• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      新型制冷劑R1234ze(E)水平圓管內(nèi)流動(dòng)沸騰換熱特性

      2016-07-07 12:12:06邱金友張華余曉明王襲吳銀龍上海理工大學(xué)能源與動(dòng)力工程學(xué)院上海00093海爾集團(tuán)技術(shù)研發(fā)中心山東青島660
      化工學(xué)報(bào) 2016年6期

      邱金友,張華,余曉明,王襲,吳銀龍(上海理工大學(xué)能源與動(dòng)力工程學(xué)院,上海 00093;海爾集團(tuán)技術(shù)研發(fā)中心,山東 青島 660)

      ?

      新型制冷劑R1234ze(E)水平圓管內(nèi)流動(dòng)沸騰換熱特性

      邱金友1,張華1,余曉明1,王襲2,吳銀龍1
      (1上海理工大學(xué)能源與動(dòng)力工程學(xué)院,上海 200093;2海爾集團(tuán)技術(shù)研發(fā)中心,山東 青島 266101)

      摘要:新型制冷劑R1234ze(E)(trans-1,3,3,3-tetrafluoropropene)因較低的GWP值備受制冷行業(yè)關(guān)注,有望替代R134a。在內(nèi)徑為8 mm水平圓管內(nèi)對(duì)R1234ze(E)流動(dòng)沸騰換熱特性進(jìn)行實(shí)驗(yàn)研究,并在相應(yīng)實(shí)驗(yàn)工況下與R134a進(jìn)行對(duì)比。本研究的實(shí)驗(yàn)工況:流動(dòng)沸騰換熱的飽和溫度為10℃±0.5℃,熱通量為5.0和10 kW·m?2,質(zhì)流密度范圍為300~500 kg·m?2·s?1。分析質(zhì)流密度、熱通量以及干度對(duì)R1234ze(E)和R134a飽和流動(dòng)沸騰傳熱系數(shù)的影響。結(jié)果表明,R1234ze(E)和R134a的流動(dòng)沸騰傳熱系數(shù)隨質(zhì)流密度和熱通量的增大而增大;在低質(zhì)流密度300 kg·m?2·s?1工況下,R1234ze(E)傳熱系數(shù)較R134a偏低14.68%左右,但隨質(zhì)流密度增大到500 kg·m?2·s?1,其偏差縮小為7.35%。最后將實(shí)驗(yàn)結(jié)果同4種常見預(yù)估關(guān)聯(lián)式進(jìn)行比較,結(jié)果表明Kandlikar關(guān)聯(lián)式計(jì)算結(jié)果較優(yōu),全工況范圍內(nèi)Kandlikar關(guān)聯(lián)式對(duì)R1234ze(E)和R134a的預(yù)估值與90%的實(shí)驗(yàn)數(shù)據(jù)偏差在±25%以內(nèi),平均偏差分別為23.13%和11.50%,滿足工程設(shè)計(jì)要求。

      關(guān)鍵詞:R1234ze(E);R134a;流動(dòng)沸騰;傳熱關(guān)聯(lián)式;水平圓管

      2015-10-08收到初稿,2016-03-10收到修改稿。

      聯(lián)系人:張華。第一作者:邱金友(1987—),男,博士研究生。

      Received date: 2015-10-08.

      Foundation item: supported by the National Natural Science Foundation of China (51176124) and the International Science and Technology Cooperation Projects (2012DFR70430).

      引 言

      當(dāng)前制冷空調(diào)行業(yè)廣泛采用HFCs類制冷劑,例如R134a,雖然其對(duì)臭氧層沒有破壞,但其溫室效應(yīng)潛能值高(GWP=1430)。隨著全球變暖日益加劇,國(guó)際社會(huì)已經(jīng)開始對(duì)此類物質(zhì)加以管控。歐盟2006年通過了F-Gas法規(guī)[1],規(guī)定從2011年1月1日起禁止GWP值大于150的含氟制冷劑應(yīng)用于新車型的汽車空調(diào)器。2014年歐盟對(duì)F-Gas法規(guī)進(jìn)行修訂[2],拓展和加速了對(duì)GWP值過高含氟物質(zhì)的限制和淘汰,并指出部分具體HFCs類物質(zhì)消減的時(shí)間節(jié)點(diǎn)。因此,制冷劑的替代必將趨向于選用低GWP值類物質(zhì)。

      近幾年來,R1234yf和R1234ze(E)等HFO (hydro-fluoro-olefins)類物質(zhì)因其較低的GWP值備受學(xué)者關(guān)注。其中最新的研究報(bào)告[3]表明R1234ze(E)的GWP值小于1,其作為空調(diào)、熱泵的替代品已初步得到認(rèn)可[4-7]。表1列舉了R1234ze(E) 和R134a基本熱物理性質(zhì)。

      表1 R1234ze(E)與R134a的基本物性[8-9]Table 1 Physical properties of R1234ze(E) and R134a[8-9]

