• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Signal Smoothing forAccurate Extraction of Low Signal-to-noise Ratio Cavity Ring-down Signal

    2016-06-28 14:13:23HEXingLUANYinsenDONGLizhiYANGPingXUBingTANGGuomao
    光電工程 2016年11期
    關(guān)鍵詞:中國科學(xué)院信噪比光學(xué)

    HE Xing,LUAN Yinsen,DONG Lizhi,YANG Ping,XU Bing,TANG Guomao

    (1.Institute of Optics and Electronics,Chinese Academy of Sciences,Chengdu610209,China;2.Key Laboratory on Adaptive Optics,Chinese Academy of Sciences,Chengdu610209,China;3.University of Chinese Academy of Sciences,Beijing100049,China)

    Signal Smoothing forAccurate Extraction of Low Signal-to-noise Ratio Cavity Ring-down Signal

    HE Xing1,2,3,LUAN Yinsen1,2,3,DONG Lizhi1,2,YANG Ping1,2,XU Bing1,2,TANG Guomao1,2

    (1.Institute of Optics and Electronics,Chinese Academy of Sciences,Chengdu610209,China;2.Key Laboratory on Adaptive Optics,Chinese Academy of Sciences,Chengdu610209,China;3.University of Chinese Academy of Sciences,Beijing100049,China)

    In cavity ring-down technique,a signal smoothing method based on spatial filters which have been used in digital image processing is presented for accurate cavity decay time extraction of low signal-to-noise ratio decay signal. Its smoothing procedure was derived and its smoothing efficiency was compared with other smoothing methods. Derivation showed the mean value spatial filter had the highest smoothing efficiency.The application of decay signal smoothing was also analyzed.The combination of the mean value spatial filter with the weighted least square methods was recommended when processing low signal-to-noise ratio decay signals.This method was tested in experiment and achieved almost the same results with the Levenberg-Marquardt algorithm.

    cavity ring-down;decay time extraction;signal smoothing

    0 Introduction

    The cavity ring-down(CRD)technique has been successfully used for measurement of absorption[1]and high reflectivity[2].In this technique,a ring-down cavity(RDC),one kind of passive resonator,is built first.Then a laser pulse or continuous wave controlled by optical switch element is injected,meanwhile the transmission signal behind certain cavity mirror is recorded.For there are intracavity optical losses,the transmission signal will decayexponentially after the laser pulse is injected or the continuous wave is switched off[1].The elapsed time to 1/edecay is defined as the cavity decay time,which is a measure of cavity total loss.

    Cavity total loss includes intracavity absorption,cavity mirror transmission,and diffraction,etc[2].To obtain the absorption loss or mirror reflectivity,a comparison procedure is inevitable.Take the measurement of weak absorption as an example,the total loss of RDC without detected gaseous material,the so-called empty RDC,is measured first,then the detected gaseous material is put in and the total loss of this RDC,the so-called test RDC, is measured again.In this way,the absorption of detected gaseous material,which causes the variation of RDC total loss,can be calculated.It is essential to ensure the measurement accuracy and precision of RDC loss in this procedure,therefore the accurate extraction of cavity decay time from noisy decay signal is significant.

