• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Spectrum Quantitative Analysis Based on Bootstrap-SVM Model with Small Sample Set

    2016-07-12 12:43:43MAXiaoZHAOZhongXIONGShanhai
    光譜學(xué)與光譜分析 2016年5期
    關(guān)鍵詞:針入度方根光譜

    MA Xiao, ZHAO Zhong, XIONG Shan-hai

    College of Information Science and Technology, Bejing University of Chemical Technology, Beijing 100029, China

    Spectrum Quantitative Analysis Based on Bootstrap-SVM Model with Small Sample Set

    MA Xiao, ZHAO Zhong*, XIONG Shan-hai

    College of Information Science and Technology, Bejing University of Chemical Technology, Beijing 100029, China

    A new spectrum quantitative analysis method based on Bootstrap-SVM model with small sample set is proposed in this paper.To build the spectrum quantitative analysis model for bitumen penetration index, altogether 29 bitumen samples were collected from 6 companies.Based on the collected 29 bitumen samples, spectrum quantitative analysis model with proposed method for predicting bitumen penetration index has been built.To verify the feasibility and effectiveness of the proposed method, the comparative experiments of predicting the bitumen sample penetration index with the proposed method, partial least squares (PLS) and support vector machine (SVM) have also been done.Comparative experiment results have verified that the minimum prediction root mean squared error (RMSE) is achieved by using the proposed Bootstrap-SVM model with the small sample set.The proposed method provides a new way to solve the problem of building the spectrum quantitative analysis model with small sample set.

    Spectrum quantitative analysis; Small sample set; Bootstrap; Support vector machines; Partial least squares

    Introduction

    Spectrum quantitative analysis is an important research area in spectroscopy.Building a stable and accurate prediction model is the premise of spectrum quantitative analysis for unknown samples.Successful applications of spectrum quantitative analysis methods can now be seen in a wide variety areas, such as multiple linear regression (MLR)[1], principle component regression (PCR)[2], partial least squares (PLS)[3], artificial neural networks (ANN)[4]and support vector machine(SVM)[4].MLR, PCR and PLS are usually applied to build the linear prediction model and ANN, SVM can be applied to build the nonlinear prediction model.In the real applications, it is often difficult to obtain complete information from samples due to the limitations of the sample sources.It is noticed that less effort has been made to the studies of spectrum quantitative analysis based on small sample set, while the spectrum quantitative analysis based on large sample set has been well studied[1-4].In the cases of small sample set, it is usually difficult to build the stable and accurate prediction models for spectrum quantitative analysis with traditional methods.Hence, it is important to study the modeling methods for spectrum quantitative analysis with small sample set.

    In this paper, how to build quantitative analysis model of the bitumen penetration index spectrum with small sample set is studied.Bitumen as pavement gumming material is widely used in road engineering.Bitumen penetration index is one of the important indicators which reflect the hardness of the pitch, consistency and ability to resist shear failure.Although the bitumen penetration index is a physical property, it is closely related with the content of the bitumen components.Aromatics saturation and aromatics have the high penetration indexes,while the penetration indexes of the resin and asphaltene are very low.According to the JTGF40-2004 issued by Ministry of Transportation of the People's Republic of China, the bitumen penetration index is measured by “Standard Test Methods of Bitumen and Bituminous Mixtures for Highway Engineering (JTJ 052—2000)”.This is time-consuming, difficult to operate and is also found of using toxic solvents.Therefore, it is necessary to work out a fast, clean and convenient method to measure the bitumen penetration index.Infrared spectroscopy analysis is a nondestructive detection and also a rapid analysis method, which can be applied to measure the bitumen penetration index.In this paper, a new spectrum quantitative analysis method based on Bootstrap-SVM model with small sample set is proposed for building the bitumen penetration index prediction model.The paper is organized as follows: in Section 1, the sample processing with Bootstrap algorithm and machine learning with SVM are presented.The detailed description of the experiment is presented in Section 2.Section 3 is devoted to comparative experiments and discussion.The paper is concluded in Section 4.

