• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Efficient tracker based on sparse coding with Euclidean local structure-based constraint

    2016-07-01 00:51:37WANGHongyuanZHANGJiCHENFuhua
    智能系統(tǒng)學(xué)報(bào) 2016年1期

    WANG Hongyuan, ZHANG Ji, CHEN Fuhua

    (1. School of Information Science and Engineering, Changzhou University, Changzhou, Jiangsu, China 213164; 2. Department of Natural Science and Mathematics, West Liberty University, West Virginia, United States 26074)

    Efficient tracker based on sparse coding with Euclidean local structure-based constraint

    WANG Hongyuan1, ZHANG Ji1, CHEN Fuhua2

    (1. School of Information Science and Engineering, Changzhou University, Changzhou, Jiangsu, China 213164; 2. Department of Natural Science and Mathematics, West Liberty University, West Virginia, United States 26074)

    Abstract:Sparse coding (SC) based visual tracking (l1-tracker) is gaining increasing attention, and many related algorithms are developed. In these algorithms, each candidate region is sparsely represented as a set of target templates. However, the structure connecting these candidate regions is usually ignored. Lu proposed an NLSSC-tracker with non-local self-similarity sparse coding to address this issue, which has a high computational cost. In this study, we propose an Euclidean local-structure constraint based sparse coding tracker with a smoothed Euclidean local structure. With this tracker, the optimization procedure is transformed to a small-scale l1-optimization problem, significantly reducing the computational cost. Extensive experimental results on visual tracking demonstrate the e?ectiveness and efficiency of the proposed algorithm.

    Keywords:euclidean local-structure constraint; l1-tracker; sparse coding; target tracking

    Citation:WANG Hongyuan, ZHANG Ji, CHEN Fuhua. Efficient tracker based on sparse coding with Euclidean local structure-based constraint[J]. CAAI Transactions on Intelligent Systems, 2016, 11(1): 136-147.

    Recently, visual target tracking was widely used in security surveillance, navigation, human-computer interaction, and other applications[1-2]. In a video sequence, targets for tracking often change dynamically and uncertainly because of disturbance phenomena such as occlusion, noisy and varying illumination, and object appearance. Many tracking algorithms were proposed in the last twenty years that can be divided into two categories: generative tracking and discriminant tracking algorithms[1-2]. Generative algorithms (e.g., eigen tracker, mean-shift tracker, incremental tracker, covariance tracker[2]) adopt appearance models to express the target observations, whereas discriminant algorithms (e.g., TLD[3], ensemble tracking[4], and MILTrack[5]) view tracking as a classification problem, thus attempting to distinguish the target from the backgrounds. Here, we present a new generative algorithm.

    Based on sparse coding (SC; also referred to as sparse sensing or compressive sensing)[6-7], Mei proposed an l1-tracker for generative tracking[8-9], addressing occlusion, corruption, and some other challenging issues. However, this tracker incurs a very high computational cost to achieve efficient tracking (see section 2.1 and Fig.1 for details), and the local structures of similar regions are ignored, which may cause the instability and even failure of the l1-tracker. Indeed, the sparse coefficients, for representing six similar regions (CR1-CR6) under ten template regions (T1-T10) with original l1-tracker, are diversified (Fig. 3). ConsideringCR1andCR4, for example, we can see that although the latter is almost the partial occlusion version of the former, their sparse representations are very different. TrackingCR4(the woman’s face) may fail, because the tracker is likely to incorrectly consider the regionT8(the book) as its target.

    Contrary to expectations, Xu proved that a sparse algorithm cannot be stable and that similar signals may not exhibit similar sparse coefficients[10]. Thus, a trade-off occurs between sparsity and stability when designing a learning algorithm. In addition, instability in the l1-optimization problem affects the performance of the l1-tracker.

    Lu developed a NLSSS-tracker (NLSSST) based on SC applying a non-local self-similarity constraint by introducing the geometrical information of the set of candidates as a smoothing term to alleviate the instability of the l1-tracker[11]. However, its low efficiency (even slower than the original l1-tracker, Table 4) restricts its applicability in real-time tracking. In this study, motivated by the robustness of the l1-tracker and stability of NLSSST, we propose a novel tracker, called ELSS-tracker (ELSST), that is both robust and efficient. The main contributions of this study are as follows:

    1)An efficient tracker, i.e., ELSST, is developed by considering the local structure of the set of target candidates. In contrast to the Lu5s[11]and Mei5s-tracker[8-9], our tracker is more stable and sparse.

    2)The proposed tracker shows excellent performance in tracking different video sequences with regard to scale, occlusion, pose variations, background clutter, and illumination changes.

    The rest of this study is organized as follows: l1- and NLSSS-tracker are introduced in section 2; in section 3, we analyze the disadvantages of these two trackers and propose our tracker; experimental results with our tracker and four comparison algorithms are reported in section 4; the conclusion and future work are summarized in section 5.

    1Related works

    1.1Sparse coding and the l1-tracker

    Sparse coding is an attractive signal reconstruction method proposed by Candes[6-7]that reconstructs a signal y∈Rm×1with an over-complete dictionary D∈Rm×(n+2m)withasparsecoefficientvectorc∈Rn×1.TheSCformulationcanbewrittenasthel0-norm-constrainedoptimizationproblemasfollows:

    (1)

    whichisNP-hard,where‖·‖F(xiàn)denotesthevector’sFrobeniusnorm(i.e.,l2-norm),and‖·‖0countsthenumberofnon-zeroelementsofthevector.Candesprovedthatthel1-norm‖·‖1isthetightestupperboundofthel0-norm‖·‖0,andthus,Eq.(1)canberewrittenasthefollowingl1-optimizationproblem[6-7]:

    (2)

    BasedonSC,Meipresentedanicel1-trackerforrobusttracking[8-9](Fig. 1).Consideringthatthetargetislocatedinthelatestframe,thel1-trackerisinitializedinthenewarrivalframeandNcandidateregionsaregeneratedwithBayesianinference(Fig. 1a,b).Withntemplateslearnedfromprevioustrackingand2mtrivialtemplates(mpositiveonesandmnegativeones,wheremisthedimensionof1Dstretchedimage,Fig. 1c),Eq.(2)canbesolved(Fig. 1d,e,f).Withpositiveandnegativetrivialtemplates,Meiaddedanon-negativeconstraintc≥0inEq.(2),withwhichthereconstructionerrorsofallcandidateregionswithSCcoefficientscanbeusedtodeterminetheweightsforeachcandidate,andtheobjectinthenewarrivalframecanbelocatedwiththesumoftheweightedcandidates.Thedictionariesupdatingstrategiescanbeseenin[8-9].