    A number of extraction methods have been adopted in cavity decay time extraction,such as the nonlinear least square fitting(NLSF)algorithms[3-5],the weighted least square(WLS)methods[6-7],and the Fourier transform (FT)method[8-10],etc.The comparisons of them have been presented by Refs.[11-14].According to the derivations of He et al[7]and Lehmann et al[13],the extraction precision of an extraction method is inverse proportional to the signal-to-noise ratio(SNR)meanwhile the extraction bias,which is a measure of accuracy,is inverse proportional to the square of SNR.Here,SNR is defined as the ratio of signal amplitude to standard deviation value of noise.If SNR is high enough,these methods can achieve nearly the same accuracy and precision.However,if SNR decreases,these methods suffer degenerations to different degrees and the NLSF methods seem to be the most reliable one among them.Sometimes,the low amplitude decay signals,which will result in low SNR,are inevitable in CRD measurement.They may be caused by the occasional low coupling efficiency between laser source and the RDC,the finite gain of the photodetector(PD),or the relatively large loss brought by the measured object.Thus,those CRD systems such as real-time CRD that adopted these fast extraction methods such as FT method[15]are brought potential drawback.For example,if the loss brought by the measured object is large enough, the measurement accuracy of the empty RDC and the test RDC will be different.If the extraction performance of these fast methods can be improved under condition of low SNR signals,the reliability of these CRD systems can be enhanced.To solve this problem,we can try to smooth the decay signal to achieve a defacto higher SNR.The smooth procedure should be as fast as possible.There have been several smoothing methods such as the mean displaced ratio(MDR)method developed by Dyson and Isenberg[16]and the method suggested by Provencher[17]. We find both of them take a very large computation cost which is the total amount of float point calculations in signal decay signal processing.So we try to utilize another kind of signal smoothing method which is similar with spatial filtering in digital image processing(DIP)technique.

    In this paper,spatial filtering and other two methods for low SNR decay signal smoothing are analyzed and compared.By deriving their smoothing efficiency,we find that the mean value spatial filter is very proper for low SNR decay signal analysis.With spatial filtering,we further compared the extraction performance and computation cost of the WLS methods and the NLSF algorithms comprehensively,and give a guideline of method choosing under certain condition.According to these derivations,the combination of the WLS-DS method[8]and mean value spatial filter is recommended for low SNR decay signal analysis.This method was tested in an optical feedback CRD(OF-CRD)setup.

    1 Theory

    The spatial filtering in DIP technique actually corresponds to the weighted averaging of certain pixel’s neighborhood[18].The weight values constitute the filter kernel which is a matrix in DIP.For some spatial filters such as the median value filter and the maximum filter,their weight values can be regarded as specially determined to make only certain pixel to be selected out.The smoothing of decay signal can be executed in asimilar way with a vector filter kernel.

    1.1 Derivations of the Smoothing Efficiency of the Spatial Filters

    Before the analyses and comparisons of spatial filters,we first write the decay signal as a serial,that is,

    Here:Iis decay signal,τis cavity decay time,Ois instrumental offset,andεis background noise.The relationτbetween and cavity loss can be given by

    Here:δis cavity loss,cis light speed,andlis cavity length.We can see thatδis proportional to 1/τ,so its precision and accuracy can be analyzed in the same way as 1/τ.

    For a given normalized filter kernelfwith nonnegative weight values[f-L,…,f0,…,fL]in it,whereLis a measure of the filter kernel length.The filtering result of thejthdata point,written asYj,is

    Here:j=0,…,N-1;Nis the number of data points,Δtis the time interval of data acquisition,Derive the terms in the right side one by one,we can get:

    Unlike the smoothing methods presented by Ref.[16]and Ref.[17],the smoothing based on spatial filter has no sensitivity toO.On the other hand,if we assume thatεis normally distributed with standard deviation value ofes,the last term of Eq.(4)is also normally distributed but with standard deviation value of:

    Herefsis the standard deviation value of the filtered noise serial.The last equal sign is tenable only if certainfi=1.

    We rearrange the first term of the right side of Eq.(4)as:

    We can find that the amplitude of decay signal after spatial filtering will be multiplied a constant factor, which noted asAfor concision in description,that is,

    Ahas no dependence onj,so it just gives the decay signal a proportional ratio.Note that Δt/τshould be far less than one as indicated by Ref.[13],andLis not expected to be very large,soAis quite closed to 1.

    Then,the smoothing efficiency,which contains the constraining ability of noise’s standard deviation value and the computation cost,can also be calculated.The constraining ability of noise’s standard deviation value is given by Eq.(5),and the computation cost is(2·L+1)times multiplications and 2·Ltimes additions for each data point.For some special filter kernels,the computation cost can be lower.

    For comparison,the smoothing efficiencies of the MDR method and the method in Ref.[17]are also derived here.The MDR method can be equally described:

    Here:L1is the number of the data points for smoothing calculation.The method presented by Ref.[17]is shown as:

    Here,L2is also the number of the data points for smoothing calculation.