      目前為止關(guān)于新型制冷劑R1234ze(E)的研究主要集中在熱物性、直接替代優(yōu)化和傳熱傳輸性能等3個(gè)方面。熱物性方面,Meng等[10]和He等[11]測(cè)量了R1234ze(E)黏度;Qiu等[12]和Higashi等[13]測(cè)量了R1234ze(E)的液態(tài)飽和密度;Miyara等[14]實(shí)驗(yàn)測(cè)量了R1234ze(E)飽和液態(tài)熱導(dǎo)率等,物性研究表明R1234ze(E)的熱物理性質(zhì)與R134a較為接近。還有部分學(xué)者對(duì)R1234ze(E)與HFCs類物質(zhì)的混合物開展了物性研究[15-17]。直接應(yīng)用與替代研究方面,F(xiàn)ukuda等[18]和McLinden等[19]通過仿真的方法印證了R1234ze(E)適合在中高溫?zé)岜霉r作為R134a的替代品;Ansari等[20]應(yīng)用熵方法比較了R1234ze(E) 和R134a理論循環(huán)性能,結(jié)果表明其循環(huán)性能較為接近;Adrian等[21]用直接替代實(shí)驗(yàn)的方法,佐證了R1234ze(E)在熱泵系統(tǒng)中應(yīng)用具有較好的循環(huán)性能。流動(dòng)冷凝與蒸發(fā)傳熱方面,Hossain等[22]在管內(nèi)徑為4.35 mm水平管內(nèi)對(duì)R1234ze(E)的冷凝傳熱與壓降進(jìn)行實(shí)驗(yàn)研究,在所研究的質(zhì)流密度145~400 kg·m?2·s?1、熱通量14~44 kW·m?2工況范圍內(nèi),表明其冷凝傳熱性能較R410A優(yōu);Hossain 等[23]也在內(nèi)徑為4.35 mm水平銅管內(nèi)初步探索了R1234ze(E)流動(dòng)沸騰換熱與壓降特性,并在質(zhì)流密度為150~445 kg·m?2·s?1、飽和溫度為5和10℃工況內(nèi)與R410A和R32進(jìn)行比較,表明R1234ze(E)的流動(dòng)沸騰傳熱系數(shù)較R410A和R32低;Grauso 等[24]在內(nèi)徑為6 mm的水平光管中對(duì)R1234ze(E)和R134a的流動(dòng)換熱特性進(jìn)行了實(shí)驗(yàn)研究,在質(zhì)流密度為146~520 kg·m?2·s?1、熱通量為5.0~20.4 kW·m?2工況范圍內(nèi),表明其傳熱性能較為相似;Diani等[25]在內(nèi)徑為3.4 mm的微肋管內(nèi)測(cè)試了R1234ze(E)的流動(dòng)沸騰換熱特性,在質(zhì)流密度為190~940 kg·m?2·s?1和熱通量為10.0~50.0 kW·m?2工況范圍內(nèi),表明R1234ze(E)的流動(dòng)沸騰傳熱系數(shù)較R134a低9%左右。其中,R1234ze(E)在管內(nèi)徑大于等于8 mm的管內(nèi)流動(dòng)沸騰換熱特性研究較為缺乏。本文在內(nèi)徑為8 mm的水平紫銅管內(nèi)對(duì)R1234ze(E)和R134a飽和流動(dòng)沸騰換熱特性進(jìn)行實(shí)驗(yàn)研究,分析質(zhì)流密度、熱通量和干度對(duì)傳熱系數(shù)的影響,并對(duì)兩種單質(zhì)的傳熱性能進(jìn)行對(duì)比分析。最后將實(shí)驗(yàn)數(shù)據(jù)同文獻(xiàn)中4種常見的預(yù)估關(guān)聯(lián)式進(jìn)行比較,找出預(yù)測(cè)效果良好的關(guān)聯(lián)式。

      1 實(shí)驗(yàn)裝置

      1.1實(shí)驗(yàn)測(cè)試臺(tái)簡(jiǎn)介

      實(shí)驗(yàn)系統(tǒng)如圖1所示。實(shí)驗(yàn)臺(tái)主要包括制冷劑循環(huán)回路、冷卻系統(tǒng)以及數(shù)據(jù)采集系統(tǒng)3個(gè)部分。制冷劑循環(huán)回路中儲(chǔ)液罐液態(tài)制冷劑經(jīng)溶液泵加壓分流,一部分通過實(shí)驗(yàn)循環(huán)回路,另一部分經(jīng)旁通管回到溶液泵,主回路上經(jīng)泵加壓后液態(tài)制冷劑經(jīng)過冷段以抵消經(jīng)過溶液泵后焓值的增加,確保進(jìn)入流量計(jì)的是純液態(tài)制冷劑,主回路上制冷劑流量采用科氏力質(zhì)量流量計(jì)測(cè)量。實(shí)驗(yàn)段前設(shè)有預(yù)熱段,通過控制預(yù)熱段的加熱量可以調(diào)節(jié)實(shí)驗(yàn)段入口的干度。經(jīng)實(shí)驗(yàn)段后的制冷劑進(jìn)入恒溫槽中的冷凝盤管進(jìn)行冷凝,最后回儲(chǔ)液罐完成循環(huán)。實(shí)驗(yàn)段進(jìn)出口分別設(shè)有石英玻璃管,可觀察測(cè)試管段流型。