    1 Algorithms and theory

    1.1 Sample processing

    In the sample processing, Bootstrap resampling was applied to expand the sample set.Bootstrap resampling was proposed by Professor Efron[6].It is essentially a non-parametric resampling method which needs no assumption of the sample distribution.The basic idea of Bootstrap resampling is to simulate the sample generation process by repeating resampling data .Due to the limitations of the sample sources, the spectrum quantitative analysis model for predicting the bitumen penetration index has to be built based on small sample set.In this paper, Bootstrap resampling is applied to expand the sample set.The steps of sample processing with Bootstrap resampling are as follows:

    (1) Define the original sample set asX=(X1,X2,…,Xn).Randomly generate the integers asi1,i2,…,in∈[1,n];

    1.2 Noise injection

    In order to simulate the sampling process and improve the stability of the spectrum quantitative analysis model, noise injection[7-8]was applied to the expanded samples after resampling.Noise injected to the input values, output values and both input and output values are three ways of injection.The noise injection can be described as

    ZV=Z+V

    (1)

    ZVis the data matrix after the noise injection,Zis the source data matrix andVrepresents the noise matrix.So,

    then,

    (2)

    Mis the total number of samples.pis the length of each data sample.zvijdenotes the data items after noise injection.zijdenotes the original data item andvijdenotes the noise which is added tozij.In this paper, Gaussian white noise matrix withVi∈N(0,σ2) was chosen as the noise matrix.The noise intensity can be adjusted byσ.

    1.3 Support Vector Machine

    Support vector machine (SVM) was proposed based on statistical learning by Vapnik[9].The SVM is a machine learning method based on structural risk minimization which can be used to deal with small sample set, nonlinear and high dimensional machine learning problems.In order to obtain the best generalization ability, the precision of data approximation and the complexity of approximation functions are compromised during the machine learning process in SVM and the learning process is transferred into solving a convex quadratic programming problem.Therefore, the global optima can be gained.The problem of local minima can be avoided compared with the traditional machine learning methods with multilayer feed forward neural networks.In SVM, the nonlinear transformation is applied to transfer the samples into the high-dimensional feature space and the linear decision function can be constructed to classify the original samples in the high-dimensional feature space.Therefore, the complexity of learning process has nothing to do with the dimensions of sample set.In this paper, SVM is applied to build the spectrum quantitative analysis model for predicting the bitumen penetration index.

    2 Experiment

    2.1 Sample information

    29 bitumen samples have been collected from different factories.According to crude oil producers, the collected samples can be divided into two classes, the South America’s heavy oil and Xin Jiang’s thickened oil.The bitumen penetration indexes of the samples penetration were measured under the “Standard Test Methods of Bitumen and Bituminous Mixtures for Highway Engineering (JTJ 052-2000)”.The calibration set and validation set are shown in the table 1.

    Tabel 1 Bitumen samples category and distribution

    2.2 Instrument and working conditions

    The spectrum of bitumen was collected by attenuated total reflectance infrared spectroscopy in the analytical instrumentation center of Beijing University of Chemical Technology.The instrument parameters were set as follows: the wave number range was 4000~650 cm-1, resolution was 4 cm-1and scan times were 32.The samples needed to be heated to 70 ℃ when the infrared spectrum was measured and a few samples were evenly coated on the surface of the ATR crystal.The same sample was repeated three times and then the average spectrum was used as the infrared spectrum of the sample.

    2.3 Data processing

    The quantitative models of PLS, SVM and Bootstrap-SVM have been compared in this paper.The methods of first-order differential, data smoothing and mean center were applied to PLS.The data normalization was applied to SVM and Bootstrap-SVM.

    3 Result and discussion

    3.1 Spectrum analysis

    The main components of the road bitumen samples studied in this work are hydrocarbon, hydroxyl compound!and oxygenated compound.The penetration index is one of the physical properties of bitumen, but it is closely related to the chemical composition and content in bitumen.The infrared spectrum reflects the molecular vibration and rotational basic information of material.Therefore, the penetration index quantitative predicting model can be built with infrared spectrum analysis.The bitumen infrared absorption spectrum is shown in figure 1.

    Fig.1 ATR IR spectrum of Bitumen samples

    3.2 The spectrum quantitative analysis model with PLS

    PLS is widely applied to the quantitative analysis of infrared spectrum currently.The PLS model in this paper was built with the data after pre-processing.The first three principal components were selected by cross-validation and the input and output data mapping.The input and output principle components and the proportion of eigenvalues are shown in figure 2 and in figure 3 respectively.The prediction result of PLS is show in table 2.

    Fig.2 Eigenvalue vs.PC Number

    Fig.3 Eigenvalue vs.PC Number

    Table 2 Result of PLS

    sampleprediction16567.021268.865.729369.863.918462.164.19856667.74467073.296766.966.65887168.87496567.094106567.842RMSE2.889

    3.3 The spectrum quantitative analysis model with SVM

    For convenience,the Libsvm tools developed by Professor Lin Chih-Jen were applied to build the spectrum quantitative model with SVM.The parameter settings are as follows: the SVM model type selected as ε-SVR, the kernel function selected as RBF, the parameters set as -p1.5,-c0.01.The prediction results are shown in table 3.