    We can compare the smoothing efficiency of these methods in Fig.1.From Eq.(9)we can know that the mean value spatial filter,whose weight values are all 1/(2·L+1),has the highest smoothing ability for a givenL,so we choose the mean value spatial filter in this comparison.

    Fig.1(Color online)Comparison of smoothing efficiency of these methods

    It should be noticed that for the spatial filter,the first green square means the corresponding filter lengthLis 1(number of data points for filtering is 3),the second one meansLis 2(number of data points for filtering is 5), and the like.Besides,the smoothing efficiency of MDR or the method in Ref.[17]has a dependence onjwhich is set to 1 here.We can see that the spatial filter has the highest smoothing efficiency among these methods,which means it will take the lowest computation cost to achieve certain smoothing level.

    1.2 TheApplications of the Spatial Filters

    In actual application,we found several noticeable details which make us analyzed the spatial filters further to find some guidelines to their utilizations.

    At first we noticed that the improvement on cavity decay time extraction was not as large as the theory indicates(we choose the theoretical derivations by Lehmann[13]as the theory guideline).Taking the following simulation as an example,whereI0=0.2,σε=0.01(the SNR was 20),τ=1.2 μs,O=0.02,Δt=12.5 ns,andN= 5000.We used the NLSF algorithm and the WLS-DS method(withk=0.03 andb=1′10-4)to fit the cavity decay time.For the SNR was relatively low,we applied the mean value spatial filters withL=5 to smooth the decay signals.The statistical results of ten thousand simulated decay signals were presented in Table 1.

    Table 1The comparison of extraction performance whenL=5

    The mean value spatial filter withL=5 can decreaseto the one-eleventh of itself,so the accuracy should be improved by 11 times meanwhile the precision will improve about 3 times[7,13].We could see that improvement on accuracy was basically as expected;however,the precision had almost no change.However,if we changedσεto be 0.003 3,the result of the WLS-DS method would be(1.193±0.007)μs without spatial filtering.Based on these results,we could conclude that the derivations in Refs.[7,13]are correct;however,the extraction precision cannot be improved as expected.We attribute this problem to the correlation of the noise after spatial filtering.

    After spatial filtering,one data point will correlate with 2·Lneighboring data points,i.e.,only two data points with an interval of at least(2·L+1)are statistically independent.One may think that the precision can be improved by just fitting the data points with interval of(2·L+1).In fact,it is an illusion because the change of data point interval corresponds to the change ofΔt,and the precisions of the WLS-DS method and the FT methods depend onΔt[7,13],too.If we choose the data points with interval of(2·L+1)for extraction,the data acquisition interval will be(2·L+1)·Δtmeanwhile the lowestσfis only(2·L+1)-1/2·σε.For the WLS-DS method,its extraction precision is proportional to[7],which means we can only achieve the same precision in this way.For the FT method whose precision is proportional toDt×es[13],the precision even degenerates after this processing.

    Therefore,a conclusion can be made that the spatial filter has no improvement on extraction precision of neither the WLS-DS method nor the FT methods.However,with the help of spatial filter the WLS-DS method can achieve nearly the same precision and comparable accuracy with the NLSF algorithms.The comprehensive comparisons of the NLSF algorithms and the WLS-DS method with spatial filter are given in Table 2,where the computation cost is essential for these methods.If those methods with spatial filters are slower than the NLSF algorithms,there is no need to apply the spatial filters at all.Here,the derivation results are all based on 1/τ.

    Table 2The comprehensive comparisons of the NLSF and the WLS-DS methods

    There are several details should be supplemented for Table 2.The first one is that in the column of NLSF,the derivations of precision and accuracy are cited from Ref.[13].Ncyclemeans the number of iterations of the NLSF methods.In this simulation the iterations stopped whenNcycle=2,but we found that the fitting results ofNcycle=1 andNcycle=2 were quite close,so we thoughtNcycle=1 is enough in fact.Besides,6Ncalculation per iteration cycle is the fastest speed of the NLSF methods[13].In the column of WLS-DS,the expression of precision and accuracy are cited from Ref.[7]and Ref.[13].Kis the number of data points for fitting which is equal toNfor the common WLS method,but is less thanNfor the WLS-DS method(for example,Kin the former simulation was about 550, just 0.11N).In addition,if we adopt mean value spatial filter,the multiplication ofIi·fican be saved so the computation cost will be 2Ladditions and one division.

