• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Single-molecule mechanical folding and unfolding kinetics of armless mitochondrial tRNAArg from Romanomermis culicivorax?

    2021-10-28 07:03:24YanHuiLi李彥慧ZhenShengZhong鐘振聲andJieMa馬杰
    Chinese Physics B 2021年10期
    關(guān)鍵詞:馬杰

    Yan-Hui Li(李彥慧) Zhen-Sheng Zhong(鐘振聲) and Jie Ma(馬杰)

    1School of Physics,Sun Yat-sen University,Guangzhou 510275,China

    2State Key Laboratory of Optoelectronic Materials and Technologies,Sun Yat-sen University,Guangzhou 510006,China

    Keywords: mitochondrial tRNA, mechanical stability, singlemolecule manipulation, amino acid-chelated Mg2+

    1. Introduction

    Mitochondria are the sites of aerobic respiration and responsible for energy production in eukaryotic cells. Mitochondrial genomes encode not only proteins essential for energy production, but also parts of the translation machinery,including mitochondrial tRNAs (mt tRNAs).[1]Notably, for bilateral animals, high aerobic respiration demands and accumulative replication errors in asexual reproduction, results in strong mutation pressure in mt DNA encoded genes.[2–6]As a result,mutation in mt tRNAs can cause serious diseases such as myopathies and neurological disorders in human.[7–12]However, inevitable mutations in mt tRNA frequently lead to some bizarre mt tRNAs which have various degrees of truncation and loss on D-or T-arms,being deviation from canonical tRNAs.[13–17]Evidence indicated that these armless tRNAs lacking one or both side arms could still fold into a stable L-shape tertiary structure,[17]and interact with tRNA processing enzymes,i.e.,aminoacyl-tRNA synthetase(aaRS).[18]The conserved tertiary structure is crucial to the functionality of tRNA, including interaction with post-transcriptional editing enzymes, aaRS, and elongation factor, as well as positioning in the ribosome.[19–22]Interestingly, recent studies illustrated an mt tRNA/aaRS recognition mechanism which used shape and folding properties rather than specific base pair in eukaryotic cells to discriminate cognate from non-cognate mt tRNA substrates.[23]Besides the tertiary structure, the mechanical stability of tRNAs is also important to their biological activities. For example,tRNA is under tension and distorted during ribosomal translocation.[24]However,how the armless mt tRNAs maintain the L-shape tertiary structure and mechanical strength is not clear.

    A recent research discovered an mt tRNAArgwithout Dand T-arms fromRomanomermis culicivorax, which is the shortest mt tRNA ever known (45 nucleotides (nt), including CCA tail).[15]It has a stem-bulge-stem secondary architecture and an L-shape tertiary structure,but lacks tertiary interaction even in the presence of Mg2+(Fig. 1(a)).[17]Moreover, the predicted folding free energy(?8.34 kcal/mol)for folding mt tRNAArgis substantially higher than canonical tRNA in 1 M NaCl,at 22°C by using MFold.[25]

    Besides the advances on structural biology of mt tRNAArgfromRomanomermis culicivorax, its mechanical unfolding/refolding properties have not been studied previously.To clarify its adaptive mechanism of maintaining structural stability in physiological conditions when suffering the environmental destabilization, we performed single-molecule pulling/relaxing experiments on the mt tRNAArgusing homebuilt optical tweezers.[26]Moreover, it is known that RNA is exposed to large amounts of amino acid-chelated magnesium(aaCM)in vivo,[27–30]and these weakly chelated magnesium ions promote the thermal stability of RNA.[31]However,how the aaCM affects the mechanical stability of RNAs is still unknown. Thus, we also investigated the single-molecule mechanical folding/unfolding pathways in the presence of aaCM using optical tweezers. Our results unraveled the folding and unfolding kinetics as well as the free energy landscapes of the mt tRNAArgin different solutions.We discovered the solutiondependent mechanical stability of the bulge region of the armless tRNA,which may shed light on the mechanisms of armless tRNA-protein interactions.

    2. Methods and model

    2.1. Sample preparation

    The synthesis strategy of the single-molecule construct in this study was modified from the one described by Blocket al.[32]In brief, a chemically synthesized DNA containing the mt tRNAArgsequences (42 nt, without 3′CCA tail) and the upstream 1 nt spacer (‘C’) was inserted in between theHindIIIsite andXbaIsite of pUC19 vector(Sangon). The linear DNA template forin vitrotranscription was generated by PCR using the recombinant plasmids, a T7 promoter labeled upstream primer and a downstream primer (see Appendix A,Table A1). RNA containing the mt tRNAArgsequences(42 nt,without 3′CCA tail), the upstream 1 nt spacer sequence, the upstream and downstream 30 nt‘sticky’sequences, was synthesized byin vitrotranscription using T7 RNA polymerase(Promega). Two dsDNA handles were generated by PCR using the pUC19 plasmid as their templates. The 1195 bp upstream handle with an abasic site and a 30 nt 5′overhang was synthesized by PCR, using an autosticky primer and a 5′-digoxygenin modified primer(see Appendix A,Table A1).The 1409 bp downstream handle with a 30 nt 3′overhang was generated by PCR using a 5′phosphorylated primer with three phosphorothioate bonds and a 5′-biotin modified primer (see Appendix A,Table A1),followed by 1 minute lambda exonuclease (New England Biolabs) digestion. All primers were purchased from Sangon, and both handles were purified using PCR purification kit (QIAGEN). The RNA was annealed to the dsDNA handles at the ratio of 1:3:1 in a buffer containing 100 mM NaCl, 20 mM PIPES, and 1 mM EDTA,pH 7.0. During the annealing process, the temperature was first held at 80°C for 5 minutes, then lowered from 80°C to 4°C at a rate of?1°C/min. The samples were first tethered to the cover-glass surface through digoxigenin–antibody interaction and then attached to an 800 nm streptavidin-coated polystyrene bead(Spherotech,Lake Forest,IL,USA)through biotin-streptavidin interaction(Fig.1(b)).

