黃進 宋余慶 凌青華
摘要:RNA二級結(jié)構(gòu)預測是生物信息學中非常重要的內(nèi)容。RNA二級結(jié)構(gòu)的準確預測有助于生物研究者了解RNA分子在生物體內(nèi)中所起到的重要作用。近年來,基于最小自由能模型的啟發(fā)式算法常被運用于預測RNA二級結(jié)構(gòu)。遺傳算法和模擬退火算法是常見的啟發(fā)式算法,將遺傳算法中的遺傳變異機制以及模擬退火的退火機制相結(jié)合,形成一種新的算法,以莖區(qū)作為種群中的個體進行交叉變異操作,將所得到的結(jié)果進行退火操作,從而得到最優(yōu)解。該算法結(jié)合了遺傳算法和模擬退火算法的優(yōu)勢,實驗結(jié)果表明,該方法預測結(jié)果具有較高的精度。
關鍵詞:RNA二級結(jié)構(gòu);最小自由能;莖區(qū);遺傳算法;模擬退火算法
DOIDOI:10.11907/rjdk.161267
中圖分類號:TP312文獻標識碼:A文章編號:1672-7800(2016)006-0027-04
參考文獻:
[1]鄒權(quán),郭茂祖,張濤濤. RNA二級結(jié)構(gòu)預測方法綜述[J]. 電子學報,2008,36(2): 331-337.
[2]TINOCO I,UHLENBECK O C, LEVINE M D. Estimation of secondary structure in ribonucleic acids[J]. Nature, 1971, 230(5293): 362-367.
[3]RUTH NUSSINOV,GEORGE PIECZENIK,JERROLD R GRIGGS,et al.Algorithms for loop matchings[J].SIAM Journal on Applied Mathematics,1978,35(1):68-82.
[4]ZUKER M, STIEGLER P. Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information[J]. Nucleic acids research,1981,9(1):133-148.
[5]胡桂武,彭宏.基于免疫粒子群集成的RNA二級結(jié)構(gòu)預測算法.計算機工程與應用,2007,43(3):26-29.
[6]劉琦,張引,葉修梓. 基于離散Hopfield網(wǎng)絡求解極大獨立集的莖區(qū)選擇算法以及在RNA二級結(jié)構(gòu)預測中的應用[J]. 計算機學報,2008,31(1): 51-58.
[7]DAVID H MATHEWS, JEFFRET SABINA, MICHAEL ZUKER, et al . Expand sequence dependence of thermodynamic parameters improves prediction of RNA secondary structured [J]. Journal of Molecular Biology, 1999, 288(5):911-940.
[8]ELENA RIVAS, SEAN R EDDY.A dynamic programming algorithm for RNA structure prediction including pseudoknots[J]. Journal of Molecular Biology, 1999, 285 (5):2053-2068.
[9]KAY C, WIESE E, GLEN. A permutation-based genetic algorithm for the RNA folding problem:a critical look at selection strategies,crossover operators and representation issues[J].BioSystems, 2003, 72(1):29-41.
[10]陳濤.基于莖區(qū)的RNA 二級結(jié)構(gòu)預測方法研究[D].長沙:湖南大學,2011.
[11]REN J, RASTEGARI B, CONDON A, et al. Hotknots heuristic prediction of RNA secondary structures including pseudoknots[J].RNA, 2005, 11(10): 1494-1504.
[12]DOUGLAS H TURNER.Approximation algorithm of the RNA pseudoknotted structure prediction based on MFE[C]. IEEE International Conference on Information and Automation,2013:1044-1048.
[13]HYONEMOTO,KASAI. A semi_supervised learning approach for RNA secondary structure prediction[J].Computational Biology and Chemistry,2015(57):72-79.
[14]楊赫. RNA二級結(jié)構(gòu)中假結(jié)的預測研究[D]. 長春:吉林大學,2013.
[15]RICHARD BEAL,DONALD ADJEROH.Efficient pattern matching for RNA secondary structure[J]. Theoretical Computer Science,2015(592):59-71.
[16]林娟.RNA二級結(jié)構(gòu)預測的群智能優(yōu)化算法研究[D].福州:福建農(nóng)林大學,2011.
[17]BALDI P,BRUNAK S,CHAUVIN Y,et al.Assessing the accuracy of prediction algorithms for classication: an overviews[J]. Bioinformatics,2000,16(5):412-424.
[18]VAN BATENBURG F H D,GULTYAEV A P,PLEIJ C W A.An APL-programmed genetic algorithm for the prediction of RNA secondary structure[J].Journal of theoretical Biology,1995,174(3):269-280.
[19]GARDNER PP,GIEGERICH R.A comprehensive comparison of comparative RNA structure prediction approaches[J]. BMC Bioinformatics, 2004, 5 (1):1-32.
[20]胥杰. 基于混沌模擬退火算法的RNA二級結(jié)構(gòu)預測的研究[D].成都:電子科技大學,2010.
[21]E TEN DAM,K PLEIJ,D DRAPER.Structural and functionalaspects of RNA pseudoknots[J]. Biochemistry, 1992,31(47):11665-11676.