      圖1 實(shí)驗(yàn)裝置系統(tǒng)Fig.1 Schematic diagram of experimental system1—refrigerant pump; 2—sub-cooler; 3—mass flow meter; 4—preheater; 5—sampling port; 6—test section; 7—electric heater; 8—electricity meter; 9—charging port; 10—condenser; 11—refrigerating unit; 12—stirrer; 13—controller; 14—heater; 15—liquid reservoir; 16—sub-cooler recycle pump

      1.2測(cè)試段介紹

      圖2為測(cè)試管段結(jié)構(gòu),測(cè)試段采用管內(nèi)徑為8 mm、外徑為9.52 mm的紫銅管,測(cè)試段的總長(zhǎng)度為2400 mm,沿管軸向有5個(gè)測(cè)溫?cái)嗝?,每個(gè)測(cè)溫?cái)嗝娣謩e在上下左右各設(shè)置一個(gè)測(cè)溫?zé)犭娕?。測(cè)試段的進(jìn)出口各安裝一個(gè)絕對(duì)壓力變送器,用于測(cè)量進(jìn)出口的壓力。銅管外繞有電加熱帶,用來提供測(cè)試段所需加熱量,電加熱帶的纏繞結(jié)構(gòu)如圖3所示,為防止電加熱帶漏電,同時(shí)使其與紫銅管外壁充分接觸,避免測(cè)溫?zé)犭娕际艿诫娂訜嶂苯訉?dǎo)熱的影響,在銅管外壁先均勻纏繞一層導(dǎo)熱絕緣膠布,電加熱帶在導(dǎo)熱絕緣膠布外均勻纏繞,并在溫度測(cè)點(diǎn)處留出一定空隙。電加熱帶外依次纏繞玻璃纖維布、硅酸鋁保溫棉和隔氣帶,確保與環(huán)境的隔熱效果良好。為驗(yàn)證實(shí)驗(yàn)段的保溫效果,進(jìn)行了單相熱平衡實(shí)驗(yàn),結(jié)果發(fā)現(xiàn)實(shí)驗(yàn)段的漏熱量小于制冷劑有效得熱的2%,因此在實(shí)驗(yàn)段傳熱系數(shù)處理的過程中未考慮漏熱的影響。

      圖2 測(cè)試段結(jié)構(gòu)Fig.2 Schematic diagram of test section

      圖3 電加熱帶纏繞結(jié)構(gòu)及溫度測(cè)點(diǎn)布置Fig.3 Structure of electronic heating tape and temperature measuring point

      2 實(shí)驗(yàn)研究

      2.1測(cè)試工況

      本實(shí)驗(yàn)測(cè)試段制冷劑入口飽和溫度為10℃,質(zhì)流密度為300~500 kg·m?2·s?1,熱通量為5.0和 10.0 kW·m?2。表2為具體實(shí)驗(yàn)工況點(diǎn)。

      表2 實(shí)驗(yàn)工況Table 2 Experimental working conditions

      2.2測(cè)試方法

      管內(nèi)流動(dòng)局部傳熱系數(shù)定義為

      式中,htp為管內(nèi)流動(dòng)沸騰傳熱系數(shù),W·m?2·K?1;Qtest為測(cè)試段電加熱量,W;熱通量q的調(diào)節(jié)可以通過控制電加熱帶的功率Qtest;Tsat為管內(nèi)流動(dòng)制冷劑飽和溫度,℃,可通過測(cè)量測(cè)試段進(jìn)出口壓力,并假設(shè)測(cè)試段內(nèi)壓降均勻計(jì)算得到壓降分布,再計(jì)算得到管內(nèi)平均飽和溫度;dwi為測(cè)試管內(nèi)徑,m;?z為測(cè)試管段長(zhǎng)度,m;Twi為管內(nèi)壁溫,℃,通過熱電偶測(cè)量外壁溫度按照一維穩(wěn)態(tài)導(dǎo)熱計(jì)算得到,其計(jì)算式如下

      式中,dwi和dwo分別為測(cè)試管內(nèi)徑和外徑,m;Two為熱電所測(cè)管外壁溫度,℃;λ為銅管熱導(dǎo)率,W·m?1·K?1。測(cè)試段平均制冷劑干度可通過預(yù)熱器熱平衡計(jì)算得到

      式中,m為質(zhì)量流量,kg·s?1;Qpreh為預(yù)熱段加熱量,W;itest,in和itest,out分別為實(shí)驗(yàn)段進(jìn)出口制冷劑焓值,kJ·kg?1;itest,v,in和itest,l,in分別為實(shí)驗(yàn)段進(jìn)口氣相和液相制冷劑焓,kJ·kg?1;itest,v,out和itest,l,out分別為實(shí)驗(yàn)段出口氣相和液相制冷劑焓,kJ·kg?1。數(shù)據(jù)計(jì)算和分析中用到的流體熱物性通過NIST Refprop v9.0[9]查得。