    2.2. Amino acid-chelated magnesium(aaCM)

    The recipe of aaCM buffer was described by Ryota Yamagamiet al.[31]Briefly,aaCM buffer for 2.0 mM free Mg2+contains 96 mM potassium glutamate, 4.2 mM aspartate, 3.8 mM glutamine, 2.6 mM alanine, 50 mM KCl, 16.0 mM MgCl2, and 20 mM Tris, pH 7.4. All the amino acids were purchased from Sigma-Aldrich.

    2.3. Single molecule experiments and data processing

    Single-molecule force-ramp experiments were performed using homebuilt single-trap optical tweezers described previously.[26]The 3D piezoelectric stage moved at a constant speed of 100 nm/s during the pulling/relaxing process.The laser power was kept constant during the whole measurement. Each tether was pulled no more than five times. All the experiments were performed at a temperature [(22±1)°C]and humidity[(50±5)%]controlled room. The buffer conditions were 20 mM Tris,0.4 U/μL RNasin plus RNase Inhibitor(Promega),1 mM DTT,in interested KCl and MgCl2concentrations or aaCM,pH 7.4. The 1 kHz raw data were averaged to 200 Hz by using custom MATLAB programs.

    2.4. Worm-like chain(WLC)model

    During unfolding,contour length changes were found by partitioning the force extension curves(FECs)data into separate states with different contour lengths,then fitting each state to two extensible worm-like chain (eWLC) models in series:one for the dsDNA handles,and the other for the single strand RNA (ssRNA) that is unfolded in each state. We employed a modified Marko–Siggia WLC model described previously as[33]

    herekBis the Boltzmann constant,Tis the absolute temperature(295 K,22°C),Lis the contour length,Pis the persistence length, andKis the stretch modulus. The parametersL,P, andKdescribing the dsDNA handles were first determined by fitting the FEC for the fully folded state. Then the FECs for the intermediate state and fully unfolded state were fitted by treatingL,P, andKas fixed variables for both the dsDNA handles. The unfolded ssRNALis 0.59 nm/nt,Pis 1 nm andKis 1500 pN,[34,35]respectively. The diameter of an A-form dsRNA helix(2.2 nm).[34]is also taken into consideration when the RNA is fully unfolded.

    2.5. Kinetics extracted from force distributions

    We assumed the positions of the activation barriers are force-independent,so that the Bell’s kinetic model was applied to describe the force dependence of unfolding and folding kinetics of each transition:[36,37]

    in whichk(F)is the rate constant as a function of forceF,kis the apparent folding/unfolding rate at 0 pN,X?is the distance from the folded/unfolded state to the transition state along the reaction coordinate,kBis the Boltzmann constant, andTis absolute temperature(295 K,22°C).

    The folding/unfolding kinetics can be expressed in a transformed equation by taking the logarithm of Eq.(2):

    where the slope isX?/kBT, and theyintercept is lnk. The critical forceF1/2is defined as the force at which the unfolding rate equals to the refolding rate,obtaining from the crossing point of the force-dependent unfolding and refolding rate curves,i.e.,tok1/2.

    We determined the force-dependent unfolding and refolding kinetics extracted from distributions of the rupture forces using Dudko’s method.[38]The rate constant at forceF,k(F),can be computed from force probability density histogram:

    where ?GssRNA(F) is the free energy of stretching the unfolded ssRNA from 0 pN to forceF, and the free energy at 0 pN ?G0is determined from

    whereW(F)is the reversible work of the reaction by integrating the FEC from the folded state at 0 pN to the unfolded state at forceF, and ?Gstreching(F) is the free energy of stretching the handles and the unfolded ssRNA from 0 pN to forceF.

    3. Results and discussion

    We firstly performed pulling/relaxing experiments at 146 mM KCl whose monovalent cation concentration corresponds to physiological conditions. However,we only observed a discernible transition from these trajectories at around 12 pN–14 pN and a suspected transition at about 4 pN, which was difficult to distinguish (Fig. 2(a)). In consideration of the effect of monovalent cation concentration on structural stability,then we increased salt concentration to 1 M KCl and observed two obvious two reversible transitions: a large hopping transition at 7 pN–9 pN with 8 nm–10 nm end-to-end extension change(?x), and a small back-and-forth transition at 12 pN–14 pN with 4 nm–5 nm ?x(Fig. 1(c)). It indicated that only an intermediate state(‘I’)was observed between a fully folded state (‘F’) and a fully unfolded state (‘U’). Scarcely hysteresis was observed between pulling and relaxing traces,indicating that the mechanical pulling pathway is highly reversible.We fitted the state ‘F’ by applying Eq. (1) (Fig. 1(c), green curve),whose fitting parameter describes the stretching of the handles. Considering it hard to distinguish the state ‘I’ and state ‘U’ by eWLC fitting, we then employed the theoretical ssRNA length changed of the state‘I’(26 nt)and state‘U’(41 nt) compared to state ‘F’, as well as the fitting parameters of‘F’ states to draw the theoretical pulling curves of these two states (Fig. 1(c), orange and sky-blue curves). These curves are well superimposed onto FECs data,which indicate that the acceptor stem and the bulge are disrupted by tension firstly and anti-codon hairpin as followed(Fig.1(d)).