    We also consider the effect of spatial filtering on data processing bandwidth.In the column of WLS-DS,we can find the fitting performances are related to ΔtandσfHere,Δtis related to bandwidth andσfis related to spatial filtering.These two parameters are independent from each other,so spatial filtering has effect on data processing bandwidth.

    Based on Table 1 and Eq.(6),we can choose the more proper method by comparing their extraction performances and computation cost together.Taking the former simulation as an example,the WLS-DS method could achieve nearly the same precision with the NLSF algorithm and fine accuracy after spatial filtering withL=5. Under this condition its computation cost was about 3.4Nwhich was lower than an iteration cycle of the NLSF method.Even we setLto nine,its computation was only about 4.3N.Therefore,we recommend the combination of the WLS-DS method and the mean value spatial filter to extract cavity decay time in low SNR cases.

    2 Experiment

    An OF-CRD setup was constructed as Fig.2 to test the effect of spatial filter in low SNR cases.In Fig.2,the solid line corresponds to the light path,and the dot line corresponds to the signal path.The V-shaped RDC is denoted by the bold solid lines.

    The laser source is a CW F-P laser(Power Technologies,IQ1A07,1 060 nm).A square wave generator(Spectrum,M2i.6021)is used as the optical switch element whose modulation frequency is 100 Hz.A variable attenuator noted asAis adopted to vary the intensity of retro-reflected light from RDC.The V-shaped RDC is constructed by two plano-concave mirrors(M1,M2)and one plane mirror(M3).All of the cavity mirrors are coated with high reflectivity films.The curvature radiuses ofM1andM2are both 1 m.The transmission light of RDC is focused on photodetector(PD,Thorlabs,PDA400)by the lensL1.Then the data is acquired from PD by a data acquisition(DAQ)card(Spectrum,M2i.3010,80 MHz).The attenuator,lensL1,and the PD are all slightly tilted to avoid the retro-reflected light because the feedback light may affect the spectral characteristics of the semiconductor laser source[19-20].Here,a He-Ne laser and two plane mirrors are adopted to align this setup.

    Fig.2(Color online)Schematic diagram of our experimental OF-CRD setup

    A groups of decay signals with SNR was about 42 was analyzed.There were 80 decay signals which contained 4 000 data points each.In this experimentsεwas 0.004 V andτwas about 2.2 μs.We first compared the WLS-DS method with NLSF algorithm by simulation under this SNR condition.They both need an initial guess value ofτ,which we set to 2.2 μs here.Fitting results were(2.172±0.011)μs for the WLS-DS method(withk=0.03 andb=1·10-4)and(2.200±0.011)μs for NLSF algorithm.There would be 1.27%bias for the WLS-DS method.We used the mean value spatial filter withL=2~6 to smooth the decay signals in turn.The data processing results were shown in Table 3 and Fig.3.

    Table 3The fitting results of the experimental decay signalsμs

    Fig.3(Color online)Fitting results of experimental decay signals

    The fitting result of NLSF algorithm was(2.240±0.066)μs,the result of the WLS-DS method with spatial filter(L=3)was(2.240±0.068)μs,while the result of the WLS-DS method along was(2.207±0.069)μs(1.47% bias compared to the NLSF algorithm).When filter length was 2,the result was(2.239±0.068)μs,whereas the spatial filter with length of 4~6 all given the result of(2.241±0.068)μs.We can see the improvement on fitting accuracy was just as expected.There were two possibly reasonable results that were 2.240 μs and 2.241 μs.Nomatter which result was chosen as the standard,all the relative biases were decreased from 1.47%to less than 0.1%after mean value spatial filtering.Meanwhile the precision was same to the NLSF algorithm.