      2.3不確定度分析

      本實(shí)驗(yàn)中主要存在兩方面不確定度,一是預(yù)熱段和測(cè)試段的漏熱引起的偏差,二是測(cè)量?jī)x表引起的偏差。針對(duì)第1類不確定度,采用對(duì)預(yù)熱段和測(cè)試段進(jìn)行標(biāo)定和熱平衡實(shí)驗(yàn),直接扣除這部分誤差。對(duì)于第2類不確定度,采用Moffat[26]提出的不確定度傳遞方法,其傳遞方程如下

      式中,Δq/q為測(cè)試段熱通量的相對(duì)誤差;ΔTwi為內(nèi)壁溫度的誤差;ΔTsat為測(cè)定壓力下對(duì)應(yīng)的飽和溫度;Twi?Tsat為管內(nèi)沸騰換熱溫差。測(cè)量?jī)x表及其不確定值見表3。本實(shí)驗(yàn)中得到傳熱系數(shù)的最小不確定度和最大不確定度分別為3.03%和11.14%。

      表3 測(cè)量系統(tǒng)儀表及其不確定值Table 3 Measurement instruments and their uncertainties

      3 實(shí)驗(yàn)分析及關(guān)聯(lián)式比較

      3.1實(shí)驗(yàn)結(jié)果

      圖4(a)、(b)分別表示R1234ze(E)和R134a在熱通量為5.0和10.0 kW·m?2、飽和溫度為10℃時(shí),管內(nèi)流動(dòng)沸騰傳熱系數(shù)隨質(zhì)流密度和干度的變化曲線。由圖可見,在研究的工況范圍內(nèi)R1234ze(E)流動(dòng)沸騰傳熱系數(shù)總體較R134a略微偏低12.14%。在低質(zhì)流密度300 kg·m?2·s?1下,R1234ze(E)傳熱系數(shù)較R134a偏低14.68%左右,但隨質(zhì)流密度增大到500 kg·m?2·s?1時(shí)其偏差縮小為7.35%。其中,干度對(duì)傳熱系數(shù)的影響方面,由圖4(a)可以發(fā)現(xiàn),新型制冷劑R1234ze(E)的局部傳熱系數(shù)隨干度的增加先增加而后出現(xiàn)拐點(diǎn),這主要是由于在低干度時(shí)R1234ze(E)的換熱過程主要以核態(tài)沸騰換熱為主,尤其在低干度區(qū)域,換熱主要受到銅管壁面過熱度的影響。隨干度的增加,在干度為0.7~0.8附近傳熱系數(shù)出現(xiàn)拐點(diǎn),主要是由于在高干度區(qū)R1234ze(E)的流型由環(huán)狀流轉(zhuǎn)化為霧狀流,此時(shí)被流體濕潤(rùn)的壁面開始減少,即出現(xiàn)干涸,而液膜對(duì)流蒸發(fā)只發(fā)生在濕潤(rùn)的壁面,這使得整體的傳熱系數(shù)下降。R1234ze(E)流動(dòng)沸騰局部傳熱系數(shù)隨干度的變化趨勢(shì)與圖4(b)中R134a的變化趨勢(shì)相同。

      質(zhì)流密度對(duì)傳熱系數(shù)的影響方面,R1234ze(E) 和R134a流動(dòng)沸騰局部傳熱系數(shù)均隨質(zhì)流密度的增加而有較大幅度增大。這是由于R1234ze(E)和R134a飽和溫度為10℃時(shí)氣液密度差異較大,其氣液密度比率分別為0.0136和0.0160,因此在蒸發(fā)過程中制冷劑兩相流動(dòng)平均流速增大,強(qiáng)化了對(duì)流換熱。平均質(zhì)流密度從300 kg·m?2·s?1增加到500 kg·m?2·s?1過程中,R1234ze(E)和R134a的平均傳熱系數(shù)分別增大了34.40%和29.36%。

      圖4 傳熱系數(shù)隨干度變化Fig.4 Heat transfer coefficients versus vapor quality

      熱通量對(duì)傳熱系數(shù)的影響方面,R1234ze(E)和R134a流動(dòng)沸騰局部傳熱系數(shù)均隨熱通量的增加而有小幅增大,這是由于增大換熱溫差,會(huì)導(dǎo)致核態(tài)沸騰增強(qiáng)。在質(zhì)流密度為500 kg·m?2·s?1工況下,熱通量從5.0 kW·m?2增加大10.0 kW·m?2時(shí),R1234ze(E)和R134a流動(dòng)沸騰局部傳熱系數(shù)分別增加了3.12%和2.80%。

      管徑對(duì)傳熱系數(shù)的影響方面,本文對(duì)比文獻(xiàn)[23],Hossain等在管內(nèi)徑為4.35 mm的水平銅管中測(cè)試了R1234ze(E)流動(dòng)沸騰換熱特性。將本文在內(nèi)徑8 mm得到的R1234ze(E)流動(dòng)沸騰傳熱系數(shù)與Hossain等在內(nèi)徑為4.35 mm得到的數(shù)據(jù)進(jìn)行比較,表明管徑大小對(duì)制冷劑流動(dòng)沸騰傳熱系數(shù)具有較大影響,R1234ze(E)在小管徑4.35 mm內(nèi)的流動(dòng)沸騰傳熱系數(shù)要大于大管徑8 mm。在質(zhì)流密度300 kg·m?2·s?1、飽和溫度為10℃,R1234ze(E)在管內(nèi)徑為4.35 mm的流動(dòng)沸騰傳熱系數(shù)平均比內(nèi)徑為8 mm增強(qiáng)約153%。