    As can be seen, K+concentration mainly affected the first transition but almost not affected the second transition.As the backbone is negative charged, RNA depends critically on cation ionic conditions which can stabilize RNA secondary and tertiary structures.[41,42]On the basis of 1 M KCl concentration, the addition of 5 mM MgCl2did not apparently affect the mechanical folding/unfolding of mt tRNAArg(Fig. 2(c)). These mechanical unfolding/refolding results agreed with NMR signals measured by Tina J¨uhlinget al.,[17]indicating that the presence of magnesium ion did not induce additional tertiary interactions for mt tRNAArg.

    Fig.1. Scheme of the mt tRNAArg mechanical unfolding/refolding experiments.(a)The proposed secondary structure(I)and tertiary structure(II)of mt tRNAArg from Romanomermis culicivorax,which lacks both D-and T-arms.[17](b)The schematic plot of the pulling experiment:mt tRNAArg molecule with two functionalized dsDNA handles was attached between the anti-digoxigenin antibody coated cover-glass surface and a 800 nm streptavidincoated polystyrene bead. (c)Representative force-extension curves(FECs)of unfolding(black)and refolding(red)of mt tRNAArg during the pulling experiments at 1 M KCl. The curves are averaged to 200 Hz from 1 kHz raw data. WLC fitting was applied to the FECs, discovering three states:‘F’,the fully folded state(green); ‘I’,the intermediate state(orange); ‘U’,the fully unfolded state(sky-blue). (d)The probable two-step pathways of unfolding/refolding of the mt tRNAArg.

    Fig.2. Typical FECs of the mt tRNAArg at different solutions: (a)146 mM KCl; (b)1 M KCl; (c)1 M KCl and 5 mM MgCl2; (d)146 mM KCl and 2 mM MgCl2;(e)aaCM solution including 146 mM K+ and 16 mM total Mg2+ (with 2 mM free Mg2+).

    The acceptor stem and bulge structure were stable under high cation concentration instead of physiological concentration,but in fact high cation concentration did not exist in normal cells.To clarify the possibility of mt tRNAArgmaintaining stable structurein vivo,we measured its mechanical unfolding and refolding under a near cellular condition,i.e.,in an amino acid-chelated magnesium buffer(aaCM),which contains 146 mM K+and 16 mM total Mg2+(with 2 mM free Mg2+)(see methods for details).[31]As can be seen,the unfolding rupture forces of the first transition were around 7 pN–9 pN,which is close to those at 1 M KCl (Fig. 2(e)) but significantly higher than those at 146 mM KCl, while aaCM did not obviously affect the second transition. We also performed the pulling experiment at 146 mM KCl and 2 mM MgCl2as a control(Fig. 2(d)). In this case, the unfolding rupture forces of the first transition decreased to 5 pN–7 pN(Fig.2(d)),while those of the second transition did not obviously changed. We also performed the Kolmogorov–Smirnov test(KS test)atα=0.05 level on the unfolding and refolding rupture force distributions of four different solution conditions.We compared the rupture force distributions of two selected solutions in each test. The results indicated that, when the solution condition changes,folding and unfolding rupture forces of F–I but not I–U transition are statistically obvious different(see Appendix A,Table A2).

    In addition, we also measured the extension changes at rupture force (?x) for each unfolding transition (Fig. 3). The measured ?xvalues were not apparently affected by solution conditions,and they are all well superimposed on the predicted WLC prediction curves for the stretching of unfolded ssRNAs during the transition,which were calculated by Eq.(1). These results suggested that both high concentration of cations and weakly chelated magnesium ions in aaCM (~16 mM total Mg2+and 2 mM free Mg2+) could promote the mechanical stability of armless mt tRNAArgwithout changing the intermediate structure,which suggested that they enhanced the stability of the bulge region from being destructed at lower external forces.

    Fig.3. Force-dependent extension changes(?x)of two unfolding transitions: state‘F’to state‘I’and state‘I’to state‘U’.?x values of F→I transition(red triangle)and I→U transition(blue circle,2.2 nm was added)are plotted at their rupture forces respectively. Red curves(acceptor stem and bulge,26 nt) and blue curves (anticodon arm, 15 nt) are the ssRNA WLC predictions. Measured data are well superimposed on the WLC predictions in different solutions,including: (a)1 M KCl;(b)1 M KCl and 5 mM MgCl2;(c)146 mM KCl and 2 mM MgCl2;(d)aaCM.

    Fig.4. Probability density distributions of unfolding and refolding rupture forces in different buffers. (a)–(d)Unfolding forces in F→I(crimson)and I→U(light-red)transitions. (e)–(h)Refolding forces in I→F(dark-blue)and U→I(sky-blue)transitions. The solid curves were plotted using Eq.(5)and extrapolated kinetics parameters from Table 1 respectively. n is the number of observed transitions.

