阿拜·艾力哈孜,劉 靜,戴 康,沈異凡*
1.新疆大學(xué)物理科學(xué)與技術(shù)學(xué)院,新疆 烏魯木齊 830046 2.西安交通大學(xué)理學(xué)院,陜西 西安 710049
CO2在與高振動激發(fā)NaH碰撞中的量子態(tài)分辨能量再分配
阿拜·艾力哈孜1, 2,劉 靜1,戴 康1,沈異凡1*
1.新疆大學(xué)物理科學(xué)與技術(shù)學(xué)院,新疆 烏魯木齊 830046 2.西安交通大學(xué)理學(xué)院,陜西 西安 710049
能量轉(zhuǎn)移; 簡并受激超拉曼泵浦; 吸收光譜測量; 激光誘導(dǎo)熒光; NaH高位振動態(tài); CO2氣體
在激發(fā)態(tài)分子的弛豫過程和激光誘導(dǎo)化學(xué)反應(yīng)及燃燒等過程中,分子振轉(zhuǎn)激發(fā)態(tài)的碰撞能量轉(zhuǎn)移起到重要作用[1-2]。而在含有高激發(fā)振動態(tài)分子的氣體分子集合體中,碰撞傳能過程在理論研究和實際應(yīng)用中有重要意義。例如,在大氣中,由于太陽輻射,高能粒子碰撞和化學(xué)反應(yīng)會產(chǎn)生高位振動態(tài)分子,它們對O3, N2O的形成起很大作用,從而影響空氣質(zhì)量。
隨著激光光譜和探測技術(shù)的發(fā)展,可以得到分子電子基態(tài)中高低不同的振轉(zhuǎn)態(tài)。人們對其碰撞過程已作了許多研究,并取得了豐碩的成果。因為基電子態(tài)中的振動能級間距較寬,且不與其他電子態(tài)的振動能級相重疊,因此可以利用受激發(fā)射泵浦[3-4]、泛頻泵浦、脈沖激光光解[5-6]等方法激發(fā)分子至高振動態(tài)。通過瞬時吸收和激光感應(yīng)熒光光譜測量得到各振轉(zhuǎn)態(tài)的布居分布。
作為大氣中的主要溫室氣體, CO2光譜數(shù)據(jù)的精確測定受到人們的重視[7-8]。同時,CO2也是振動-轉(zhuǎn)動能量轉(zhuǎn)移過程中的重要研究對象之一[9-12]。利用266 nm脈沖激光激發(fā)吡嗪(Pyrazine)分子,研究高振動態(tài)吡嗪分子與CO2碰撞能量轉(zhuǎn)移過程。利用高分辨率瞬時紅外吸收測量CO2(0000,J)布居,發(fā)現(xiàn)其具有雙指數(shù)轉(zhuǎn)動分布[13-14],轉(zhuǎn)動溫度分別為329和1 241 K,較冷的分布約占被散射CO2分子的78%,而較熱的分布約占22%。在KH+CO2系統(tǒng)中[15],KH振動能量增加0.27倍,CO2(0000,J=32~48)的平均轉(zhuǎn)動能增加1.33倍,而振-轉(zhuǎn)轉(zhuǎn)移積分速率系數(shù)增加3.5倍。
本實驗研究了在高振動激發(fā)NaH分子與CO2碰撞中,通過對CO2(0000,J=2~80)的態(tài)分辨轉(zhuǎn)動和平移能的測量, 揭示振動-轉(zhuǎn)動/平移(V-RT)能量轉(zhuǎn)移過程的基本特點。
實驗裝置見圖1,反應(yīng)池是一個5臂交叉熱管爐,其中4個臂形成一個平面交叉,第5臂與交叉平面垂直用來放置堿金屬Na。熱管爐由電熱器加熱,利用熱電偶測量池溫,反應(yīng)區(qū)池溫在450~900 K之間。熱管爐與真空和氣體充入系統(tǒng)相連,H2和CO2混合氣體的總氣壓為65 mTorr。其中H2氣壓為50 mTorr, CO2氣壓為15 mTorr。激發(fā)態(tài)Na原子與H2反應(yīng)生成NaH基態(tài)分子, 激發(fā)后的高位振動態(tài)NaH分子與CO2碰撞產(chǎn)生振-轉(zhuǎn)能量轉(zhuǎn)移。
圖1 實驗裝置圖
HP: 加熱管爐; OPO: 光學(xué)參量振蕩器; M: 單色儀; PMT: 光電倍增管; G.P.C: 門控制光子計數(shù)器; DG535: 延遲信號發(fā)生器; R.F: 可移動濾波器; O.F: 光纖; S: 光譜儀
Fig.1 Experimental setup
HP: Heat pipe oven; OPO: Optical parametric oscillator; M: Monochromator; PMT: Photomultiplier; tube; G.P.C: Gated photon counter; DG535: Pulse delay box; R.F: Removable filter; O.F: Optical fiber; S: Spectrometer