      3.2預(yù)估關(guān)聯(lián)式

      在已有的文獻(xiàn)中指出,流動(dòng)沸騰換熱是一種帶有相變的傳熱過程,認(rèn)為是核態(tài)沸騰和對(duì)流蒸發(fā)相結(jié)合的一種傳熱方式。目前,關(guān)于管內(nèi)流動(dòng)沸騰換熱規(guī)律的研究,已提出大量理論預(yù)估關(guān)聯(lián)式,較為廣泛運(yùn)用的有3類,分別為加和模型、增強(qiáng)模型和漸進(jìn)模型。本文選用4種典型關(guān)聯(lián)式(Gungor和Winterton[27]、Kandlikar[28]、Liu和Winterton[29]、Saitoh等[30])對(duì)R1234ze(E)管內(nèi)流動(dòng)沸騰局部傳熱系數(shù)進(jìn)行預(yù)估判斷,并與實(shí)驗(yàn)數(shù)據(jù)比較分析,其關(guān)聯(lián)式具體數(shù)學(xué)模型參見相關(guān)文獻(xiàn)。其中,Gungor and Winterton模型[27]是在前人的研究的基礎(chǔ)上發(fā)展了一種加和模型,該預(yù)估關(guān)聯(lián)式適用于圓管和環(huán)形管,模型考慮了池沸騰和對(duì)流沸騰兩者共同影響,共同決定傳熱系數(shù)。Kandlikar模型[28]是將流體沸騰區(qū)域劃分為核態(tài)沸騰和強(qiáng)制對(duì)流蒸發(fā)兩個(gè)區(qū)域,通過單相流體的流動(dòng)情況來預(yù)測(cè)核態(tài)沸騰和對(duì)流換熱的傳熱系數(shù),提出一種適用于水平管和豎直管的飽和流動(dòng)沸騰傳熱系數(shù)的加強(qiáng)預(yù)估模型。Liu和Winterton[29]提出了一種通用于管內(nèi)過冷和飽和流動(dòng)沸騰傳熱系數(shù)預(yù)估關(guān)聯(lián)式,該關(guān)聯(lián)式體現(xiàn)流動(dòng)沸騰換熱存在核態(tài)沸騰和強(qiáng)制對(duì)流換熱兩種換熱機(jī)理,綜合考慮兩類換熱規(guī)律并選擇指數(shù)漸進(jìn)疊加形式。Saitoh等[30]基于流動(dòng)過程存在核態(tài)沸騰和強(qiáng)制對(duì)流兩種換熱機(jī)理基礎(chǔ)上,考慮換熱管管徑的影響,引入了Weber系數(shù),該關(guān)聯(lián)式適用于內(nèi)徑的范圍為0.5~11 mm。

      3.3實(shí)驗(yàn)與預(yù)估關(guān)聯(lián)式對(duì)比

      圖5(a)~(d)分別表示Gungor和Winterton、Kandlikar、Liu和Winterton及Saitoh等4種預(yù)估關(guān)聯(lián)式與R1234ze(E)和R134a實(shí)驗(yàn)值的偏差結(jié)果。

      從圖5(a)可以看出,Gungor和Winterton關(guān)聯(lián)式的計(jì)算值與R1234ze(E)的實(shí)驗(yàn)值偏差較大,部分預(yù)測(cè)點(diǎn)的偏差超過±30%,且預(yù)測(cè)值普遍大于實(shí)驗(yàn)值。Gungor和Winterton關(guān)聯(lián)式的計(jì)算值與R134a的實(shí)驗(yàn)值偏差較小,多數(shù)預(yù)測(cè)點(diǎn)的偏差在±30%內(nèi)。

      圖5 實(shí)驗(yàn)值與預(yù)估關(guān)聯(lián)式偏差Fig. 5 Experimental data compared with correlation

      從圖5(b)可以看出,Kandlikar關(guān)聯(lián)式的計(jì)算值較好地預(yù)測(cè)R1234ze(E)和R134a的實(shí)驗(yàn)值,其中90%預(yù)測(cè)點(diǎn)與實(shí)驗(yàn)值的偏差在±25%內(nèi)。Kandlikar關(guān)聯(lián)式預(yù)測(cè)值與R1234ze(E)和R134a實(shí)驗(yàn)值的平均偏差分別為23.13%和11.50%。

      從圖5(c)可以看出,Liu和Winterton關(guān)聯(lián)式的計(jì)算值與R1234ze(E)和R134a的實(shí)驗(yàn)值偏差較大,部分預(yù)測(cè)點(diǎn)偏差超過±30%。且其預(yù)測(cè)點(diǎn)普遍在低干度時(shí)大于實(shí)驗(yàn)值,在高干度時(shí)小于實(shí)驗(yàn)值,其對(duì)R1234ze(E)流動(dòng)沸騰傳熱系數(shù)的預(yù)測(cè)準(zhǔn)確度較差。