    Table 1. Unfolding and refolding kinetics parameters of mt tRNAArg extracted from the force distributions of different solutions. The presented data are mainly from linear fitting by using Eq.(3).

    Table 2. End-to-end extension changes at critical force and free energy changes as well as activation energies calculated from parameters shown above in Table 1.

    Fig.5. Theforce-dependent unfolding(open markers)andrefolding(fliled markers)kinetics indifferent solution conditions.The criticalforces(F1/2)of two transitions wereobtainedon thecrossing pointsofthe unfoldingandrefolding rates curves. The R2values ofthelinearftis rangefrom 0.87to 0.97.

    Moreover, we also reconstructed the three-state free energy landscapes for mt tRNAArgin four solutions. The change of Gibbs free energies ?G, the height of barrier ?G?and the extension of each transition were plotted with reference to the fully unfolded state (state ‘U’) by piecewise two-state analyses of each transition at 5 pN (calculated by Eqs. (6)–(7)).Clearly, the free energy landscapes of the tRNA at 1 M KCl,1 M KCl,and 5 mM MgCl2or in aaCM buffer were not obviously different, while the free energy of state ‘F’ at 146 mM KCl and 2 mM MgCl2was around 2.9 kcal/mol higher than the one at 1 M KCl at 5 pN. In addition, the sum of ?G0of both transitions (10.2±0.7 kcal/mol) at 1 M KCl is larger than the predicted free energy (8.34 kcal/mol) for unfolding the secondary structures,at 22°C by using MFold,[25]further indicating the existence of possible local noncanonical base pairings within the bulge region. Although the unfolding free energy is higher than canonical tRNA,considerable stability of these mt tRNAArgmolecules has been observed during pulling experiments. Our studies clearly illustrated the presence of aaCM or high concentration of cations could increase the mechanical stability of mt tRNAArgby stabilizing the fully folded state,which further supports the suggestion that aaCM or high concentration of cations increase the mechanical stability of the armless tRNA by stabilizing the bulge region.

    Fig.6. Free energy landscapes for mt tRNAArg. The key features of the energy landscapes for the three-state native unfolding/folding pathways were reconstructed from piecewise two-state analyses of each transition at 5 pN.Energies and positions are plotted with reference to the fully unfolded state(state ‘U’). Error bars show S.E. Dotted lines indicate notional landscape shapes. The free energy of state‘F’at 146 mM KCl and 2 mM MgCl2 was around 2.9 kcal/mol higher than the one at 1 M KCl at 5 pN.

    4. Conclusion

    In this study, we employed single-trap optical tweezers to perform single-molecule mechanical folding and unfolding experiments on an armless mt tRNAArgmolecules in different solution conditions. We discovered that the armless tRNA followed a highly reversible two-step folding/unfolding pathway with one intermediate in all four different solutions. High concentrations of cations or aaCM can promote the mechanical stability of the armless tRNA, probably by stabilizing the bulge region of the tRNA.

    Our studies suggest that the bulge region of the armless tRNA is sensitive to the surrounding electrostatic environment,which could be disrupted by changing the concentration or types of ions in the solution,as described in this study. Moreover,it could also be disrupted by possible post-transcriptional nucleoside modification.[48]As the bulge region functions as a hinge between the acceptor arm and the anti-codon arm,such disruption may change the distance between the aminoacylation site and the anticodon, which is critical to the biological functions of tRNAs.[15]Overall, our studies indicate the critical role of the bulge region in the mechanical stability of the armless tRNAs.

    Appendix A:Supplementary information

    Some experiment results and tables for better understanding the present article are given below.

    We employed a nonparametric test,i.e., Kolmogorov–Smirnov test(K–S test)atα=0.05 significance level for the unfolding and refolding force distributions in four different solutions to ask whether a significant difference between the rupture force distributions of two selected solutions in each test.Here,the rupture forces from two selected solutions were the samples for comparison and we firstly assumed the two samples had no significant difference initially. If the test results rejected the initial assumption atα=0.05 level, the parameterhshould be equal to 1, otherwiseh=0. The results were shown in Table A2.

    Table A1. Sequences of oligomers used in the experiments. Here, ‘-’ represents an abasic site, ‘p’ represents phosphorylation and‘*’is phosphorothioate bond.

    Table A2. The calculated results of parameter h were shown,parameter h=1 consists with significant difference,while h=0 agrees with no difference.

    Acknowledgements

    We thank members of the J. M. Laboratory for helpful discussions. We also wish to thank for the support from the Physical Research Platform in School of Physics,Sun Yat-sen University(PRPSP,SYSU).