脈沖Nd∶YAG激光(532 nm)泵浦光參量振蕩器(OPO), OPO波長調(diào)至777.0 nm, 雙光子激發(fā)Na(3s)至Na(4s)態(tài)。激發(fā)態(tài)Na(4s)原子與H2反應(yīng)生成NaH分子基態(tài)[16]
Na(4s)+H2→NaH(X1Σ+ν″=0)+H
(1)
利用簡并受激超拉曼泵浦,OPO777.0nm激光激發(fā)NaH分子到高位振動激發(fā)態(tài)X1Σ+(ν″=14,J″=20), 如圖2所示。
圖2 簡并受激超拉曼過程和高位振動態(tài)探測
Ti鈦寶石激光作為檢測激光檢測由OPO泵浦的NaH(X1Σ+)高位振動態(tài)。ICCD記錄A→X躍遷的激光感應(yīng)熒光(LIF)。圖3給出了NaH(10, 14) 的LIF光譜的一部分,它與由光譜數(shù)據(jù)[17]計算的結(jié)果是一致的。
Ti寶石激光調(diào)至X1Σ+(ν″,J″)→A1Σ+(ν′,J′)躍遷, 用濾光片把激光減弱至約0.1 μW。激光束直徑約2 mm, 通過反應(yīng)池中軸線。激光通過長度為L的蒸汽柱長度后的強度Iν(L)由門光子計數(shù)器記錄, 吸收系數(shù)kν′, J′←ν″, J″(ν)見式(2)
ΔI/Iν(0)=1-exp[-kν′, J′←ν″, J″(ν)L]
(2)
式(2)中,ΔI=Iv(0)-Iv(L),Iv(0)為入射光強。NaH(ν″,J″)分子密度從積分吸收系數(shù)得到
(3)
式(3)中λν′, J′←ν″, J″是躍遷波長。gJ′和gJ″是J′和J″態(tài)的統(tǒng)計權(quán)重。Γν′, J′←ν″, J″為自發(fā)輻射率。利用脈沖染料激光器(在圖中未畫出)激發(fā)NaH至(ν′,J′)態(tài)。ICCD記錄(ν′,J′)→(ν″,J″)躍遷的衰變曲線,得到Γν′, J′←ν″, J″。
圖3 NaH A1Σ+(ν′=10)→X1Σ+(ν″=12)激光感應(yīng)熒光激發(fā)譜
2.1 NaH(ν″=14, J″=20)分子密度的測定
OPO激發(fā)NaH分子至X1Σ+(ν″=14,J″=20)態(tài),脈沖染料激光(772.0 nm)激發(fā)X1Σ+(14, 20)至A1Σ+(10, 21)態(tài)。ICCD記錄A1Σ+(10, 21)→X1Σ+(14, 20)的時間分辨熒光,見圖4。由半對數(shù)曲線得到NaH分子A1Σ+(10, 21)→X1Σ+(14, 20)的輻射壽命為150 ns, 自然輻射率為6.7×106s-1。
圖4 NaH A1Σ+(10, 21)→X1Σ+(14, 20)躍遷之間分辨熒光的對數(shù)描繪
Fig.4 Semilogarithmic plot for time-resolved fluorescence of the NaH inA1Σ+(10, 21)→X1Σ+(14, 20) transition
The lifetime from the decay curve yields 150 ns
結(jié)合吸收系數(shù)的測量,從式(3)得到NaH(14, 20)的密度。表1給出了池溫為690 K時的實驗結(jié)果。
表1 池溫為690 K時NaH(14, 20)分子密度
用同樣方法得到不同池溫時NaH(14, 20)的分子密度, 見表2。
表2 NaH(ν″=14, J″=20)分子密度隨池溫的變化
Numbers in parenthesis are 2σerrors
2.2 CO2轉(zhuǎn)動態(tài)的轉(zhuǎn)動能和平動能
(4)
其中[CO2(0000,J)]t=0由Boltzmann分布給出,如式(5)
[CO2(0000,J)]t=0=[CO2]0(B/kT)(2J+1)·
exp[-BJ(J+1)/kT]
(5)
式(5)中B=0.394 cm-1是CO2轉(zhuǎn)動常數(shù), [CO2]0是CO2密度,T為池溫。
當(dāng)池溫為690 K時, OPO激發(fā)NaH分子至(ν″=14,J″=20)高位態(tài)。NaH高位態(tài)與CO2碰撞, 圖5給出了CO2(0000)初生態(tài)轉(zhuǎn)動分布[CO2(J)], 即式(4)中的[CO2(0000,J)]t=1 μs。在這個轉(zhuǎn)動態(tài)分布中,存在二個用式(6)表示的獨立分布[13]
popJ=gJ[I1exp(-EJ/kT1)+I2exp(-EJ/kT2)]
(6)
式(6)中g(shù)J=2J+1,EJ為轉(zhuǎn)動能。k為Boltzmann常數(shù)。T1和T2是轉(zhuǎn)動溫度。I1和I2是相對強度。利用四參數(shù)最小二乘法擬合圖5中的實驗數(shù)據(jù), 得到T1=(650±80) K的低能分布和T2=(1 531±150)K的高能分布。T1較接近池溫,說明處于低J的轉(zhuǎn)動態(tài)主要發(fā)生近彈性碰撞(弱碰撞),而對于高J轉(zhuǎn)動態(tài),則發(fā)生非彈性碰撞(強碰撞)。