    Fig.1 Original l1-tracker algorithm

    1.2Non-local self-similarity based sparse coding for tracking (NLSSST)

    Recently, Xu indicated the trade-off between sparsity and stability in sparse regularized algorithms[10]. Moreover, Yang pointed out the same A-optimization issue in pattern classification[12]. Based on the fact that lots of similar regions exist in allNcandidates generated by Bayesian inference, Lu proposed his tracker with the non-local self-similarity constraint as

    (3)

    (4)

    Taking the solution of the l1-tracker from Eq.(2) as the initial coefficientsc0, Eq.(4) can be solved through iterative computations[11]. However, the high computational cost of the original l1-tracker and iterative procedure for maintaining the neighborhood constraints of sparse coefficients make NLSSST inefficient in achieving real-timing tracking. In contrast to Fig. 1, the schematic diagram of NLSSST presented in Fig. 2, includes an additional neighborhood constraint betweenyiandNK(yi).

    Fig. 2 Lu’s NLSSST Algorithm

    2Euclidean local structure-based sparse coding for tracking (ELSST)

    To circumvent the heavy computation burden of the l1-tracker and NLSSST (Table 4), we propose an efficient tracker, called ELSST, that considers the local Euclidean structures of the candidates.

    2.1Original euclidean local structure constraint sparse coding (Original ELSSC)

    It is evident from Eq. (4) that NLSSST attempts to solve a double l1-norm problem. However, it is well known that the l2-norm is much more commonly used for measuring the distance between two vectors and is much easier to optimize than the l1-norm. Thus, we take the former to measure the relationships between the sparse coefficient vectors, which are close to each other, i.e., the Euclidean local-structure constraint, and the latter l1-norm ofCto maintain the sparsity of the optimization as follows:

    (5)

    Table 1 Optimization for ELS constraint based SC(ELSSC)

    Equation (5) is the objective function of our Euclidean local structure constraint-based SC and can be solved through iterative computation. In particular, at thet-th iteration, for a single candidateyiinY, Eq. (5) can be written as follows:

    (6)

    (7)

    whereλis convex. According to Daubechies[13], when λI-DTDisastrictlypositivedenitematrix,ψ(ci,c0)isstrictlyconvexforanyc0withrespecttoci.Hence,inourexperiments,theconstantλissetaccordingly(λ=γ- 2β;Table1).Oncetheover-completedictionaryDisfixed,wecanderivethefollowingconvexobjectivefunctionfromEq. (7):

    (8)

    where

    and

    (9)

    To solve Eq. (9) using SVD, we decompose the over-complete dictionaryD∈Rm×(n+2m)asD=UΣVT,whereU∈Rm×m,Σ∈Rm×(n+2m)andV∈R(n+2m)×(n+2m). SinceVisanorthogonalmatrix,Eq. (9)canberewrittenas

    (10)

    2.2Improved euclidean local structure constraint sparse coding (Improved ELSSC)

    IfminEq. (10)islarge,itistime-consumingtoobtaintheoptimizationresultci,asthatinl1-optimizationandNLSSSC.Fortunately,intermsofSVDandthestructureofD(Figs. 1and2),wehave

    (11)

    whereIdenotesthem-orderedidentitymatrix.Σ′isthefirstnrowsofΣ,V′consistsofthefirstnrowsandthefirstncolumnsofV,andm?n.Asaresult,whenconstructingthedictionaryVinEq. (10),onlythefirstnrowsandfirstncolumnsofVmustbeprepared,whereastheremainingpartsofVarenotconsideredtomakeanycontributiontothetargettemplatesT.Thus,thelargescaleoptimizationinEq. (10)canbereducedtoamuchsmalleroneasfollows:

    (12)

    2.3Original and improved ELSSC-tracker

    Basedontheabovealgorithm,ourtrackercanbeobtainedwiththeframeworkoftheoriginall1-tracker[8-9](Table2).Weneedtoiterativelysolvethelarge-scalel1-optimizationprobleminEq. (10)twice,uptothreetimesforeachcandidateinthealgorithm,andmorethanvetimesinNLSSST.Theinitialsparsecoecientsc0areconsideredasall-zerovectorsanditerativelysolvetheproblemwithoutanyl1-optimizationissues,asinTable1in[11].Nevertheless,wendthat,inNLSSST,itismoreeectiveandaccuratetoinitializec0asthesolutionofthel1-optimizationproblem.Therefore,thecomputationcomplexityofourtrackerisofthesameorderofmagnitudeasthatofthel1-trackerandNLSSST.Whenweresizealln = 10targetsandN = 200candidateregionsto40 × 40,i.e., m = 1 600 (Figs. 1and2),thentheover-completedictionaryDis1 600 × 3 210andtheorthogonalmatrixVis3 210 × 3 210inEq. (10).Itisverydifficulttosolvethecorrespondingl1-optimizationproblemwithsuchaD(inl1-trackerandNLSSST)orV(inourELSST).

    WiththeimprovedELSSC,Σ′isthefirsttenrowsofΣ,andV′consistsofthefirsttenrowsandfirsttencolumnsofV.Thus,eachiterationofeachcandidateregioninELSSTcanbereducedfromthelarge-scalel1-optimizationproblemtoamuchsmalleronebecauseofthemuchsmallerscaleV′∈R10×10.Toovercometheproblemofocclusionsintracking,theanalogoustrivialtemplatesareusedtoconstructthenewdictionaryV″∈R10×30,i.e.,aten-orderedidentitymatrixandten-orderednegativeidentitymatrix.