    Then we analyzed the computation cost of these methods.We noticed that the iteration of NLSF algorithm stopped after 3 cycles,but actually 2 cycles were enough.This result was one more cycle than the simulation case in former section,which may because the considerable initial guess error ofτ(2.2 μs to 2.24 μs).With such an initial guess error,we can see the fitting result of the WLS-DS method was still reliable.Another detail was that mean value ofKwas 689.3 andNwas 4 000 in this experiment.Ref.[7]had indicated that float point calculations of WLS-DS method is no more than 20K,so the computation costs were 20·689.3=13 786 for the WLS-DS method and 4 000′6′2=48 000 for the NLSF algorithm.The computation cost of the WLS-DS method was much lower than the NLSF algorithm.

    Then,we tested this smoothing method again by analyzing two groups of decay signals with different SNRs. In this experimentτwas about 1.5 μs.We used mean value spatial filter withL=3 to preprocess the decay signals. The results were shown in Table 4.

    We could conclude from this table that the smoothing of mean value spatial filter is quite helpful for fast and accurate processing of low SNR decay signals.

    Table 4The fitting results of the experimental decay signalsμs

    3 Conclusion

    This paper presents a cavity decay time extraction method,which combines the WLS-DS method with spatial filters,for fast and accurate analysis of low SNR decay signal.At first,the smoothing procedure of spatial filter is derived in detail and compared with other methods.In this way,we found that the mean value spatial filter has the highest smoothing efficiency.Then,we found the extraction accuracy was obviously improved after spatial filtering;however,the extraction precision just improved a little because for the correlation between neighboring noise points brought by the spatial filtering.This meant that the WLS-DS method,combined with spatial filters, can achieve nearly the same result with the NLSF methods at most.Now that the extraction performances are almost definite under certain condition,the computation cost was taken into consideration.After derivation and comparison,we believe the mean value spatial filter together with the WLS-DS method can be a fine extraction method when coping with low SNR decay signals.

    For the spatial filter do not affect the exponential nature of decay signal,it can be used to the exponential analysis field which contains multi-exponential decays,too.

    [1]O’Keefe A,Deacon D A G.Cavity ringdown optical spectrometer for absorption measurements using pulsed laser sources[J]. Review of Scientific Instruments(S1089-7623),1988,59:2544-2551.

    [2]Anderson D Z,F(xiàn)risch J C,Masser C S.Mirror reflectometer based on optical cavity decay time[J].Applied Optics (S1559-128X),1984,23(8):1238-1245.

    [3]Naus H,Stokkum I H M van,Hogervorst W,et al.Quantitative analysis of decay transients applied to a multimode pulsed cavity ringdown experiment[J].Applied Optics(S1559-128X),2001,40:4416-4426.

    [4]Lerber T von,Sigrist M W.Time constant extraction from noisy cavity ring-down signals[J].Chemical Physics Letter(S0009-2614),2002,353:131-137.

    [5]HUANG H F,Lehmann Kevin K.Sensitive limit of rapidly swept continuous wave cavity ring-down spectroscopy[J].TheJournal of Physical ChemistryA(S1089-5639),2011,115:9411-9421.

    [6]Romanini D,Lehmann K K.Ring-down cavity absorption spectroscopy of the very weak HCN overtone bands with six,seven,and eight stretching quanta[J].The Journal of Chemical Physics(S0021-9606),1993,99:6287-6301.

    [7]HE Xing,YAN Hu,DONG Lizhi,et al.Data point selection for weighted least square fitting of cavity decay time constant[J]. Chinese Physics B(S1674-1056),2016,25(1):014211.

    [8]Mazurenka M,Wada R,Shillings A J L,et al.Fast Fourier transform analysis in cavity ring-down spectroscopy:application to an optical detector for atmospheric NO2[J].Applied Physics B(S0946-2171),2005,81:135-141.

    [9]Everest M A,Atkinson D B.Discrete sums for the rapid determination of exponential decay constants[J].Review of Scientific Instruments(S1089-7623),2008,79:023108-1.