    Table 3 Result of SVM

    3.4 The spectrum quantitative analysis model with Bootstrap-SVM

    Firstly, the original sample set was expanded by resampling method as described in 1.1.The calibration set of 19 samples was expanded to 200.Then, the 200 samples were injected with noise as described in 1.2.The noise intensity should be adjusted because the noise level has a great influence on the accuracy of the analysis model.If the intensity of noise is too small, the samples after noise injection are similar to the original samples.And if the intensity of noise is too large, it would generate the abnormal samples.Man-made factors, instrument factors, temperature and other factors may result in subtle differences in measurement of the spectrum.It is found that the subtle differences of spectrum would cause large errors of prediction.So the intensity of noise can be determined by several tests.In this paper, the intensity of noise was taken asσx=0.001,σy=0.1.The SVM model was built by using Libsvm tool.The parameters were chosen as -p2.0,-c0.03.The prediction results with 10 validation samples are shown in table 4.

    Table 4 Result of Bootstrap-SVM

    4 Conclusion

    In this paper, a new spectrum quantitative analysis method based on Bootstrap-SVM model with small sample set is proposed.Based on the collected 29 bitumen samples, spectrum quantitative analysis model with proposed method for predicting bitumen penetration index has been built.The comparative experiments of predicting the bitumen sample penetration index with the proposed method, partial least squares (PLS) and support vector machine (SVM) have also been done.Comparative experiment results have verified that the minimum prediction root mean squared error (RMSE) is achieved by using the proposed Bootstrap-SVM model with the small sample set.In this paper, it is found that the nonlinear models such as SVM and Bootstrap-SVM could predict the bitumen penetration index more precisely.Though SVM based on statistical learning theory can be applied to build the predicting model with small sample set, the accuracy and generalization ability of SVM model with small sample set can be improved obviously by Bootstrap resampling and noise injection.

    [1] BIAN Zhao-qi,ZHANG Xue-gong.Pattern Recognition.Beijing: Tsinghua University Publishing Company, 2000.192.

    [2] Luo Wentao, Liu Guili.Modern Scientific Instruments, 2013, 6(3): 94.

    [3] Roggo Y, Roeseler C, Ulmschneider M.J.Pharm.Biomed.Anal., 2004, 36(4): 777.

    [4] Fontalvo-Gomez M, Colucci J A, Velez Natasha, Romanach R J.Applied Spectroscopy, 2013, 67(10): 1142.

    [5] Mao R, Zhu H, Zhang L.A.Chen.Proc.ISDA, 2006, (1): 17.

    [6] Lanouette R, Thibault J, Valade J L.Comput.Chem.Eng.,1999, 23(9): 1167.

    [7] Luigi Fortuna, Salvatore Graziani, Maria Gabriella Xibilia.IEEE Transaction on Instrumentation and Measurement, 2009, 58(8): 2444.

    [8] Efron B.The Annals and Statistics,1979, 7(1): 1.

    [9] Grandvalet Y, Boucheron S.Neural Comput.,1997, 9(5): 1093.

    *通訊聯(lián)系人

    O657.3

    A

    基于Bootstrap-SVM在小樣本條件下光譜定量分析研究

    馬 嘯,趙 眾*,熊善海

    北京化工大學(xué)信息科學(xué)與技術(shù)學(xué)院,北京 100029

    提出了一種在小樣本條件下建立光譜定量分析的新方法-Bootstrap-SVM模型。以道路瀝青為研究對(duì)象,共收集29個(gè)來自6個(gè)不同單位的瀝青樣本,利用所提方法建立了瀝青針入度定量分析模型。Bootstrap-SVM由Bootstrap重抽樣、噪聲注入及SVM三個(gè)步驟組成。為了對(duì)比所提方法的優(yōu)勢(shì),對(duì)比了目前常用的PLS模型以及SVM模型。研究結(jié)果表明Bootstrap-SVM,PLS,SVM預(yù)測(cè)均方根誤差分別為0.773 5,2.889,1.784 4,所提方法預(yù)測(cè)精度最好,為小樣本條件下光譜定量分析提供了一種新的有效方法。

    小樣本; Bootstrap; 支持向量機(jī)

    2015-03-02,

    2015-07-09)

    Foundation item:Fundamental Research Founds for Central Universities (YS1404)