圖5 CO2(0000)轉(zhuǎn)動分布的半對數(shù)描繪
A biexponetial fit of the entire data set yields low- and high-temperature distributions withT1=(650±80) K andT2=(1 531±150)K, recpectively.(Tcell=690 K)
基于雙指數(shù)模型,得到二個分量的CO2(0000)的轉(zhuǎn)動分布, 見圖6。弱碰撞分量積分強度占全部碰撞CO2分子的79%,而強碰撞分量占21%。因此,在5次碰撞中, 約有4次只引起CO2轉(zhuǎn)動能小的改變, 只有一次引起轉(zhuǎn)動能大的變化。
圖6 NaH(ν″=14)與CO2碰撞中CO2的轉(zhuǎn)動態(tài)分布
The weak collisions pathway accounts for 79% of collisions with CO2(0000) products, while the strong collisions pathway accounts for 21%
測量CO2(0000,J)高轉(zhuǎn)動態(tài)的泛頻LIF譜線線寬,得到該轉(zhuǎn)動態(tài)在與NaH(ν″=14)碰撞中平移能的增加。圖7是NaH(ν″=14)被激發(fā)1 μs后CO2P62躍遷線的Doppler增寬輪廓, 其全高半寬度為Δν=0.039 5 cm-1。
圖7 CO2 P62泛頻躍遷線的Doppler輪廓
collected att=1 μs following excitation of NaH(ν″=14) (Tcell=690 K)
實驗室坐標下的平移溫度為Ttrans=(mc2/8kln2)(Δν/ν0)2。其中m為CO2質(zhì)量,ν0是泛頻躍遷線頻率。故Ttrans=(909±145)K。質(zhì)心坐標下的平移溫度則由Trel=Ttrans+(mCO2/mNaH)(Ttrans-T0)確定。這里T0是池溫。因此有Trel=(1 310±236) K。質(zhì)心平移能的平均變化ΔErel=1.5k(Trel-T0), 對于CO2(0000,J=62),ΔErel=645 cm-1。其他高J態(tài)的Trel和ΔErel可由類似方法得到。圖8給出了J=60~80 時Trel的實驗值,結(jié)果顯示了NaH(ν″)與CO2之間的V-RT轉(zhuǎn)移是由很強的脈沖碰撞產(chǎn)生的[18]。
圖8 平移溫度與轉(zhuǎn)動態(tài)的關(guān)系
2.3 速率方程分析
高激發(fā)態(tài)NaH與CO2碰撞,可以部分倒空CO2(0000,J)的布居,其轉(zhuǎn)移速率系數(shù)用kdep表示。
Δ[CO2(0000,J)]dep=-kdepz(J)[CO2]0[NaH(ν″)]0Δt
(7)
(8)
式(7)和式(8)中Δt=1 μs。由式(7)和式(8)得到
(9)
式(9)中z(J)-1=[CO2]0/[CO2(J)]0=[B/kT(2J+1)exp[-BJ(J+1)/kT]-1,T為池溫。用LIF光強代替式(9)中CO2的布居,式(9)可寫為式(10)
(10)
圖9是當(dāng)J=2時擬合式(10)得到的直線。
圖和kdep的推出
表3 CO2(0000)與NaH(ν″=14)碰撞中的
表4 CO2(0000, J)與NaH(ν″=14)碰撞中的kdep
[1] Md Humayun Kabir, Ivan O Antonov,Michael C Heaven.The Journal of Chemical Physics, 2009, 130: 074305.
[2] Anthony J McCaffery.The Journal of Chemical Physics, 2012, 137: 134301.
[3] Rienk T Jongma,Alec M Wodtke.The Journal of Chemical Physics, 1999, 111: 10957.
[4] Lawrence W G, Van Marter T A, Nowlin M L, et al.The Journal of Chemical Physics, 1997, 106: 127.
[5] Shinji Watanabe, Hidekazu Fujii, Hiroshi Kohguchi, et al.J.Phys.Chem.A, 2008, 112: 9290.