    猜你喜歡
    馬杰
    Efficient loading of cesium atoms in a magnetic levitated dimple trap
    Combination of density-clustering and supervised classification for event identification in single-molecule force spectroscopy data
    Spin current in a spinor Bose–Einstein condensate induced by a gradient magnetic field
    Superfluid to Mott-insulator transition in a one-dimensional optical lattice
    馬杰作品
    Efficient loading of ultracold sodium atoms in an optical dipole trap from a high power fiber laser?
    R-branch high-lying transition emission spectra of SbNa molecule*
    夏天的浪漫
    金秋(2019年16期)2019-11-15 02:41:18
    Theoretical study of overstretching DNA-RNA hybrid duplex?
    用愛的星火溫暖山區(qū)留守兒童
    午夜精品在线福利| 日韩一卡2卡3卡4卡2021年| 欧美丝袜亚洲另类 | 亚洲一码二码三码区别大吗| 少妇 在线观看| 男男h啪啪无遮挡| svipshipincom国产片| 最新美女视频免费是黄的| 一本综合久久免费| av中文乱码字幕在线| 国产一区二区三区综合在线观看| 久久久国产成人免费| 熟女少妇亚洲综合色aaa.| 丰满迷人的少妇在线观看| 成人影院久久| 免费人成视频x8x8入口观看| 黄片小视频在线播放| 韩国精品一区二区三区| 咕卡用的链子| 国产1区2区3区精品| 亚洲三区欧美一区| 另类亚洲欧美激情| 久久性视频一级片| 亚洲欧美日韩高清在线视频| 纯流量卡能插随身wifi吗| 另类亚洲欧美激情| 国产成人精品在线电影| 高清黄色对白视频在线免费看| 欧美黑人精品巨大| 人人澡人人妻人| 少妇粗大呻吟视频| 女人爽到高潮嗷嗷叫在线视频| 日日摸夜夜添夜夜添小说| 久久人人爽av亚洲精品天堂| 99精品在免费线老司机午夜| 精品国产超薄肉色丝袜足j| 国产主播在线观看一区二区| 亚洲国产欧美一区二区综合| 法律面前人人平等表现在哪些方面| 亚洲精品av麻豆狂野| 国产1区2区3区精品| 人人妻人人添人人爽欧美一区卜| 一区二区三区精品91| 国产精品av久久久久免费| 天天添夜夜摸| 国产精品一区二区在线观看99| 一夜夜www| e午夜精品久久久久久久| 看黄色毛片网站| 天天躁夜夜躁狠狠躁躁| 叶爱在线成人免费视频播放| 亚洲精品国产一区二区精华液| 一边摸一边抽搐一进一出视频| 免费少妇av软件| 亚洲国产精品一区二区三区在线| 国产成人免费观看mmmm| 757午夜福利合集在线观看| 久久国产乱子伦精品免费另类| 亚洲性夜色夜夜综合| 极品人妻少妇av视频| 亚洲成人手机| 天天影视国产精品| 久久精品91无色码中文字幕| 黄色怎么调成土黄色| 身体一侧抽搐| 美女高潮喷水抽搐中文字幕| 午夜亚洲福利在线播放| 国产精华一区二区三区| 欧美亚洲 丝袜 人妻 在线| 天堂√8在线中文| 免费黄频网站在线观看国产| 久久久精品免费免费高清| 少妇被粗大的猛进出69影院| 90打野战视频偷拍视频| 成年女人毛片免费观看观看9 | 天天影视国产精品| 最近最新中文字幕大全免费视频| 国产区一区二久久| 久热爱精品视频在线9| 人妻 亚洲 视频| 亚洲精品自拍成人| 欧美精品av麻豆av| 亚洲成人免费电影在线观看| 欧美激情极品国产一区二区三区| bbb黄色大片| 中文字幕高清在线视频| 美女国产高潮福利片在线看| 国产精品99久久99久久久不卡| 亚洲av片天天在线观看| svipshipincom国产片| av网站在线播放免费| 校园春色视频在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 日韩欧美在线二视频 | 十八禁人妻一区二区| 国产高清videossex| 手机成人av网站| 一a级毛片在线观看| 免费人成视频x8x8入口观看| 国产在线精品亚洲第一网站| 不卡一级毛片| 国产精品av久久久久免费| 欧美黄色淫秽网站| 99精品在免费线老司机午夜| 美女国产高潮福利片在线看| 午夜激情av网站| 夜夜躁狠狠躁天天躁| 亚洲国产中文字幕在线视频| 