    10.3964/j.issn.1000-0593(2016)05-1571-05

    Received:2015-03-02; accepted:2015-07-09

    Biography:MA Xiao, (1990—), Master degree candidate in Beijing University of Chemical Technology e-mail: maxiao2014job@163.com *Corresponding author e-mail: zhaozhong@mail.buct.edu.cn

    猜你喜歡
    針入度方根光譜
    方根拓展探究
    基于三維Saab變換的高光譜圖像壓縮方法
    道路瀝青材料針入度與溫度的關(guān)聯(lián)及其數(shù)學(xué)模型的驗(yàn)證
    石油瀝青(2022年1期)2022-04-19 13:10:32
    道路石油瀝青針入度與溫度的關(guān)聯(lián)優(yōu)化及其數(shù)學(xué)模型的建立
    石油瀝青(2021年3期)2021-08-05 07:41:06
    改善SBS改性瀝青產(chǎn)品針入度指數(shù)的方法探究
    石油瀝青(2019年4期)2019-09-02 01:41:50
    瀝青針入度測(cè)量不確定度評(píng)定
    均方根嵌入式容積粒子PHD 多目標(biāo)跟蹤方法
    揭開心算方根之謎
    星載近紅外高光譜CO2遙感進(jìn)展
    數(shù)學(xué)魔術(shù)
    你懂的网址亚洲精品在线观看| 搡女人真爽免费视频火全软件| 黑丝袜美女国产一区| 在线亚洲精品国产二区图片欧美| 精品午夜福利在线看| 精品国产一区二区三区久久久樱花| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产人伦9x9x在线观看 | 国产日韩欧美视频二区| 不卡av一区二区三区| 免费av中文字幕在线| 日韩熟女老妇一区二区性免费视频| 飞空精品影院首页| 妹子高潮喷水视频| 国产老妇伦熟女老妇高清| 午夜免费鲁丝| 一本—道久久a久久精品蜜桃钙片| 久久精品国产自在天天线| 国产亚洲欧美精品永久| 高清欧美精品videossex| 国产成人欧美| 亚洲欧美成人精品一区二区| 母亲3免费完整高清在线观看 | 99久国产av精品国产电影| 狠狠精品人妻久久久久久综合| 考比视频在线观看| 午夜福利在线观看免费完整高清在| 高清黄色对白视频在线免费看| 丝袜美腿诱惑在线| 国产淫语在线视频| 人妻少妇偷人精品九色| 最近中文字幕高清免费大全6| 欧美中文综合在线视频| 国产极品天堂在线| 日本免费在线观看一区| 亚洲第一区二区三区不卡| 久久99精品国语久久久| 国产熟女午夜一区二区三区| 成人黄色视频免费在线看| 在线天堂最新版资源| 精品人妻熟女毛片av久久网站| 伊人久久国产一区二区| 免费黄频网站在线观看国产| 亚洲五月色婷婷综合| 毛片一级片免费看久久久久| 亚洲欧美清纯卡通| 热99国产精品久久久久久7| 夜夜骑夜夜射夜夜干| 欧美日韩视频高清一区二区三区二| 2018国产大陆天天弄谢| 久久久国产一区二区| 亚洲美女视频黄频| 99香蕉大伊视频| 国产麻豆69| 婷婷色综合大香蕉| 久久久亚洲精品成人影院| 国产成人精品无人区| 国产精品无大码| 最黄视频免费看| 91国产中文字幕| 国产成人午夜福利电影在线观看| a级毛片黄视频| 亚洲精品国产av成人精品| 少妇猛男粗大的猛烈进出视频| 97在线视频观看| 人人澡人人妻人| 亚洲国产最新在线播放| 国产精品久久久久久精品古装| 男人舔女人的私密视频| 亚洲 欧美一区二区三区| 欧美在线黄色| 亚洲精华国产精华液的使用体验| 国产精品不卡视频一区二区| 捣出白浆h1v1| 你懂的网址亚洲精品在线观看| 成人毛片60女人毛片免费| 