      從圖5(d)可以看出,Saitoh等關(guān)聯(lián)式的計(jì)算值在低干度時(shí)與R1234ze(E)和R134a的實(shí)驗(yàn)值偏差較小,在高干度時(shí)與R1234ze(E)和R134a的實(shí)驗(yàn)值偏差較大,且在高干度時(shí)預(yù)測(cè)值大于實(shí)驗(yàn)值,預(yù)測(cè)點(diǎn)偏差超出±30%。

      綜上,4種關(guān)聯(lián)式與實(shí)驗(yàn)值的比較分析,Kandlikar關(guān)聯(lián)式的總體計(jì)算效果較優(yōu)。圖6表示在全實(shí)驗(yàn)工況范圍內(nèi)Kandlikar關(guān)聯(lián)式對(duì)R1234ze(E) 和R134a流動(dòng)局部傳熱系數(shù)的預(yù)測(cè)值和實(shí)驗(yàn)值隨干度的變化趨勢(shì)。由圖6(a)、(b)可知,在低質(zhì)流密度300 kg·m?2·s?1工況下,Kandlikar對(duì)R1234ze(E)的預(yù)測(cè)準(zhǔn)確性優(yōu)于質(zhì)流密度為500 kg·m?2·s?1工況。由圖6(c)、(d)可知,在低質(zhì)流密度300 kg·m?2·s?1工況下,Kandlikar對(duì)R134a的預(yù)測(cè)準(zhǔn)確性低于質(zhì)流密度為500 kg·m?2·s?1工況。綜上分析發(fā)現(xiàn),Kandlikar關(guān)聯(lián)式對(duì)R1234ze(E)和R134a的預(yù)測(cè)整體準(zhǔn)確性較好,且其能夠較準(zhǔn)確預(yù)測(cè)出全干度范圍內(nèi)傳熱系數(shù)最大值,滿足工程設(shè)計(jì)要求。

      4 結(jié) 論

      本文對(duì)環(huán)保制冷劑R1234ze(E)和常規(guī)制冷劑R134a在內(nèi)徑為8 mm水平圓管內(nèi)飽和流動(dòng)沸騰換熱特性進(jìn)行實(shí)驗(yàn)研究,分析質(zhì)流密度、熱通量和干度對(duì)傳熱系數(shù)的影響規(guī)律。結(jié)合Gungor和Winterton、Kandlikar、Liu和Winterton、Saitoh等4種流動(dòng)沸騰傳熱系數(shù)預(yù)估關(guān)聯(lián)式,深入分析預(yù)估值與實(shí)驗(yàn)值的偏差。得出以下結(jié)論。

      圖6 傳熱系數(shù)實(shí)驗(yàn)值與Kandlikar預(yù)測(cè)關(guān)聯(lián)式全工況對(duì)比Fig.6 Experimental data of heat transfer coefficients compared with correlation of Kandlikar

      (1)分析質(zhì)流密度和熱通量對(duì)流動(dòng)沸騰換熱的影響,表明R1234ze(E)和R134a流動(dòng)沸騰傳熱系數(shù)均隨質(zhì)流密度和熱通量的增大而增大,隨干度的增加傳熱系數(shù)先增大后降低。在低質(zhì)流密度300 kg·m?2·s?1工況下,R1234ze(E)傳熱系數(shù)較R134a偏低14.68%左右,但隨質(zhì)流密度增大到500 kg·m?2·s?1時(shí)其偏差縮小為7.35%。

      (2)4種預(yù)估關(guān)聯(lián)式計(jì)算值與實(shí)驗(yàn)值的比較結(jié)果表明:Kandlikar關(guān)聯(lián)式對(duì)R1234ze(E)和R134a預(yù)估效果與實(shí)驗(yàn)值的吻合度較好,90%計(jì)算點(diǎn)與實(shí)驗(yàn)點(diǎn)的偏差在±25%內(nèi),總體平均偏差分別為23.13%和11.50%,同時(shí)Kandlikar關(guān)聯(lián)式能夠較為準(zhǔn)確預(yù)測(cè)傳熱系數(shù)隨干度變化的極大值,其預(yù)估值可供R1234ze(E)換熱器的工程設(shè)計(jì)參考。

      References

      [1]Directive 2006/40/EC of the European Parliament and of the Council of 17 May 2006 relating to emissions from air-conditioning systems in motor vehicles and amending Council Directive 70/156/EC. Official J. Eur. Union [EB/OL]. [2006-06-14]. http://eur-lex. europa.eu/legal-content/EN/TXT/?uri=CELEX:32006L0040.

      [2]Regulation(EU) No.517/2014 of the European Parliament and of the Council of 16 April 2014 on fluorinated greenhouse gases and repealing Regulation(EC) No. 842/2006.Official J. Eur. Union [EB/OL]. [2014-05-20]. http://eur-lex.europa.eu/legal-content/EN/ TXT/?uri=uriserv: OJ.L_.2014.150.01.0195.01.ENG.

