久人妻精品电影| 可以在线观看毛片的网站| 精品乱码久久久久久99久播| 国产精品亚洲av一区麻豆| 每晚都被弄得嗷嗷叫到高潮| 啪啪无遮挡十八禁网站| 亚洲中文日韩欧美视频| 他把我摸到了高潮在线观看| 免费在线观看成人毛片| 国产99白浆流出| 91久久精品国产一区二区成人 | 一夜夜www| 国产精品野战在线观看| 91麻豆精品激情在线观看国产| 欧美3d第一页| 人妻夜夜爽99麻豆av| 夜夜爽天天搞| 亚洲无线观看免费| www.999成人在线观看| 亚洲avbb在线观看| 人人妻,人人澡人人爽秒播| 美女cb高潮喷水在线观看 | 成人特级av手机在线观看| 国产av一区在线观看免费| 午夜福利18| 操出白浆在线播放| 一区二区三区激情视频| 国产成人精品无人区| 少妇的逼水好多| 美女高潮喷水抽搐中文字幕| 国产成人啪精品午夜网站| 午夜影院日韩av| 亚洲人成电影免费在线| 日本成人三级电影网站| 男女之事视频高清在线观看| 麻豆一二三区av精品| 99热只有精品国产| 精品日产1卡2卡| 2021天堂中文幕一二区在线观| 国产淫片久久久久久久久 | 免费看a级黄色片| 最近在线观看免费完整版| 国产乱人伦免费视频| 一个人免费在线观看电影 | 国产精品免费一区二区三区在线| 精品久久蜜臀av无| 久久久久亚洲av毛片大全| 久久九九热精品免费| 亚洲精品一卡2卡三卡4卡5卡| 国产精品女同一区二区软件 | 国产高清三级在线| 色噜噜av男人的天堂激情| e午夜精品久久久久久久| 国产高清视频在线播放一区| 国产精华一区二区三区| 老司机在亚洲福利影院| 在线观看美女被高潮喷水网站 | 午夜两性在线视频| 搡老妇女老女人老熟妇| 国产伦精品一区二区三区四那| 美女高潮喷水抽搐中文字幕| 蜜桃久久精品国产亚洲av| 五月伊人婷婷丁香| 国产69精品久久久久777片 | 好男人在线观看高清免费视频| 亚洲国产高清在线一区二区三| 毛片女人毛片| 免费在线观看影片大全网站| 久久久国产成人免费| 色哟哟哟哟哟哟| 男人和女人高潮做爰伦理| 不卡一级毛片| 午夜免费激情av| 一区二区三区激情视频| 美女cb高潮喷水在线观看 | 老鸭窝网址在线观看| 黄色日韩在线| 精品欧美国产一区二区三| 亚洲精品在线观看二区| 人妻久久中文字幕网| 国内揄拍国产精品人妻在线| 色av中文字幕| 国内揄拍国产精品人妻在线| 欧美另类亚洲清纯唯美| 午夜福利18| 亚洲精品456在线播放app | 日本与韩国留学比较| aaaaa片日本免费| av中文乱码字幕在线| 性欧美人与动物交配| 成人三级黄色视频| 成年女人毛片免费观看观看9| 村上凉子中文字幕在线| 国产成人欧美在线观看| 亚洲欧美日韩无卡精品| 美女扒开内裤让男人捅视频| 久久婷婷人人爽人人干人人爱| 国产aⅴ精品一区二区三区波| 国产私拍福利视频在线观看| 中文字幕最新亚洲高清| 午夜免费观看网址| 真实男女啪啪啪动态图| www.999成人在线观看| 怎么达到女性高潮| 女生性感内裤真人,穿戴方法视频| 99久久精品一区二区三区| a级毛片a级免费在线| 国产亚洲精品av在线| 国产三级黄色录像| 99国产精品99久久久久| 亚洲av日韩精品久久久久久密| 99国产精品99久久久久| 成人特级av手机在线观看| 在线观看舔阴道视频| 搡老妇女老女人老熟妇| av天堂中文字幕网|