亚洲精品视频女| 伦理电影大哥的女人| 美女国产高潮福利片在线看| 国产免费一区二区三区四区乱码| 色播在线永久视频| 91精品国产国语对白视频| 国产免费视频播放在线视频| 欧美日韩国产mv在线观看视频| 亚洲成人手机| 一区二区三区四区激情视频| 亚洲国产欧美网| 不卡av一区二区三区| 乱人伦中国视频| 男人添女人高潮全过程视频| 午夜免费男女啪啪视频观看| 久久国产精品男人的天堂亚洲| 高清在线视频一区二区三区| 欧美 日韩 精品 国产| 亚洲精品日本国产第一区| av不卡在线播放| 在线 av 中文字幕| 午夜福利影视在线免费观看| 欧美日韩精品网址| 18禁国产床啪视频网站| 国产黄频视频在线观看| 亚洲,一卡二卡三卡| 欧美亚洲日本最大视频资源| 国产伦理片在线播放av一区| 亚洲熟女精品中文字幕| 色播在线永久视频| 欧美精品高潮呻吟av久久| 精品国产一区二区三区久久久樱花| 最新中文字幕久久久久| 国产av国产精品国产| 咕卡用的链子| 夜夜骑夜夜射夜夜干| 精品少妇内射三级| 久久午夜综合久久蜜桃| 久久久精品94久久精品| 国产精品一区二区在线不卡| 美女xxoo啪啪120秒动态图| 日本av手机在线免费观看| 久久午夜福利片| 亚洲欧美中文字幕日韩二区| 亚洲av综合色区一区| 午夜福利视频在线观看免费| 免费黄频网站在线观看国产| 免费黄频网站在线观看国产| 国产精品久久久av美女十八| 国产亚洲av片在线观看秒播厂| 欧美精品高潮呻吟av久久| 日韩电影二区| 欧美激情极品国产一区二区三区| 亚洲欧美一区二区三区黑人 | 久久精品夜色国产| 亚洲图色成人| 成年动漫av网址| 精品国产一区二区三区四区第35| 日韩制服丝袜自拍偷拍| 在线免费观看不下载黄p国产| 久久人人97超碰香蕉20202| 精品一品国产午夜福利视频| 18禁国产床啪视频网站| 色网站视频免费| 国产成人免费观看mmmm| 下体分泌物呈黄色| 老汉色av国产亚洲站长工具| 制服诱惑二区| 国产男女内射视频| 天美传媒精品一区二区| 天美传媒精品一区二区| 人人妻人人添人人爽欧美一区卜| 熟女少妇亚洲综合色aaa.| 男女高潮啪啪啪动态图| 校园人妻丝袜中文字幕| a 毛片基地| 精品一区二区三卡| videosex国产| 国产精品 国内视频| 日韩av不卡免费在线播放| 精品福利永久在线观看| 国产av精品麻豆| 母亲3免费完整高清在线观看 | 街头女战士在线观看网站| 国产精品亚洲av一区麻豆 | 国产在线一区二区三区精| 色网站视频免费| 亚洲伊人久久精品综合| 中国国产av一级| 一二三四中文在线观看免费高清| 在线观看免费高清a一片| 色播在线永久视频| 夜夜骑夜夜射夜夜干| 三级国产精品片| 在线观看人妻少妇| 男人添女人高潮全过程视频| 一区福利在线观看| 波野结衣二区三区在线| 日本午夜av视频| 国产在视频线精品| 久久国内精品自在自线图片| 成人二区视频| 黄色 视频免费看| 麻豆乱淫一区二区| 侵犯人妻中文字幕一二三四区| 999精品在线视频| 自线自在国产av| 亚洲成av片中文字幕在线观看 | 欧美最新免费一区二区三区| 日韩av在线免费看完整版不卡| √禁漫天堂资源中文www| 侵犯人妻中文字幕一二三四区| 成人午夜精彩视频在线观看| 精品国产一区二区三区久久久樱花| 黄片无遮挡物在线观看| 99香蕉大伊视频| 日韩中字成人| 日本wwww免费看| 91久久精品国产一区二区三区| 国精品久久久久久国模美| 久久久久精品性色| 免费看不卡的av| 成人毛片a级毛片在线播放| 亚洲伊人久久精品综合| 亚洲精品国产色婷婷电影| 多毛熟女@视频| 制服人妻中文乱码| 一二三四中文在线观看免费高清| 国产精品99久久99久久久不卡 | 性色avwww在线观看| 免费黄网站久久成人精品| 天堂中文最新版在线下载| √禁漫天堂资源中文www| 欧美精品亚洲一区二区| 天天影视国产精品| 深夜精品福利| 美女脱内裤让男人舔精品视频| 亚洲av欧美aⅴ国产| 