[6] Katsuyoshi Yamasaki, Hidekazu Fujii, Shinji Watanabe, et al.Phys.Chem.Chem.Phys., 2006, 8: 1936.
[7] Lucchesini A, Gozzini S.Journal of Quantitative Spectroscopy and Radiative Transfer, 2007, 103: 74.
[8] Song K F, Lu Y, Tan Y, et al.Journal of Quantitative Spectroscopy and Radiative Transfer, 2011, 112: 761.
[9] Mark C Wall, Brian A Stewart,Amy S Mullin.The Journal of Chemical Physics, 1998, 108: 6185.
[10] Jeremy A Johnson, Andrew M Duffin,Brian J Hom.The Journal of Chemical Physics, 2008, 128: 054304.
[11] Liwei Yuan, Juan Du,Amy S Mullin.The Journal of Chemical Physics, 2008, 129: 014303.
[12] DAI Kang, WANG Shu-ying, LIU Jing, et al(戴 康, 王淑英, 劉 靜, 等).Spectroscopy and Spectral Analysis(光譜學(xué)與光譜分析), 2012, 32(11): 2902.
[13] Daniel K Havey, Du Juan, Liu Qingnan, et al.J.Phys.Chem.A, 2010, 114: 1569.
[14] Du Juan, Nicholas A Sassin, Daniel K Havey, et al.J.Phys.Chem.A, 2013, 117: 12104.
[15] Cui Xiuhua, Mu Baoxia, Shen Yifan, et al.Journal of Quantitative Spectroscopy and Radiative Transfer, 2012, 113: 2081.
[16] Chang Yuan-pin, Hsiao Ming-kai, Liu Dean-kuo, et al.The Journal of Chemical Physics, 2008, 128: 234309.
[17] William C Stwalley, Warren T Zemke,Sze Cheng Yang.Journal of Physical and Chemical Reference Data, 1991, 20: 153.
[18] Amy S Mullin, Chris A Michaels,George W Flynn.The Journal of Chemical Physics, 1995, 102: 6032.
(Received Jan.21, 2015; accepted Apr.28, 2015)
*Corresponding author
Quantum State-Resolved Energy Redistribution of CO2from Collisions with Highly Vibrationally Excited NaH
Abai Alghazi1, 2, LIU Jing1, DAI Kang1, SHEN Yi-fan1*
1.School of Physics, Xinjiang University, Urumqi 830046, 2.School of Science, Xi’an Jiaotong University, Xi’an 710049, China
Degenerate stimulated hyper-Raman pumping is used to excite high vibrational states of NaH.The full state-resolved distribution of scattered CO2(0000,J) molecules from collisions with excited NaH(ν″=14,J=21) was reported.The nascent number densities of NaH were determined from absorption measurements at timest=1 μs as the laser to prepare NaH(ν″,J″).Absorption signals were converted to NaH(ν″,J″) population using absorption coefficients and the transient Doppler-broadened linewidths.The nascent CO2(0000,J) population were obtained from transient overtone laser induced fluorescence line intensity measured at short times relative to the time between collisions.The scattered CO2(0000,J=2~80) molecules had a biexponential rotational distribution.Fitting the data with a two-component exponential model yielded CO2product distributions withTrot=(650±80) and (1 531±150) K.The cooler distribution accounted for 79% of the scattered population and resulted from elastic or weakly inelastic collisions that induced very little rotational excitation in CO2.The hotter distribution involved large changes in CO2rotational energy and accounted for 21% of collision.Nascent translational energy profiles for scattered CO2(0000,J=60~80) were measured using high resolution transient overtone fluorescence.The relative translational energy of the scattered molecules increased as a function of final CO2rotational state with 〈ΔErel〉=582 cm-1forJ=60, and 2 973 cm-1forJ=80.Energy transfer rates were determined for the fullJ-state distribution by monitoring the change of the nascent population.The total rate constant for appearance of scattered CO2(0000) waskapp=(7.2±1.8)×10-10cm3·mol-1·s-1.The depletion for the low-JCO2states was involved in the collisional energy transfer of the initial distribution.ForJ=2~38, the average rate constant for depletion of scattered CO2(0000) is 〈kdep〉=(6.9±1.7)×10-10cm3·mol-1·s-1.
Energy transfer; Degenerate stimulated hyper-Raman pumping; Absorption spectroscopy measurement; Laser induced fluorescence; Highly vibrationally excited NaH; CO2gas
2015-01-21,
2015-04-28
國家自然科學(xué)基金項目(11164028)資助
阿拜·艾力哈孜,1972年生,新疆大學(xué)講師,西安交通大學(xué)理學(xué)院博士研究生 e-mail: ab@xju.edu.cn *通訊聯(lián)系人 e-mail:shenyifan01@sina.com
O561.5
A
10.3964/j.issn.1000-0593(2016)05-1317-06