自拍欧美九色日韩亚洲蝌蚪91| 国产成人免费观看mmmm| 91麻豆av在线| 真人做人爱边吃奶动态| 天天躁日日躁夜夜躁夜夜| 亚洲中文日韩欧美视频| 在线观看舔阴道视频| 日韩中文字幕欧美一区二区| av有码第一页| 热99re8久久精品国产| 国产精品一区二区在线不卡| 又黄又爽又免费观看的视频| 下体分泌物呈黄色| 91麻豆av在线| 精品久久久久久电影网| 亚洲综合色网址| svipshipincom国产片| 欧美日韩国产mv在线观看视频| 美女国产高潮福利片在线看| 大片电影免费在线观看免费| 国产在线观看jvid| 又黄又粗又硬又大视频| 黄色怎么调成土黄色| 中文字幕最新亚洲高清| 亚洲精品国产色婷婷电影| 王馨瑶露胸无遮挡在线观看| 久久久久国产精品人妻aⅴ院 | av线在线观看网站| 久久狼人影院| 久久精品亚洲av国产电影网| netflix在线观看网站| 亚洲第一av免费看| 后天国语完整版免费观看| 热99re8久久精品国产| 搡老熟女国产l中国老女人| 国产在线观看jvid| 久9热在线精品视频| 亚洲av成人一区二区三| 国产又色又爽无遮挡免费看| 黄片大片在线免费观看| 高清av免费在线| 人人妻人人添人人爽欧美一区卜| 精品国产乱子伦一区二区三区| 欧美日韩亚洲国产一区二区在线观看 | 欧美日韩中文字幕国产精品一区二区三区 | 亚洲成人国产一区在线观看| 99精品欧美一区二区三区四区| 最新的欧美精品一区二区| 亚洲色图综合在线观看| 国产淫语在线视频| 亚洲人成电影免费在线| 国产在视频线精品| 18禁观看日本| 国产欧美日韩一区二区三| 在线永久观看黄色视频| 亚洲国产毛片av蜜桃av| 日韩 欧美 亚洲 中文字幕| 国产av一区二区精品久久| 岛国毛片在线播放| 一个人免费在线观看的高清视频| 国产一区二区三区在线臀色熟女 | 天堂√8在线中文| 交换朋友夫妻互换小说| 欧美亚洲 丝袜 人妻 在线| 99riav亚洲国产免费| 国产精品久久视频播放| 精品无人区乱码1区二区| 日韩一卡2卡3卡4卡2021年| xxx96com| 飞空精品影院首页| 啦啦啦 在线观看视频| 国产国语露脸激情在线看| 最近最新中文字幕大全电影3 | av欧美777| 他把我摸到了高潮在线观看| 中文字幕人妻丝袜一区二区| 亚洲精品中文字幕一二三四区| 亚洲精品国产一区二区精华液| 亚洲三区欧美一区| 欧美黑人欧美精品刺激| 最新的欧美精品一区二区| 国产精品 欧美亚洲| 校园春色视频在线观看| 怎么达到女性高潮| 美国免费a级毛片| 日本黄色视频三级网站网址 | 99riav亚洲国产免费| 国产精华一区二区三区| 一级片'在线观看视频| 亚洲三区欧美一区| 日韩视频一区二区在线观看| 国产在线精品亚洲第一网站| 丁香欧美五月| 久99久视频精品免费| 又黄又粗又硬又大视频| 一级a爱片免费观看的视频| 色94色欧美一区二区| 91av网站免费观看| 人人妻人人澡人人爽人人夜夜| 免费女性裸体啪啪无遮挡网站| 亚洲五月婷婷丁香| 精品久久久久久电影网| 高潮久久久久久久久久久不卡| 又紧又爽又黄一区二区| 久久久国产精品麻豆| 久久久国产成人精品二区 | 黑人欧美特级aaaaaa片| 久久精品国产综合久久久| 亚洲国产欧美日韩在线播放| 男女午夜视频在线观看| 十八禁高潮呻吟视频| 亚洲第一青青草原| 免费观看人在逋| 国产国语露脸激情在线看| 法律面前人人平等表现在哪些方面| 淫妇啪啪啪对白视频| 亚洲三区欧美一区| 狠狠狠狠99中文字幕| 精品国内亚洲2022精品成人 | 午夜免费观看网址| 色精品久久人妻99蜜桃| 超色免费av| 国产区一区二久久| 欧美丝袜亚洲另类 | 两个人看的免费小视频| 亚洲国产精品合色在线| 每晚都被弄得嗷嗷叫到高潮| 欧美日韩亚洲高清精品| 国产主播在线观看一区二区| 一区福利在线观看| 极品教师在线免费播放| 一边摸一边抽搐一进一小说 | 午夜精品国产一区二区电影| 搡老岳熟女国产| 国产精品av久久久久免费| 一边摸一边抽搐一进一小说 | 黑人欧美特级aaaaaa片| 亚洲国产欧美网| 亚洲欧美日韩另类电影网站| 欧美精品高潮呻吟av久久| 亚洲精品美女久久av网站| 一区二区三区精品91| 在线观看舔阴道视频| 在线免费观看的www视频| 国产精品亚洲av一区麻豆| 国产精品久久久久久精品古装| 叶爱在线成人免费视频播放| 18禁裸乳无遮挡动漫免费视频| 一本大道久久a久久精品| 成人av一区二区三区在线看| 每晚都被弄得嗷嗷叫到高潮| 涩涩av久久男人的天堂| 日韩欧美一区二区三区在线观看 | 一边摸一边抽搐一进一小说 | 天堂√8在线中文| 国产麻豆69| 午夜福利影视在线免费观看| 搡老岳熟女国产| 99国产精品免费福利视频| 亚洲精品国产精品久久久不卡| 久久久国产精品麻豆| a级毛片在线看网站| 成人三级做爰电影| 老司机深夜福利视频在线观看| 