日本av免费视频播放| 亚洲内射少妇av| 国产在视频线精品| 建设人人有责人人尽责人人享有的| 精品亚洲成国产av| 亚洲国产精品999| 午夜福利在线免费观看网站| 久久久久久久久久人人人人人人| 叶爱在线成人免费视频播放| 只有这里有精品99| 一级毛片 在线播放| 国产免费视频播放在线视频| 亚洲av综合色区一区| 在线观看人妻少妇| 99re6热这里在线精品视频| 91午夜精品亚洲一区二区三区| 青青草视频在线视频观看| 高清在线视频一区二区三区| 人成视频在线观看免费观看| 成人国语在线视频| av卡一久久| 9热在线视频观看99| 精品少妇一区二区三区视频日本电影 | 啦啦啦视频在线资源免费观看| 黄色毛片三级朝国网站| 黄网站色视频无遮挡免费观看| 精品一品国产午夜福利视频| 久久这里只有精品19| 日本欧美国产在线视频| 美女午夜性视频免费| 日本-黄色视频高清免费观看| 欧美日韩精品成人综合77777| 又粗又硬又长又爽又黄的视频| 欧美日韩视频高清一区二区三区二| 天天躁日日躁夜夜躁夜夜| 亚洲三区欧美一区| kizo精华| 狠狠婷婷综合久久久久久88av| 欧美人与性动交α欧美精品济南到 | 国产成人a∨麻豆精品| 欧美97在线视频| 日本色播在线视频| 春色校园在线视频观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 日本午夜av视频| 少妇的丰满在线观看| 久久人人爽av亚洲精品天堂| 亚洲国产精品成人久久小说| 狠狠精品人妻久久久久久综合| 考比视频在线观看| 黄频高清免费视频| av又黄又爽大尺度在线免费看| 一边摸一边做爽爽视频免费| 久久精品国产亚洲av高清一级| 国产成人av激情在线播放| 自线自在国产av| 99国产综合亚洲精品| 国产极品粉嫩免费观看在线| 免费久久久久久久精品成人欧美视频| 91久久精品国产一区二区三区| 天天躁日日躁夜夜躁夜夜| 在线亚洲精品国产二区图片欧美| 久久久久国产网址| 国产成人精品久久二区二区91 | 精品酒店卫生间| 99香蕉大伊视频| 亚洲精品美女久久av网站| 国产成人精品久久二区二区91 | 丝袜脚勾引网站| 欧美成人精品欧美一级黄| 久久久欧美国产精品| 成年人午夜在线观看视频| 欧美日韩国产mv在线观看视频| 一个人免费看片子| 亚洲国产精品一区二区三区在线| 久久久久久伊人网av| 高清欧美精品videossex| 国产亚洲av片在线观看秒播厂| 黄频高清免费视频| 亚洲精品乱久久久久久| 丰满少妇做爰视频| 极品少妇高潮喷水抽搐| 国产亚洲av片在线观看秒播厂| 啦啦啦啦在线视频资源| av视频免费观看在线观看| 欧美精品人与动牲交sv欧美| 精品午夜福利在线看| 最近手机中文字幕大全| 极品少妇高潮喷水抽搐| 在线天堂中文资源库| 91午夜精品亚洲一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 一区二区三区乱码不卡18| av线在线观看网站| 女人久久www免费人成看片| 女人精品久久久久毛片| 久久国内精品自在自线图片| 一个人免费看片子| 波野结衣二区三区在线| 精品一区二区三区四区五区乱码 | 少妇被粗大的猛进出69影院| 街头女战士在线观看网站| 久久97久久精品| 欧美成人午夜免费资源| 国产精品二区激情视频| 大话2 男鬼变身卡| 少妇的丰满在线观看| 高清不卡的av网站| 美女视频免费永久观看网站| 欧美激情极品国产一区二区三区| 2022亚洲国产成人精品| 97在线视频观看| 麻豆精品久久久久久蜜桃| av.