    3Experiments

    3.1Experimental setting

    Inordertoevaluatetheproposedtracker,experimentson12videosequenceswereconducted,includingSurfer,Dudek,Faceocc2,Animal,Girl,Stone,Car,Cup,Face,Juice,Singer,Sunshade,Bike,CarDark,andJumping[17-19].Thesesequencescoveredalmostallchallengesintracking,includingocclusion(evenheavyocclusion),motionblur,rotation,scalevariation,illuminationvariation,andcomplexbackground.Forcomparison,weusedfourstate-of-the-artalgorithmswiththesameinitialpositionsandthesamerepresentationsofthetargets.Theyweretheincrementallearning-basedtracker(IVT,acommondiscriminanttracker)[14],thecovariance-basedtracker(CovTrack,agenerativetrackeronLie-group)[15],thel1-tracker(agenerativetrackingmethod)[8-9],andtheNLSSST[11].Alltheexperimentswererunonacomputerwitha2.67GHzCPUanda2GBmemory.

    Themainparametersusedinourexperimentsaresetasfollows:thenumberofcandidateregionsN=200,thenumberoftemplateregionsisn = 10,andthecandidatesandtargetsareresizedto40×40.

    3.2Experimental results for sparsity and stability

    ThesparsecoecientsofCR1,…, CR6generatedwiththel1-,theNLSSSC-,theoriginalELSSC-,andtheimprovedELSSC-optimizationareplottedinFig. 3.Inparticular,sixsimilarregionshaveverydierentrepresentationcoecients,whenusingtheoriginall1-optimizationproblem,whichignoresthestructureinformationbetweenregions.Theresultsoftheotherthreealgorithmsaremuchmorestable,becauseofpreservationofthestructuralinformation.Iftworegionsaresimilartoeachother,theyalsohavesimilarsparsecoecients.Thisimprovestherobustnessoftracking;otherwise,thetrackermaydegenerateorevenfailtotrack. CR4forexample,withl1-optimization,canberepresentedbyT2, T8, T6, T7,andT1,andthetrackermayfailtotrackthetopofthebook.Meanwhile,experimentalresultsshowthat,NLSSSCandourtwoELSSCaresparserthantheoriginall1-optimizationproblem.

    Fig. 3 Comparisions of sparsity and stability with the original l1-, NLSSSC-, and our ELSSC-optimization. The sparse coefficients only are accurated to the second decimal place.

    3.3Experimental results for visual target tracking

    Weevaluatetheinvestigatedalgorithmscomparatively,usingthecenterlocationerrors,theaveragesuccessrates,andtheaverageframespersecond.TheresultsareshowninFigs. 4&5andinTables3&4.ThetemplatesofNLSSST,theoriginalELSST,andtheimprovedELSSTareshowninFig. 4(g-o).Overall,ouroriginalandimprovedtrackersoutperformtheotherstate-of-the-artalgorithms.

    Forocclusion,vealgorithms,exceptIVT,functionsatisfactorily,especiallyat#206, #366oftheDudeksequenceinFig. 4 (b) (theheadintrackingiscoveredbythehandandglasses), #143, #265, #496oftheFaceocc2sequenceinFig. 4 (c) (theheadintrackingiscoveredbythebook), #85, #108, #433oftheGirlsequenceinFig.4 (e) (theheadintrackingturnsright,turnsback,andblockssomeoneelse),and#56, #104, #301oftheFacesequenceinFig. 4(i) (theheadintrackingisalsocoveredbythebook).Afterthetargetrecoversfromocclusion,thesevetrackerscanseekitquickly.IVTworkspoorly,evenlosesthetargetin#10oftheGirlsequence(Fig. 5(e)),becausethenumberofpositiveandnegativesamplesislimited(consideringthelearningeciency),andtheincrementalupdatingoftheclassierinIVTislesseective.CovTrackinghasalargesizeofcandidates(basedonthedenitionofintegralimage,thefeatureextractionofthesecandidatesissofast,thatitscostcanbeignored),whichmakesitrobustforocclusion,scalevariation,andblur.NLSSSTandouroriginalandimprovedtrackersallworkwell,whenthetargetsareoccluded;ourtwotrackersworkevenbetter.

    Formotionblur,ourtwotrackersworkbetterthanIVTandtheoriginall1-tracker.Moreover,CovTrackingalsorevealsitsabilitytohandleblur(e.g., #4, #9,and#38inFig. 4(d,o).Intheformersequence,theanimalrunsandjumpsfast(motionblur)withalotofwatersplashing(occlusion),whileinthelatter,themanropesskippingandthecameracannottaketheclearfaceoftheman.IVTandl1-trackerfailbothfrom#4inFig. 4(d),andneverrecoverafterthat.OuroriginalandimprovedELSSlostthetargetin#31and#41,thenrecoveredin#33and#44 (Fig. 4(d)).In#12to#21and#44to#71,theimprovedELSSTworksbetterthanoriginalELSST,CovTracking,l1-tracker,andNLSSST.

    Forrotationandscalevariation,ourtrackersalsoperformrobustly(Figs. 4(a,c,e,g,j)and5(a,c,e,g,j).Whenthesurferfallsforwardandbackward,thegirlturnsleftandright,movestowardsandawayfromthecamera,themanturnsleftandright,thecarturnsover,andthejuicebottlebecomesbiggerandsmallerinSurfer,Girl,Faceocc2,Car,andJuicesequence,respectively,vetrackersexceptIVTperformwell,especiallytheNLSSS-trackerandourtwoELSSC-trackers.

    Inacomplexbackgroundandwithhighilluminationvariance(Fig. 4(f)),therearemanysimilarstonestotrack.Thel1-trackerandourtwotrackersworkbetterthanotherthreetrackers.Cov-trackerfails,becauseitextractsedgeinformationoftargetsasonedimensionoffeatures,andinthissequences,edgeoftargetsareambiguousandhardtobedistinct.SimilarresultsareobtainedfromFig. 4(h,l,m).