      [3]WALLINGTON T J, SULBAEK ANDERSEN M P, NIELSEN O J. Atmospheric chemistry of short-chain haloolefins: photochemical ozone creation potentials (POCPs), global warming potentials(GWPs), and ozone depletion potentials (ODPs) main [J]. Chemosphere, 2015, 129(6): 135-141.

      [4]CALM M J. The next generation of refrigerants historical review consideration and outlook [J]. International Journal of Refrigeration, 2008, 31(2): 1123-1133.

      [5]ATILLA G D, VEDAT O. Characteristics of some new generation refrigerants with low GWP [J]. Energy Procedia, 2015, 75(8): 1452-1457.

      [6]FRANCISCO M, JOAQUIN N E, BERNARDO P, et al. Theoretical energy performance evaluation of different single stage vapour compression refrigeration configurations using R1234yf and R1234ze(E) as working fluids [J]. International Journal of Refrigeration, 2014, 44(1): 141-150.

      [7]LAI N A. Equations of state for HFO-1234ze(E) and their application in the study on refrigeration cycle [J]. International Journal of Refrigeration, 2014, 43(7): 194-202.

      [8]WALLINGTON T J, SULBAEK ANDERSEN M P, NIELSEN O J. Atmospheric chemistry of short-chain haloolefins: photochemical ozone creation potentials (POCPs), global warming potentials (GWPs), and ozone depletion potentials (ODPs) main [J]. Chemosphere, 2014, 129(6): 135-141.

      [9]LEMMON E W, HUBER M L, MCLINDEN M O. NIST reference fluids thermodynamic and transport properties-refprop 9, standard reference database 23 [DB]. Gaithersburg, MD, USA: National Institute of Standard and Technology, 2009.

      [10]MENG X Y, QIU G S, WU J T, et al. Viscosity measurements for 2,3,3,3-tetrafluoroprop-1-ene (R1234yf) and trans-1,3,3,3-tetrafluoropropene (R1234ze(E)) [J]. The Journal of Chemical Thermodynamics, 2013, 63(8): 24-30.

      [11]HE M G, QI X T, LIU X Y, et al. Estimating the viscosity of pure refrigerants and their mixtures by free-volume theory [J]. International Journal of Refrigeration, 2015, 54(6): 55-66.

      [12]QIU G H, MENG X Y, WU J T. Density measurements for 2,3,3,3-tetrafluoroprop-1-ene (R1234yf) and trans-1,3,3,3-tetrafluoropropene (R1234ze(E)) [J]. The Journal of Chemical Thermodynamics, 2013, 60(5): 150-158.

      [13]HIGASHI Y, TANAKA K, ICHIKAWA T. Critical parameters and saturated densities in the critical region for trans-1,3,3,3-tetrafluoropropene (HFO-1234ze(E)) [J]. Journal of Chemical and Engineering Data, 2010, 55(4): 1594-1597.

      [14]MIYARA A, FUKUDA R, TSUBAKI K. Thermal conductivity of saturated liquid of R1234ze(E)+R32 and R1234yf+R32 mixtures [J]. Transactions of the Japan Society of Refrigerating and Air Conditioning Engineers, 2011, 28: 435-443.

      [15]霍二光,戴源德,耿平,等. R1234ze與R152a混合制冷劑替代R22的可行性[J]. 化工學(xué)報(bào),2015,66(12):4725-4729. HUO E G, DAI Y D, GENG P, et al. Feasibility research on using R152a and R1234ze mixture as alternative for R22 [J]. CIESC Journal, 2015, 66(12): 4725-4729.

      [16]RAABE G. Molecular simulation studies on the vapor-liquid phase equilibria of binary mixtures of R-1234yf and R-1234ze(E) with R-32 and CO2[J]. Journal of Chemical and Engineering Data, 2013, 58(6): 1867-1873.

      [17]張志巍,李敏霞,馬一太. HFC32/HFO1234ze二元混合工質(zhì)的熱物性模型[J]. 工程熱物理學(xué)報(bào),2014,35(2):218-222. ZHANG Z W, LI M X, MA Y T. Thermophysical properties model for binary mixtures working fluid of HFC32/HFO1234ze [J]. Journal of Engineering Thermophysics, 2014, 35(2): 218-222.

      [18]FUKUDA S, KONDOU C, TAKATA N, et al. Low GWP refrigerants R1234ze(E) and R1234ze(Z) for high temperature heat pumps [J]. International Journal of Refrigeration, 2014, 40(4): 161-173.

      [19]MCLINDEN O M, KAZAKOV F A, STEVEN BROWN J, et al. A thermodynamic analysis of refrigerants: possibilities and tradeoffs for low-GWP refrigerants [J]. International Journal of Refrigeration, 2014, 38(1): 80-92.

      [20]ANSARI N A, YADAV B, KUMAR J. Theoretical exergy analysis of HFO-1234yf and HFO-1234ze as an alternative replacement of HFC-134a in simple vapour compression refrigeration system [J]. International Journal of Scientific and Engineering Research, 2013, 4(8): 137-144.

      [21]ADRIAN M B, JOAQUIN N E, ANGEL B, et al. Drop-in energy performance evaluation of R1234yf and R1234ze(E) in a vapor compression system as R134a replacements [J]. Applied Thermal Engineering, 2014, 71(1): 259-265.