亚洲精品在线美女| 在线免费观看的www视频| 日韩大码丰满熟妇| 亚洲精品久久午夜乱码| 亚洲色图av天堂| 国产成+人综合+亚洲专区| 久久久久国产精品人妻aⅴ院 | 1024香蕉在线观看| 中文字幕另类日韩欧美亚洲嫩草| 法律面前人人平等表现在哪些方面| 国产精品一区二区精品视频观看| 国产欧美日韩一区二区三| 男女之事视频高清在线观看| 人人妻人人澡人人看| 操美女的视频在线观看| 国产精品亚洲av一区麻豆| 国产精品久久久久成人av| 老熟女久久久| 成人免费观看视频高清| 国产麻豆69| 午夜福利影视在线免费观看| 午夜影院日韩av| 日本黄色日本黄色录像| 国产午夜精品久久久久久| 亚洲av日韩精品久久久久久密| 老鸭窝网址在线观看| 一区在线观看完整版| 精品少妇久久久久久888优播| www.自偷自拍.com| 国产男女超爽视频在线观看| 美女扒开内裤让男人捅视频| 亚洲精品在线美女| 亚洲精品久久成人aⅴ小说| 国产男女超爽视频在线观看| 亚洲欧美一区二区三区黑人| 国产成人av教育| 丁香六月欧美| 亚洲精品在线观看二区| 国产精品九九99| 国产区一区二久久| 欧美性长视频在线观看| 欧美黑人精品巨大| 亚洲人成电影观看| 亚洲欧美日韩高清在线视频| 精品久久久精品久久久| 激情视频va一区二区三区| 在线观看免费视频网站a站| 免费观看人在逋| 欧美丝袜亚洲另类 | 人人妻人人澡人人看| 黄色a级毛片大全视频| 亚洲色图av天堂| 精品一品国产午夜福利视频| 精品福利永久在线观看| 狂野欧美激情性xxxx| 日韩免费高清中文字幕av| 国产淫语在线视频| 久久香蕉激情| 高清欧美精品videossex| 亚洲成人免费av在线播放| 美女高潮喷水抽搐中文字幕| 亚洲国产欧美一区二区综合| 欧美一级毛片孕妇| www日本在线高清视频| 亚洲成人免费av在线播放| 51午夜福利影视在线观看| 国产人伦9x9x在线观看| 十八禁高潮呻吟视频| 日韩人妻精品一区2区三区| 欧美最黄视频在线播放免费 | 午夜精品在线福利| 成人国语在线视频| 国产激情欧美一区二区| 午夜免费成人在线视频| 亚洲av电影在线进入| 在线av久久热| 女性被躁到高潮视频| 亚洲第一青青草原| 国产97色在线日韩免费| 在线观看66精品国产| 两个人免费观看高清视频| 国产伦人伦偷精品视频| 中出人妻视频一区二区| 欧美日韩瑟瑟在线播放| 国产一区在线观看成人免费| 久久国产精品大桥未久av| 人人妻人人澡人人看| 亚洲精品一卡2卡三卡4卡5卡| 捣出白浆h1v1| 精品国产一区二区久久| 黑人操中国人逼视频| 亚洲中文字幕日韩| 80岁老熟妇乱子伦牲交| 电影成人av| 国产亚洲欧美精品永久| 国产在视频线精品| 日韩 欧美 亚洲 中文字幕| 亚洲七黄色美女视频| 欧美丝袜亚洲另类 | 热99国产精品久久久久久7| 国产免费av片在线观看野外av| 人成视频在线观看免费观看| 满18在线观看网站| 成人国语在线视频| 不卡av一区二区三区| 亚洲片人在线观看| 大香蕉久久成人网| 精品国产国语对白av| 老司机靠b影院| 老司机影院毛片| 黄色丝袜av网址大全| 另类亚洲欧美激情| 欧美大码av| 午夜免费观看网址| 我的亚洲天堂| 天堂√8在线中文| 国精品久久久久久国模美| 99在线人妻在线中文字幕 | 国产午夜精品久久久久久| 最新美女视频免费是黄的| 成人av一区二区三区在线看| 狠狠狠狠99中文字幕| 欧美精品av麻豆av| 97人妻天天添夜夜摸| 久久精品熟女亚洲av麻豆精品| 亚洲精华国产精华精| 久久久久久久久免费视频了| 自线自在国产av| 女人久久www免费人成看片| 自拍欧美九色日韩亚洲蝌蚪91| 欧美成人午夜精品| 久久性视频一级片| 男人舔女人的私密视频| 操美女的视频在线观看| 亚洲国产看品久久| 精品国产一区二区久久| 丰满饥渴人妻一区二区三| 大陆偷拍与自拍| 成人影院久久| 在线观看66精品国产| 亚洲视频免费观看视频| 这个男人来自地球电影免费观看| 黑人欧美特级aaaaaa片| 亚洲美女黄片视频| 亚洲aⅴ乱码一区二区在线播放 | 精品欧美一区二区三区在线| 超碰97精品在线观看| 91成年电影在线观看| aaaaa片日本免费| 一本综合久久免费| 国产欧美日韩一区二区三区在线| 精品国产一区二区三区久久久樱花| 日韩欧美在线二视频 | 亚洲五月天丁香| 欧美性长视频在线观看| 亚洲av欧美aⅴ国产| 一二三四在线观看免费中文在| 最近最新中文字幕大全免费视频| 一级毛片高清免费大全| 他把我摸到了高潮在线观看| 日本一区二区免费在线视频| 欧美 亚洲 国产 日韩一| av欧美777| 两性夫妻黄色片| 亚洲av成人一区二区三| 日韩 欧美 亚洲 中文字幕| 精品福利永久在线观看| 怎么达到女性高潮| 精品国产一区二区三区四区第35| 亚洲成国产人片在线观看| 一级a爱片免费观看的视频| 国产成+人综合+亚洲专区| 