在线天堂| 久久 成人 亚洲| 欧美老熟妇乱子伦牲交| 国产极品粉嫩免费观看在线| 久久精品国产综合久久久| 中文字幕亚洲精品专区| 久久亚洲国产成人精品v| 永久网站在线| 国产男人的电影天堂91| 嫩草影院入口| 精品亚洲成国产av| 男女免费视频国产| 国产精品亚洲av一区麻豆 | 亚洲精品国产av成人精品| 国产在线免费精品| 亚洲色图综合在线观看| 美女午夜性视频免费| 国产精品国产三级专区第一集| 亚洲av电影在线观看一区二区三区| 美女国产高潮福利片在线看| 晚上一个人看的免费电影| 精品少妇黑人巨大在线播放| 成人手机av| 国产一区二区 视频在线| 人妻系列 视频| 午夜福利,免费看| 菩萨蛮人人尽说江南好唐韦庄| 蜜桃国产av成人99| 国产女主播在线喷水免费视频网站| 亚洲国产精品一区三区| 免费看av在线观看网站| 日韩精品免费视频一区二区三区| 国产精品一区二区在线观看99| 久久精品久久久久久噜噜老黄| 日本爱情动作片www.在线观看| 久久精品久久久久久久性| a级片在线免费高清观看视频| 亚洲av国产av综合av卡| 777久久人妻少妇嫩草av网站| 天堂中文最新版在线下载| 久久精品国产综合久久久| 亚洲中文av在线| 看免费av毛片| 99re6热这里在线精品视频| 国产精品一区二区在线不卡| 精品一品国产午夜福利视频| www.精华液| 一个人免费看片子| 一本—道久久a久久精品蜜桃钙片| 三上悠亚av全集在线观看| 永久网站在线| 我的亚洲天堂| 性色av一级| 1024香蕉在线观看| 边亲边吃奶的免费视频| 精品久久蜜臀av无| 国产精品熟女久久久久浪| 在线观看人妻少妇| 国产成人精品无人区| 久久久精品94久久精品| 91成人精品电影| 亚洲av男天堂| 波多野结衣av一区二区av| av片东京热男人的天堂| 亚洲少妇的诱惑av| 最近最新中文字幕免费大全7| 亚洲av在线观看美女高潮| 免费播放大片免费观看视频在线观看| 自线自在国产av| 免费在线观看黄色视频的| 欧美 日韩 精品 国产| 午夜av观看不卡| 麻豆精品久久久久久蜜桃| 亚洲精品久久久久久婷婷小说| 免费黄色在线免费观看| 亚洲精品,欧美精品| 三级国产精品片| 亚洲人成电影观看| 亚洲成人一二三区av| 香蕉国产在线看| 国产亚洲一区二区精品| 国产 一区精品| 亚洲精品在线美女| 美女主播在线视频| 久久精品国产亚洲av天美| 最新中文字幕久久久久| 97在线人人人人妻| 成年女人毛片免费观看观看9 | 成人黄色视频免费在线看| 国产成人免费观看mmmm| 少妇人妻精品综合一区二区| 赤兔流量卡办理| 亚洲欧美成人综合另类久久久| 黄色视频在线播放观看不卡| 国产亚洲精品第一综合不卡| 亚洲图色成人| 寂寞人妻少妇视频99o| 国产精品一区二区在线不卡| 亚洲欧美色中文字幕在线| 亚洲熟女精品中文字幕| 欧美国产精品va在线观看不卡| 大香蕉久久网| videossex国产| 熟女电影av网| 亚洲成人一二三区av| 亚洲激情五月婷婷啪啪| 青春草国产在线视频| 亚洲美女黄色视频免费看| 日韩中文字幕欧美一区二区 | 久久久a久久爽久久v久久| 成人国产麻豆网| 亚洲伊人色综图| 国产成人91sexporn| 精品亚洲成a人片在线观看| av免费在线看不卡| 日韩电影二区| 在线观看国产h片| 一区福利在线观看| 成人18禁高潮啪啪吃奶动态图| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 99久久人妻综合| 日本wwww免费看| 91成人精品电影| 777米奇影视久久| 日韩一区二区视频免费看| 精品一区在线观看国产| 亚洲第一青青草原| 亚洲精品久久午夜乱码| 免费看不卡的av| 久久久国产一区二区| 乱人伦中国视频| 2022亚洲国产成人精品| 超碰成人久久| 亚洲成色77777| 男女国产视频网站| 精品亚洲成国产av| 街头女战士在线观看网站| 中文字幕精品免费在线观看视频| 亚洲久久久国产精品| 在线观看三级黄色| 国产欧美日韩一区二区三区在线| 永久免费av网站大全| 热re99久久国产66热| 18禁国产床啪视频网站| 亚洲一级一片aⅴ在线观看| 天堂俺去俺来也www色官网| 欧美日韩综合久久久久久| 亚洲精品久久午夜乱码| 久久毛片免费看一区二区三区| 久久久久视频综合| 免费黄网站久久成人精品| 18在线观看网站| 国产精品熟女久久久久浪| 午夜福利在线观看免费完整高清在| 老司机亚洲免费影院| 伊人亚洲综合成人网| 高清欧美精品videossex| 看十八女毛片水多多多| 国产片内射在线| 伊人久久大香线蕉亚洲五| 美女大奶头黄色视频| 日本爱情动作片www.