      [22]HOSSAIN M A, ONAKA Y, MIYARA A. Experimental study on condensation heat transfer and pressure drop in horizontal smooth tube for R1234ze(E), R32 and R410A [J]. International Journal of Refrigeration, 2012, 35(1): 927-938.

      [23]HOSSAIN M A, ONAKA Y, AFRON M M H, et al. Heat transfer during evaporation of R1234ze(E), R32, R410A and a mixture of R1234ze(E) and R32 inside a horizontal smooth tube [J]. International Journal of Refrigeration, 2013, 36(2): 465-477.

      [24]GRAUSO S, MASTRULLO R, MAURO A W, et al. Flow pattern map, heat transfer and pressure drops during evaporation of R-1234ze(E) and R134a in a horizontal, circular smooth tube: experiments and assessment of predictive methods [J]. International Journal of Refrigeration, 2013, 36(2): 478-491.

      [25]DIANI A, MANCIN S, ROSSETTO L. R1234ze(E) flow boiling inside a 3.4 mm ID microfin tube [J]. International Journal of Refrigeration, 2014, 47: 105-119.

      [26]MOFFAT R J. Describing the uncertainties in experimental results [J]. Experimental Thermal and Fluid Science, 1988, 1: 3-17.

      [27]GUNGOR K E, WINTERTON R H S. A general correlation for flow boiling in tubes and annuli [J]. International Journal of Heat and Mass Transfer, 1986, 29(3): 351-358.

      [28]KANDLIKAR S G. A general correlation for saturated two-phase flow boiling heat transfer inside horizontal and vertical tubes [J]. ASME Journal of Heat Transfer, 1990, 112: 219-228.

      [29]LIU Z, WINTERTON R H S. A general correlation for saturated and subcooled flow boiling in tubes and annuli, based on a nucleate pool boiling equation [J]. International Journal of Heat and Mass Transfer, 1991, 34(11): 2759-2766.

      [30]SAITOH S, DAIGUJI H, HIHARA E. Correlation for boiling heat transfer of R-134a in horizontal tubes including effect of tube diameter [J]. International Journal of Heat and Mass Transfer, 2007, 50(25/26): 5215-5225.

      Flow boiling heat transfer characteristic of refrigerant R1234ze(E) in horizontal circular tube

      QIU Jinyou1, ZHANG Hua1, YU Xiaoming1, WANG Xi2, WU Yinlong1
      (1School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;2Haier Group Technology Research and Development Center, Qingdao 266101, Shandong, China)

      Abstract:Nowadays, more and more attention has been paid to the new low GWP (global warming potential) refrigerant R1234ze(E), which is one of the ideal alternatives for R134a. In this work, the flow boiling heat transfer coefficients of R1234ze(E) and R134a were measured inside an 8 mm ID horizontal tube. The experimental results were obtained over the saturation temperature of 10℃ with heat fluxes ranging from 5.0 to 10.0 kW·m?2and mass fluxes ranging from 300 to 500 kg·m?2·s?1. The influences of mass flux, heat flux and quality on the heat transfer coefficients were discussed. The results showed that the local flow boiling heat transfer coefficients of R1234ze(E) and R134a increased with increasing mass flux and heat flux. The local heat transfer coefficient of R1234ze(E) was around 14.68% lower than that of R134a at the mass flux of 300 kg·m?2·s?1, while the local heat transfer coefficient deviation between R1234ze(E) and R134a reduced to 7.35% when the mass flux reached 500 kg·m?2·s?1. Additionally, the experimental data of local heat transfer coefficients were compared with four well-known correlations available in literatures. The results indicated that Kandlikar correlation provided the best prediction of the local heat transfer coefficients for both R1234ze(E) and R134a. Approximately90% of the experimental points are in an error bandwidth of ±25% of the prediction, and the average deviations are found to be 23.13% and 11.50% for R1234ze(E) and R134a, respectively.

      Key words:R1234ze(E); R134a; flow boiling; heat transfer correlation; horizontal circular tube

      中圖分類號(hào):TK 124

      文獻(xiàn)標(biāo)志碼:A

      文章編號(hào):0438—1157(2016)06—2255—08

      DOI:10.11949/j.issn.0438-1157.20151523

      基金項(xiàng)目:國(guó)家自然科學(xué)基金項(xiàng)目(51176124);國(guó)際科技合作項(xiàng)目(2012DFR70430)。

      Corresponding author:Prof. ZHANG Hua, Zhanghua3000@163.com

      互助| 潞城市| 凤庆县| 合水县| 开原市| 新郑市| 会理县| 和静县| 五家渠市| 大宁县| 海宁市| 东辽县| 偏关县| 淮北市| 洪泽县| 洪湖市| 大荔县| 水城县| 漳浦县| 新建县| 大庆市| 本溪市| 静海县| 沧源| 聂荣县| 崇阳县| 潮州市| 安远县| 上高县| 鹤岗市| 阿图什市| 揭东县| 伊川县| 仙游县| 海兴县| 安顺市| 关岭| 乐陵市| 凤阳县| 麻栗坡县| 临泉县|