    Table3summarizestheaveragesuccessrates.GiventhetrackingresultsRTandtheground-truthRG,weusethedetectioncriterioninthePASCALVOCchallenge[16],i.e.,

    toevaluatethesuccessrate.Ingeneral,fromtheaboveanalysis,wendthatouroriginalandimprovedELSSC-trackersperformalmostthesame,andtheformerisslightlybetter,especiallyintheDudek,Faceocc2,Surfer,Stone,CarDark,andJumpingsequences(Fig. 5(a,b,c,f,n,o).However,wealsondfromTable4,whichsummarizestheaverageframespersecond,thattheimprovedELSSTworksmuchfasterthantheoriginalELSSTandalmostalltheothertrackers;IVTisfasterthantheimprovedELSSTwhendealingwithSurferandDudeksequences,butitssuccessrateismuchworsethanthatoftheimprovedELSST.Itissensitiveunderthephenomenaofocclusion,rotation,andtargetmotionblur.Theoriginall1-trackerperformswellinmostframes,butitisalsotime-consumingandfailstotracksometimes;Cov-Trackingissuitableforocclusionandrotation,butfailswhenfacingacomplexbackground.

    Fig. 4 Some tracking results

    Fig. 5 Quantitative evaluation in terms of center location error (in pixel)

    VideoIVTCovTrackl1-trackerNLSSSTELSST1ELSST2Sufer0.05150.47700.03880.46460.46670.4052Dudek0.20110.42160.62150.65280.67260.6604Faceocc20.45530.39180.60840.45790.57470.4641Animal0.02180.27010.03360.36920.40780.4117Girl0.02280.21710.48690.48530.40060.4693Stone0.09740.11140.58340.41090.66110.6572Car0.06070.18580.09560.34180.32780.3825Cup0.63000.37690.55980.57380.52380.5637Face0.33410.28060.04790.52480.54960.5827Juice0.07430.42180.51110.52990.51860.5835Singer0.33260.13610.11840.57900.47810.5651Sunshade0.04810.18030.52570.53480.47430.4948Bike0.05760.37210.04510.44380.36080.3917CarDark0.08310.30870.07900.01100.42080.3737Jumping0.05770.27550.07110.08470.45300.4505

    Thebesttworesultsareshowninbold.Ouroriginalandimprovedalgorithmsareshowninthelasttwocolumns,respectively.

    Table 4 Average Frames per Second

    Thebesttworesultsareshowninbold.Ouroriginalandimprovedalgorithmsareshowninthelasttwocolumns,respectively.

    4Conclusions

    Inthisstudy,todealwithsparsityandinstabilityinthel1-optimizationproblem[10-12]andthehightimecomplexityoftheNLSSSC-tracker[11],weproposeanovelefficienttracker,i.e.,theEuclideanlocal-structureconstraintbasedsparsecoding(ELSSC).Ournewalgorithmisal1-trackerwithareconstructedover-completedictionary,whichisdierentfromthatintheoriginall1-trackerandNLSSSC-tracker.Moreover,wesimplifythelarge-scalel1-optimizationprobleminourtrackertoamuchsmalleroneinourimprovedELSSC-tracker.

    Comparedwiththeoriginall1-tracker,ourELSSC-trackerintroducesthestructureinformationamongthecandidateregionsgeneratedbytheBayesianinferencetothel1-tracker,similartothatintheNLSSSC-tracker.Withourderivation,theoptimizationprocedureofourtracker(Eq.(10))canbesolvedasthatinthel1-optimizationbutverydierentlyfromthatintheNLSSSC.Furthermore,ourimprovedtrackerismuchmoreecientthanthel1-trackerandNLSSSC-tracker.Ourexperimentsdemonstratethesparsity,stability,andeciencyofourtracker.

    References

    [1]ZHANGShengping,YAOHongxun,SUNXin,etal.Sparsecodingbasedvisualtracking:reviewandexperimentalcomparison[J].Patternrecognition, 2013, 46(7): 1772-1788.

    [2]YILMAZA,JAVEDO,SHAHM.Objecttracking:asurvey[J].ACMcomputingsurveys(CSUR), 2006, 38(4): 1-45.

    [3]KALALZ,MIKOLAJCZYKK,MATASJ.Tracking-learning-detection[J].IEEEtransactionsonpatternanalysisandmachineintelligence, 2012, 34(7): 1409-1422.

    [4]AVIDANS.Ensembletracking[J].IEEEtransactionsonpatternanalysisandmachineintelligence, 2007, 29(2): 261-271.

    [5]BABENKOB,YANGMH,BELONGIES.Visualtrackingwithonlinemultipleinstancelearning[C]//ProceedingsofIEEEConferenceonComputerVisionandPatternRecognition(CVPR).Miami,USA, 2009: 983-990.

    [6]CANDSEJ,WAKINMB.Anintroductiontocompressivesampling[J].IEEE,signalprocessingmagazine, 2008, 25(2): 21-30.

    [7]CANDSEJ,ROMBERGJ,TAOJ.Robustuncertaintyprinciples:exactsignalreconstructionfromhighlyincompletefrequencyinformation[J].IEEEtransactionsoninformationtheory, 2006, 52(2): 489-509.

    [8]MEIXue,LINGHaibin,WUYi,etal.Minimumerrorboundedefcientl1trackerwithocclusiondetection[C]//ProceedingsofIEEEConferenceonComputerVisionandPatternRecognition(CVPR).Colorado,USA, 2011:1257-1264.

    [9]MEIXue,LINGHaibin.Robustvisualtrackingandvehicleclassificationviasparserepresentation[J].IEEEtransactionsonpatternanalysisandmachineintelligence, 2011, 33(11): 2259-2272.

    [10]XUHuan,CARAMANISC,MANNORS.Sparsealgorithmsarenotstable:ano-free-lunchtheorem[J].IEEEtransactionsonpatternanalysisandmachineintelligence, 2011, 34(1): 187-193.

    [11]LUXiaoqiang,YUANYuan,LUPingkun,etal.Robustvisualtrackingwithdiscriminativesparselearning[J].Patternrecognition, 2013, 46(7): 1762-1771.

    [12]YANGJian,ZHANGLei,XUYong,etal.Beyondsparsity:theroleofL1-optimizerinpatternclassification[J].Patternrecognition, 2012, 45(3): 1104-1118.