在线观看| 欧美av亚洲av综合av国产av | 黑丝袜美女国产一区| 亚洲精品久久午夜乱码| 成年动漫av网址| 久久精品久久久久久噜噜老黄| 欧美成人午夜精品| 午夜福利在线观看免费完整高清在| 啦啦啦在线免费观看视频4| 日韩电影二区| 免费久久久久久久精品成人欧美视频| 九九爱精品视频在线观看| 丝袜人妻中文字幕| 精品国产国语对白av| 秋霞伦理黄片| 日本色播在线视频| a 毛片基地| 成人亚洲精品一区在线观看| av一本久久久久| 一级爰片在线观看| av片东京热男人的天堂| 香蕉精品网在线| 伊人亚洲综合成人网| 久久久久久久久免费视频了| 国产精品麻豆人妻色哟哟久久| 69精品国产乱码久久久| 精品少妇一区二区三区视频日本电影 | 国产激情久久老熟女| 熟妇人妻不卡中文字幕| 天天操日日干夜夜撸| 久久久久久久精品精品| 男女无遮挡免费网站观看| 日韩伦理黄色片| 亚洲欧美精品综合一区二区三区 | 永久网站在线| 毛片一级片免费看久久久久| 亚洲国产日韩一区二区| 日韩成人av中文字幕在线观看| 少妇的逼水好多| 欧美日韩亚洲国产一区二区在线观看 | 99精国产麻豆久久婷婷| 啦啦啦中文免费视频观看日本| 国产精品香港三级国产av潘金莲 | 亚洲第一青青草原| 大片免费播放器 马上看| 亚洲国产精品一区二区三区在线| 三级国产精品片| 亚洲国产av新网站| 精品一品国产午夜福利视频| av在线播放精品| 亚洲欧美精品自产自拍| 超碰97精品在线观看| 汤姆久久久久久久影院中文字幕| 最近的中文字幕免费完整| 肉色欧美久久久久久久蜜桃| 一区二区三区四区激情视频| 日韩欧美一区视频在线观看| 色婷婷av一区二区三区视频| 久久久久久人人人人人| 亚洲av中文av极速乱| 国产免费一区二区三区四区乱码| a级片在线免费高清观看视频| 午夜激情久久久久久久| 亚洲少妇的诱惑av| 日本av免费视频播放| 久久久久久免费高清国产稀缺| 日本av免费视频播放| 日本91视频免费播放| 国产视频首页在线观看| 黑丝袜美女国产一区| 亚洲欧美一区二区三区国产| av免费观看日本| 一个人免费看片子| 中文字幕最新亚洲高清| 欧美日韩综合久久久久久| 韩国av在线不卡| 免费观看a级毛片全部| 亚洲成人一二三区av| 亚洲天堂av无毛| 激情视频va一区二区三区| 亚洲av中文av极速乱| 一本大道久久a久久精品| 久久国产精品大桥未久av| 亚洲国产欧美网| 国产福利在线免费观看视频| 国产精品蜜桃在线观看| 国产亚洲欧美精品永久| 免费大片黄手机在线观看| av女优亚洲男人天堂| 国产欧美日韩综合在线一区二区| 久久这里有精品视频免费| 中文字幕av电影在线播放| 纵有疾风起免费观看全集完整版| 纯流量卡能插随身wifi吗| 国产精品免费大片| 久久久国产精品麻豆| 亚洲欧美精品综合一区二区三区 | 免费观看无遮挡的男女| 免费大片黄手机在线观看| 精品国产国语对白av| 亚洲成人av在线免费| 亚洲国产最新在线播放| 亚洲成人av在线免费| 丰满少妇做爰视频| 一级毛片黄色毛片免费观看视频| 99九九在线精品视频| 伦理电影大哥的女人| 男男h啪啪无遮挡| 国产成人精品福利久久| 我的亚洲天堂| 在线精品无人区一区二区三| 久久99热这里只频精品6学生| 亚洲视频免费观看视频| 亚洲欧洲日产国产| 国产精品国产av在线观看| 青春草亚洲视频在线观看| 国产成人一区二区在线| 国产免费一区二区三区四区乱码| 欧美日韩成人在线一区二区| av在线老鸭窝| 亚洲精品国产色婷婷电影| 欧美人与善性xxx| 日日爽夜夜爽网站| 大陆偷拍与自拍| 99久久精品国产国产毛片| 满18在线观看网站| 国产精品免费视频内射|