成年版毛片免费区| 一区二区三区精品91| 久久久精品区二区三区| 国产精品久久久久久人妻精品电影| 亚洲国产欧美网| 亚洲欧美色中文字幕在线| 男人操女人黄网站| 九色亚洲精品在线播放| 国产精品av久久久久免费| 91老司机精品| 婷婷精品国产亚洲av在线 | 亚洲欧洲精品一区二区精品久久久| 老熟女久久久| 久9热在线精品视频| 精品福利观看| 日韩视频一区二区在线观看| 9色porny在线观看| 91成人精品电影| 国产成人av教育| 不卡一级毛片| 大型av网站在线播放| 久久精品国产综合久久久| 天天躁狠狠躁夜夜躁狠狠躁| 后天国语完整版免费观看| 两性午夜刺激爽爽歪歪视频在线观看 | 后天国语完整版免费观看| 在线十欧美十亚洲十日本专区| 99热只有精品国产| 啦啦啦视频在线资源免费观看| 亚洲av电影在线进入| 精品欧美一区二区三区在线| 精品亚洲成a人片在线观看| 日韩有码中文字幕| 麻豆成人av在线观看| 叶爱在线成人免费视频播放| 美女扒开内裤让男人捅视频| 亚洲中文字幕日韩| 丝袜美腿诱惑在线| 久久 成人 亚洲| 少妇被粗大的猛进出69影院| 亚洲国产中文字幕在线视频| 亚洲伊人色综图| 亚洲人成电影免费在线| 一级黄色大片毛片| 免费人成视频x8x8入口观看| 搡老熟女国产l中国老女人| 国产精品.久久久| 亚洲专区字幕在线| 日韩大码丰满熟妇| 国产成人欧美| 国产精品亚洲av一区麻豆| 精品一品国产午夜福利视频| 国产精品久久久av美女十八| 久久精品亚洲av国产电影网| 久久久精品区二区三区| 一级,二级,三级黄色视频| 国产亚洲精品一区二区www | 色婷婷av一区二区三区视频| 国产免费男女视频| 亚洲精品粉嫩美女一区| xxx96com| 精品视频人人做人人爽| 人妻久久中文字幕网| 国产深夜福利视频在线观看| 国产精品偷伦视频观看了| 黑人巨大精品欧美一区二区mp4| 中亚洲国语对白在线视频| 免费在线观看影片大全网站| 无人区码免费观看不卡| ponron亚洲| 在线观看免费午夜福利视频| 999精品在线视频| 高清毛片免费观看视频网站 | 亚洲欧美激情综合另类| 国产成人欧美| a在线观看视频网站| 精品福利观看| 亚洲aⅴ乱码一区二区在线播放 | 欧美性长视频在线观看| 男女免费视频国产| 亚洲自偷自拍图片 自拍| 国产精品自产拍在线观看55亚洲 | 日韩欧美三级三区| 国产精品免费大片| 巨乳人妻的诱惑在线观看| 色婷婷av一区二区三区视频| 韩国精品一区二区三区| 美女 人体艺术 gogo| 成人国产一区最新在线观看| 亚洲熟女毛片儿| 欧美人与性动交α欧美精品济南到| 亚洲全国av大片| 日韩一卡2卡3卡4卡2021年| 午夜影院日韩av| 久久久久视频综合| 老熟女久久久| 国产国语露脸激情在线看| 久久婷婷成人综合色麻豆| 黄色视频,在线免费观看| 国产人伦9x9x在线观看| 亚洲国产精品sss在线观看 | 中文亚洲av片在线观看爽 | 黄色成人免费大全| 99riav亚洲国产免费| 不卡一级毛片| 99久久国产精品久久久| 亚洲少妇的诱惑av| 国产成人欧美在线观看 | 99热国产这里只有精品6| 久久久久久人人人人人| 成人手机av| 黑人巨大精品欧美一区二区mp4| 亚洲精品自拍成人| 一边摸一边做爽爽视频免费| 国产黄色免费在线视频| 婷婷成人精品国产| 黄色片一级片一级黄色片| 国产精品综合久久久久久久免费 | 欧美日韩黄片免| 久久久久国产一级毛片高清牌| 高清视频免费观看一区二区| 亚洲自偷自拍图片 自拍| 亚洲精品自拍成人| 精品国产超薄肉色丝袜足j| 在线观看日韩欧美| ponron亚洲| 午夜精品久久久久久毛片777| 亚洲精品中文字幕在线视频| 亚洲熟女精品中文字幕| 亚洲熟女毛片儿| 大香蕉久久成人网| 亚洲精品在线美女| 91国产中文字幕| 国产99白浆流出| 亚洲色图 男人天堂 中文字幕| 18禁观看日本| 精品久久久久久电影网| tube8黄色片| 亚洲avbb在线观看| 一进一出好大好爽视频| 人妻丰满熟妇av一区二区三区 | 人人澡人人妻人| 国产一区二区三区在线臀色熟女 | 超碰成人久久| 久久久久久久精品吃奶| 一边摸一边抽搐一进一出视频| 人成视频在线观看免费观看| 国产精品久久久久成人av| 少妇裸体淫交视频免费看高清 | 天堂动漫精品| 亚洲欧美日韩高清在线视频| 91成年电影在线观看| 高清欧美精品videossex| 亚洲五月天丁香| 黑人巨大精品欧美一区二区mp4| 国产av又大| 18禁观看日本| 亚洲成a人片在线一区二区| 国产野战对白在线观看| 久久久国产一区二区| 两个人免费观看高清视频| 黑人欧美特级aaaaaa片| 国产精品九九99| 亚洲午夜理论影院| 高清黄色对白视频在线免费看| 97人妻天天添夜夜摸| 久久性视频一级片| 亚洲精品在线观看二区| 国产亚洲欧美98| 欧美在线黄色| 国产精品一区二区免费欧美|