    [13]DAUBECHIESI,DEFRISEM,DEMOLC.Aniterativethresholdingalgorithmforlinearinverseproblemswithasparsityconstraint[J].Communicationsonpureandappliedmathematics, 2004, 57(11): 1413-1457.

    [14]ROSSDA,LIMJ,LINRS,etal.Incrementallearningforrobustvisualtracking[J].Internationaljournalofcomputervision, 2008, 77(1-3): 125-141.

    [15]PORIKLIF,TUZELO,MEERP.Covariancetrackingusingmodelupdatebasedonliealgebra[C]//ProceedingsofIEEEComputerSocietyConferenceonComputerVisionandPatternRecognition.NewYork,USA, 2006: 728-735.

    [16]EVERINGHAMM,VANGOOLL,WILLIAMSCKI,etal.Thepascalvisualobjectclasses(VOC)challenge[J].Internationaljournalofcomputervision, 2010, 88(2): 303-338.

    [17]WUYi,LIMJ,YANGMH.Onlineobjecttracking:Abenchmark[C]//ProceedingsofIEEEConferenceonComputerVisionandPatternRecognition(CVPR).Portland,USA, 2013: 2411-2418.

    [18]KRISTANM,PUGFELDERR,LEONARDISA,etal.ThevisualobjecttrackingVOT2013challengeresults[C]//ProceedingsofIEEEInternationalConferenceonComputerVisionWorkshops(ICCVW).Sydney,Australia,2013:98-111.

    [19]SONGShuran,XIAOJianxiong.TrackingrevisitedusingRGBDcamera:unifiedbenchmarkandbaselines[C]//ProceedingsofIEEEInternationalConferenceonComputerVision(ICCV).Sydney,Australia, 2013: 233-240.

    Authorintroduction

    HongyuanWANG,male,wasbornin1960,ProfessorofChangzhouUniversity.Hisresearchinterestisimageprocessingandrecognition,artificialintelligence.Hehaspublishedover20papersininternationaljournalsandconferences.

    JiZHANG,male,wasbornin1981,LecturerofChangzhouUniversity.Hisresearchinterestisimageprocessingandrecognition.Hehaspublishedfivepapersininternationaljournalsandconferences.

    FuhuaCHEN,male,wasbornin1966,AssistantProfessorofWestLibertyUniversity.Hisresearchinterestisvariationimagesegmentationandinverseproblems.Hiscurrentresearchalsoinvolvesobjecttrackingandpersonre-identification.HehaspublishedovertenpapersininternationaljournalscitedbySCIorEI.

    DOI:10.11992/tis.201507073

    Received Date:2015-07-31. Online Pulication:2015-09-30.

    Foundation Item:National Natural Foundation of China under Grant (61572085,61502058).

    Corresponding Author:Hongyuan Wang. E-mail: hywang@cczu.edu.cn.

    CLC Number:TP18; TP301.6

    Document Code:AArticle ID:1673-4785(2016)01-0136-12

    網(wǎng)絡(luò)出版地址:http://www.cnki.net/kcms/detail/23.1538.tp.201509030.1456.002.html

    亚洲午夜理论影院| 久久久久网色| 亚洲国产欧美在线一区| 亚洲av国产av综合av卡| 老司机影院毛片| 深夜精品福利| 国产日韩欧美在线精品| 在线亚洲精品国产二区图片欧美| 757午夜福利合集在线观看| 黑人欧美特级aaaaaa片| aaaaa片日本免费| tocl精华| 一级,二级,三级黄色视频| 中文字幕另类日韩欧美亚洲嫩草| 老汉色av国产亚洲站长工具| 午夜福利一区二区在线看| 日韩成人在线观看一区二区三区| 久久婷婷成人综合色麻豆| 麻豆成人av在线观看| 欧美日韩国产mv在线观看视频| 久久人妻av系列| 美女扒开内裤让男人捅视频| av片东京热男人的天堂| 中文字幕人妻熟女乱码| 一边摸一边抽搐一进一小说 | 天堂俺去俺来也www色官网| 曰老女人黄片| 久久99热这里只频精品6学生| 免费久久久久久久精品成人欧美视频| 日韩一卡2卡3卡4卡2021年| 黄色片一级片一级黄色片| 91国产中文字幕| 国产精品久久久久久人妻精品电影 | 欧美+亚洲+日韩+国产| 日韩中文字幕欧美一区二区| 国产精品1区2区在线观看. | bbb黄色大片| 日本av免费视频播放| a级毛片在线看网站| 国产福利在线免费观看视频| 99香蕉大伊视频| 久久午夜亚洲精品久久| 久久天躁狠狠躁夜夜2o2o| 中文字幕另类日韩欧美亚洲嫩草| 女人久久www免费人成看片| 国产在线视频一区二区| a级片在线免费高清观看视频| 男女无遮挡免费网站观看| 精品亚洲成a人片在线观看| 中文字幕制服av| 精品一区二区三区视频在线观看免费 | 两个人看的免费小视频| 久久久精品94久久精品| av网站在线播放免费| 国产成人欧美在线观看 | 桃红色精品国产亚洲av| 视频在线观看一区二区三区| 欧美日韩亚洲综合一区二区三区_| 美女高潮到喷水免费观看| 久久久久精品人妻al黑| 亚洲男人天堂网一区| 少妇被粗大的猛进出69影院| 91成人精品电影| 日本五十路高清| 日本五十路高清| av天堂在线播放| 男人舔女人的私密视频| 纯流量卡能插随身wifi吗| 久久久久久久国产电影| 三上悠亚av全集在线观看| 午夜视频精品福利| 国产精品久久久久久精品古装| 国产视频一区二区在线看| 亚洲欧美日韩另类电影网站| 下体分泌物呈黄色| 国产精品99久久99久久久不卡| 欧美乱码精品一区二区三区| netflix在线观看网站| 搡老熟女国产l中国老女人| 久久精品国产综合久久久| 99久久99久久久精品蜜桃| 中文字幕最新亚洲高清| 可以免费在线观看a视频的电影网站| 菩萨蛮人人尽说江南好唐韦庄| 欧美日韩一级在线毛片| 男人操女人黄网站| 亚洲色图 男人天堂 中文字幕| 国产黄频视频在线观看| 青草久久国产| 久久久久国内视频| 国产黄频视频在线观看| 国产色视频综合| 久久九九热精品免费| 亚洲五月婷婷丁香| 成人黄色视频免费在线看| 成年人黄色毛片网站| 日本一区二区免费在线视频| 日韩有码中文字幕| 日本wwww免费看| 最新在线观看一区二区三区| 两人在一起打扑克的视频| 亚洲国产av新网站| av片东京热男人的天堂| 精品欧美一区二区三区在线| 一级片'在线观看视频| 欧美日韩亚洲国产一区二区在线观看 | 在线观看www视频免费| 中文亚洲av片在线观看爽 | 高清欧美精品videossex| 色婷婷久久久亚洲欧美| 亚洲午夜精品一区,二区,三区| 在线观看66精品国产| 亚洲三区欧美一区| 亚洲欧美日韩另类电影网站| 超碰97精品在线观看| 蜜桃国产av成人99| www.自偷自拍.com| 久久精品国产a三级三级三级| 免费看a级黄色片| 国产在线观看jvid| 国产高清激情床上av| 国产不卡av网站在线观看| 中文字幕人妻丝袜一区二区| 国产三级黄色录像| 91av网站免费观看| 欧美精品一区二区大全| 18在线观看网站| 亚洲人成电影观看| 欧美人与性动交α欧美精品济南到| 国产成人欧美在线观看 | 成人国语在线视频| 中文字幕色久视频| 一个人免费在线观看的高清视频| 人人妻人人澡人人爽人人夜夜| 91av网站免费观看| 一级,二级,三级黄色视频| 亚洲色图 男人天堂 中文字幕| 首页视频小说图片口味搜索| 国产精品免费大片| 久久人妻av系列| 国产av国产精品国产| 一本久久精品| 欧美精品亚洲一区二区| 国产精品久久久久久精品古装| 成人av一区二区三区在线看| 国产日韩欧美亚洲二区| 午夜福利欧美成人| 两个人免费观看高清视频| 欧美在线黄色| 国产精品久久久人人做人人爽| 大香蕉久久网| 精品国产乱码久久久久久男人| 51午夜福利影视在线观看| 这个男人来自地球电影免费观看| 日本一区二区免费在线视频| 国产97色在线日韩免费| 久久久国产一区二区| 丰满人妻熟妇乱又伦精品不卡| 人人澡人人妻人| 一区二区三区国产精品乱码| netflix在线观看网站| 亚洲午夜精品一区,二区,三区| 热re99久久精品国产66热6| 亚洲精品成人av观看孕妇| 免费在线观看影片大全网站| 女人被躁到高潮嗷嗷叫费观| 丝瓜视频免费看黄片| 人人妻,人人澡人人爽秒播| 午夜福利欧美成人| 亚洲,欧美精品.| 18禁美女被吸乳视频| 久久精品成人免费网站| 国产成人av教育| 桃花免费在线播放| 午夜老司机福利片| 精品午夜福利视频在线观看一区 | 国产成人免费无遮挡视频| 99九九在线精品视频| 国产在视频线精品| 水蜜桃什么品种好| 老熟妇仑乱视频hdxx| 欧美精品高潮呻吟av久久| 另类亚洲欧美激情| 岛国毛片在线播放| 51午夜福利影视在线观看| 日韩人妻精品一区2区三区| 亚洲熟女精品中文字幕| 精品一区二区三区四区五区乱码| 黄色丝袜av网址大全| 天天躁日日躁夜夜躁夜夜| 一二三四在线观看免费中文在| 日本五十路高清| 国产免费av片在线观看野外av| 国产欧美日韩精品亚洲av| 国产成人精品久久二区二区91| 欧美乱妇无乱码| 最新在线观看一区二区三区| 精品一区二区三区av网在线观看 | 999精品在线视频| 亚洲少妇的诱惑av| 久热这里只有精品99| 亚洲av日韩精品久久久久久密| 高清黄色对白视频在线免费看| 久久性视频一级片| 在线av久久热| 日本av手机在线免费观看| 国产精品熟女久久久久浪| 18禁观看日本| 男女无遮挡免费网站观看| 成人亚洲精品一区在线观看| 久久天躁狠狠躁夜夜2o2o| 亚洲国产av影院在线观看| 在线播放国产精品三级| 精品高清国产在线一区| 欧美成人午夜精品| 亚洲成人免费av在线播放| 国产欧美日韩一区二区三| 久久人妻福利社区极品人妻图片| 后天国语完整版免费观看| 最新在线观看一区二区三区| 国产人伦9x9x在线观看| 99国产精品一区二区三区| 亚洲全国av大片| 蜜桃在线观看..| 亚洲九九香蕉| 波多野结衣一区麻豆| 人妻久久中文字幕网| 亚洲欧美一区二区三区久久| 国产一区二区三区视频了| 精品国产一区二区三区四区第35| 亚洲成av片中文字幕在线观看| 成在线人永久免费视频| 国产精品偷伦视频观看了| 欧美日韩亚洲国产一区二区在线观看 | 日韩制服丝袜自拍偷拍| 亚洲男人天堂网一区| 视频在线观看一区二区三区| 久久久国产一区二区| 亚洲一区二区三区欧美精品| 视频在线观看一区二区三区| 欧美成人免费av一区二区三区 | 久久亚洲真实| 视频在线观看一区二区三区| 久久久久久亚洲精品国产蜜桃av| 亚洲色图综合在线观看| 成人精品一区二区免费| 午夜两性在线视频| 精品国产一区二区三区四区第35| 90打野战视频偷拍视频| 后天国语完整版免费观看| 久久久久精品国产欧美久久久| 女性被躁到高潮视频| 国产在线一区二区三区精| 大香蕉久久网| 亚洲五月婷婷丁香| 亚洲国产中文字幕在线视频| 成人永久免费在线观看视频 | 国产精品偷伦视频观看了| 丰满人妻熟妇乱又伦精品不卡| 女性被躁到高潮视频| tube8黄色片| 视频区欧美日本亚洲| 麻豆国产av国片精品| 久久热在线av| www日本在线高清视频| 午夜免费成人在线视频| 大香蕉久久网| 一区在线观看完整版| 中文字幕最新亚洲高清| 九色亚洲精品在线播放| 无遮挡黄片免费观看| 国产免费现黄频在线看| tocl精华| 国产aⅴ精品一区二区三区波| 五月天丁香电影| 精品亚洲成国产av| 亚洲人成77777在线视频| 午夜精品久久久久久毛片777| 国产日韩一区二区三区精品不卡| 精品福利观看| 日本欧美视频一区| 99国产综合亚洲精品| bbb黄色大片| 高潮久久久久久久久久久不卡| 黑人巨大精品欧美一区二区mp4| 久久狼人影院| 一夜夜www| 成人国语在线视频| netflix在线观看网站| 欧美日韩亚洲高清精品| 欧美黑人欧美精品刺激| 天天操日日干夜夜撸| 国产成人一区二区三区免费视频网站| 色综合欧美亚洲国产小说| 18禁裸乳无遮挡动漫免费视频| bbb黄色大片| 亚洲国产av影院在线观看| 成人影院久久| 欧美性长视频在线观看| 日韩制服丝袜自拍偷拍| 人妻一区二区av| 久久99一区二区三区| 18禁裸乳无遮挡动漫免费视频| 亚洲 欧美一区二区三区| 免费日韩欧美在线观看| 精品一区二区三区视频在线观看免费 | 午夜免费鲁丝| 精品国产超薄肉色丝袜足j| 午夜福利视频在线观看免费| 日韩三级视频一区二区三区| 男女之事视频高清在线观看| 欧美成狂野欧美在线观看| 国产精品免费大片| 精品国内亚洲2022精品成人 | 十八禁人妻一区二区| bbb黄色大片| 亚洲国产欧美网| 国产亚洲一区二区精品| 日韩精品免费视频一区二区三区| 91成年电影在线观看| av福利片在线| svipshipincom国产片| 啦啦啦视频在线资源免费观看| 欧美激情久久久久久爽电影 | 91精品国产国语对白视频| 在线 av 中文字幕| 欧美 日韩 精品 国产| 久久精品aⅴ一区二区三区四区| 亚洲av日韩精品久久久久久密| 99热国产这里只有精品6| 一级毛片电影观看| 高潮久久久久久久久久久不卡| 一级黄色大片毛片| 国产成人系列免费观看| 性高湖久久久久久久久免费观看| 人人妻人人澡人人看| 搡老乐熟女国产| 中文字幕精品免费在线观看视频| 国产精品久久久久久精品古装| 久久中文看片网| 母亲3免费完整高清在线观看| 99热国产这里只有精品6| 一本色道久久久久久精品综合| 夜夜骑夜夜射夜夜干| 久久久久久久大尺度免费视频| 日韩精品免费视频一区二区三区| 国产精品自产拍在线观看55亚洲 | 国产91精品成人一区二区三区 | 男女边摸边吃奶| 丰满人妻熟妇乱又伦精品不卡| 成人特级黄色片久久久久久久 | 亚洲精品自拍成人| 国产97色在线日韩免费| 精品卡一卡二卡四卡免费| 亚洲少妇的诱惑av| 免费在线观看完整版高清| 久久久久久久精品吃奶| 夜夜夜夜夜久久久久| 国产在视频线精品| 亚洲精品在线观看二区| 在线天堂中文资源库| 国产黄频视频在线观看| 久久青草综合色| 又紧又爽又黄一区二区| 国产又色又爽无遮挡免费看| 在线看a的网站| 多毛熟女@视频| 国产精品久久久久成人av| www.自偷自拍.com| av在线播放免费不卡| 亚洲黑人精品在线| 一本色道久久久久久精品综合| 欧美日韩国产mv在线观看视频| 女同久久另类99精品国产91| 深夜精品福利| 18在线观看网站| 国产成人啪精品午夜网站| 国产精品一区二区精品视频观看| 精品亚洲成a人片在线观看| 99精品欧美一区二区三区四区| 久久久久久久精品吃奶| 日本一区二区免费在线视频| 老司机深夜福利视频在线观看| 欧美亚洲日本最大视频资源| kizo精华| 久久精品成人免费网站| av国产精品久久久久影院| 美女视频免费永久观看网站| 国产欧美日韩一区二区三| 69av精品久久久久久 | 亚洲成人免费电影在线观看| 国产一卡二卡三卡精品| 两性夫妻黄色片| 国产精品一区二区在线不卡| 一级a爱视频在线免费观看| 在线观看免费视频网站a站| 汤姆久久久久久久影院中文字幕| 亚洲avbb在线观看| a级毛片黄视频| 国产又色又爽无遮挡免费看| 欧美日韩成人在线一区二区| 最近最新中文字幕大全电影3 | xxxhd国产人妻xxx| 一区二区三区激情视频| 宅男免费午夜| 欧美日韩福利视频一区二区| 脱女人内裤的视频| 亚洲精品在线美女| av欧美777| 大香蕉久久成人网| 最新美女视频免费是黄的| 在线观看66精品国产| 国产野战对白在线观看| 啪啪无遮挡十八禁网站| 国产片内射在线| 岛国在线观看网站| 久久精品aⅴ一区二区三区四区| 久久久久精品人妻al黑| 国产欧美日韩一区二区精品| 一进一出抽搐动态| 最近最新中文字幕大全电影3 | 一本色道久久久久久精品综合| 免费一级毛片在线播放高清视频 | 两性夫妻黄色片| 女人爽到高潮嗷嗷叫在线视频| av线在线观看网站| 国产午夜精品久久久久久| 久久性视频一级片| 色播在线永久视频| 日韩欧美国产一区二区入口| 人人妻人人澡人人爽人人夜夜| 国产成人一区二区三区免费视频网站| 五月天丁香电影| 一区福利在线观看| 日韩大码丰满熟妇| netflix在线观看网站| 99国产极品粉嫩在线观看| 欧美日韩亚洲综合一区二区三区_| 国产精品美女特级片免费视频播放器 | 国产麻豆69| 精品福利观看| 天天操日日干夜夜撸| √禁漫天堂资源中文www| 热re99久久精品国产66热6| 人人妻人人澡人人爽人人夜夜| 老司机福利观看| 久久久久久人人人人人| 纵有疾风起免费观看全集完整版| 黄色怎么调成土黄色| 亚洲av成人不卡在线观看播放网| 天天操日日干夜夜撸| 精品国产乱子伦一区二区三区| 日本欧美视频一区| 人成视频在线观看免费观看| 久久久精品94久久精品| 老熟妇仑乱视频hdxx| 国产精品自产拍在线观看55亚洲 | 亚洲精品粉嫩美女一区| 久久久久久亚洲精品国产蜜桃av| 亚洲自偷自拍图片 自拍| 男女午夜视频在线观看| 亚洲国产欧美一区二区综合| 久久 成人 亚洲| 97在线人人人人妻| 在线看a的网站| 亚洲精品av麻豆狂野| 极品少妇高潮喷水抽搐| 极品教师在线免费播放| 国产成人欧美在线观看 | 午夜激情久久久久久久| 久久久久久久大尺度免费视频| 大陆偷拍与自拍| 国产一区二区 视频在线| 欧美 日韩 精品 国产| 亚洲成av片中文字幕在线观看| 国产色视频综合| a级毛片黄视频| 国产精品免费一区二区三区在线 | 国产成人欧美| 久久精品人人爽人人爽视色| 亚洲第一欧美日韩一区二区三区 | 黑人操中国人逼视频| 久久精品熟女亚洲av麻豆精品| 丝袜美腿诱惑在线| 国产单亲对白刺激| 亚洲国产欧美在线一区| 亚洲va日本ⅴa欧美va伊人久久| 国产欧美日韩精品亚洲av| e午夜精品久久久久久久| 黄色怎么调成土黄色| 国产高清视频在线播放一区| 色94色欧美一区二区| 日韩中文字幕视频在线看片| 夜夜骑夜夜射夜夜干| 十八禁网站网址无遮挡| 国产一区二区在线观看av| av电影中文网址| 99在线人妻在线中文字幕 | 精品人妻熟女毛片av久久网站| 欧美人与性动交α欧美精品济南到| 亚洲中文日韩欧美视频| 欧美激情 高清一区二区三区| 亚洲人成电影免费在线| 亚洲自偷自拍图片 自拍| 久久狼人影院| 亚洲五月婷婷丁香| 日日爽夜夜爽网站| 久久天堂一区二区三区四区| 久久香蕉激情| 在线观看舔阴道视频| 国产欧美日韩精品亚洲av| 免费不卡黄色视频| 亚洲色图av天堂| 黄色视频,在线免费观看| 国产亚洲午夜精品一区二区久久| 亚洲欧美激情在线| 国产男女超爽视频在线观看| 色尼玛亚洲综合影院| 免费少妇av软件| 18在线观看网站| 亚洲av片天天在线观看| 80岁老熟妇乱子伦牲交| 国产精品成人在线| 国产精品一区二区精品视频观看| 女人久久www免费人成看片| 高清在线国产一区| 五月天丁香电影| 免费在线观看完整版高清| 色婷婷av一区二区三区视频| 精品福利观看| 香蕉丝袜av| 青青草视频在线视频观看| 久久精品熟女亚洲av麻豆精品| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲va日本ⅴa欧美va伊人久久| 美女高潮到喷水免费观看| 可以免费在线观看a视频的电影网站| 美国免费a级毛片| 国产淫语在线视频| 国产色视频综合| 欧美精品啪啪一区二区三区| 国产欧美亚洲国产| 亚洲国产欧美在线一区| 波多野结衣av一区二区av| 丝袜人妻中文字幕| 不卡av一区二区三区| 黑丝袜美女国产一区| 国产精品一区二区在线不卡| 精品一区二区三卡| 精品熟女少妇八av免费久了| 不卡av一区二区三区| 欧美老熟妇乱子伦牲交| 亚洲国产中文字幕在线视频| 久久婷婷成人综合色麻豆| 在线看a的网站| 欧美日韩国产mv在线观看视频| 另类亚洲欧美激情| 国产极品粉嫩免费观看在线| 久久久久久久国产电影| 满18在线观看网站| 国产1区2区3区精品| 欧美黄色片欧美黄色片| 一本—道久久a久久精品蜜桃钙片| 建设人人有责人人尽责人人享有的| 久久天躁狠狠躁夜夜2o2o| 久久精品国产综合久久久| 久久久欧美国产精品| www.熟女人妻精品国产| 丝瓜视频免费看黄片| 欧美日韩一级在线毛片| 又黄又粗又硬又大视频| 精品人妻熟女毛片av久久网站| av天堂久久9| tube8黄色片| 亚洲天堂av无毛| 丝袜在线中文字幕| 满18在线观看网站| 脱女人内裤的视频| 国产主播在线观看一区二区| 欧美日韩福利视频一区二区| 亚洲精品一卡2卡三卡4卡5卡| 高清视频免费观看一区二区| 91大片在线观看| 狠狠精品人妻久久久久久综合| 国产深夜福利视频在线观看| 国产欧美日韩一区二区精品| 欧美日韩黄片免| 精品熟女少妇八av免费久了| 12—13女人毛片做爰片一| 老鸭窝网址在线观看| 水蜜桃什么品种好| 国产精品av久久久久免费| 黄片播放在线免费| 巨乳人妻的诱惑在线观看| 亚洲av日韩在线播放| 757午夜福利合集在线观看| videosex国产| 99九九在线精品视频| 99国产精品免费福利视频| 亚洲国产欧美在线一区| 久久国产精品男人的天堂亚洲| 久久久精品国产亚洲av高清涩受| 欧美+亚洲+日韩+国产| 久久精品91无色码中文字幕| 丰满少妇做爰视频| 国内毛片毛片毛片毛片毛片| 久久久久久久久免费视频了| 乱人伦中国视频| 99riav亚洲国产免费| 亚洲欧美激情在线| 在线看a的网站| 美女福利国产在线| 黄片小视频在线播放| 美女扒开内裤让男人捅视频| avwww免费|