    [10]Boyson T K,Spence T G,Calzada M F,et al.Frequency domain analysis for laser-locked cavity ringdown spectroscopy[J]. Optics Express(S1094-4087),2011,19(9):8092-8101.

    [11]Istratov AA,Vyvenko O F.Exponential analysis in physical phenomena[J].Review of Scientific Instruments(S1089-7623),1999,70:1233-1257.

    [12]Fuhrmann N,Brühach J,Dreizler A.On the mono-exponential fitting of phosphorescence decays[J].Applied Physics B (S0946-2171),2014,116:359-369.

    [13]Lehmann Kevin K,HUANG Haifeng.Optimal signal processing in cavity ring-down spectroscopy[M].Elvevier,2009:623-658.

    [14]王丹,胡仁志,謝品華,等.腔衰蕩光譜技術(shù)中衰蕩時間的準確快速提取[J].光譜學(xué)與光譜分析,2014,34(10):2845-2850. WANG Dan,HU Renzhi,XIE Pinghua,et al.Fast and accurate extraction of ring-down time in cavity ring-down spectroscopy [J].Spectroscopy and SpectralAnalysis,2014,34(10):2845-2850.

    [15]Spence T G,Calzada M E,Gardner H M,et al.Real-time FPGA data collection of pulsed laser cavity ringdown signals[J]. Optics Express(S1094-4087),2012,20(8):8804-8814.

    [16]Dyson R D,Isenberg I.Analysis of exponential curves by a method of moments,with special attention to sedimentation equilibrium and fluorescence decay[J].Biochemistry(S0006-2960),1971,10:3233-3241.

    [17]Provencher S W.An eigenfunction expansion method for the analysis of exponential decay curves[J].The Journal of Chemical Physics(S0021-9606),1976,64:2772-2777.

    [18]Gonzalez R C,Woods R E.Digital Image Processing:Third Edition[M].Beijing:Publishing House of Electronics Industry,2010:167-168.

    [19]Morville J,Romanini D.Sensitive birefringence measurement in a high-finesse resonator using diode laser optical self-locking [J].Applied Physics B(S0946-2171),2002,74:495-509.

    [22]GONG Yuan,LI Bincheng,HAN Yanling.Optical feedback cavity ring-down technique for accurate measurement of ultra-high reflectivity[J].Applied Physics B(S0946-2171),2008,93:355-360.

    1003-501X(2016)11-0046-08

    精確提取低信噪比光腔衰蕩信號的信號平滑

    何 星1,2,3,欒銀森1,2,3,董理治1,2,楊 平1,2,許 冰1,2,湯國茂1,2
    (1.中國科學(xué)院光電技術(shù)研究所,成都610209;2.中國科學(xué)院自適應(yīng)光學(xué)國家重點實驗室,成都610209;3.中國科學(xué)院大學(xué),北京100049)

    提出一種用于低信噪比光腔衰蕩時間準確提取的信號平滑方法,該方法基于數(shù)字圖像處理領(lǐng)域的空間濾波平滑技術(shù)。首先推導(dǎo)了這種平滑方法的平滑過程和平滑效率,并與其他平滑算法進行了對比。推導(dǎo)結(jié)果表明基于均值濾波算子的空間濾波平滑方法具有最高的平滑效率。其次,分析了信號平滑方法的實用效果,結(jié)果發(fā)現(xiàn)該平滑方法與加權(quán)線性最小二乘算法相結(jié)合能夠?qū)崿F(xiàn)高精度、快速同時準確度較好的光腔衰蕩時間提取。最后結(jié)合實驗數(shù)據(jù)檢驗了平滑方法的處理效果,取得了列文伯格-馬夸爾特算法相一致的衰蕩時間提取結(jié)果。

    光腔衰蕩技術(shù);衰蕩時間提取;信號平滑

    2016-03-14;

    2016-04-26

    四川省杰出青年基金資助項目(2012JQ0012);國家重點科研裝備開發(fā)項目資助(ZDYZ2013-2)

    何星(1989-),男(漢族),河北石家莊人。博士研究生,主要研究工作是光學(xué)檢測。E-mail:hexingjiayou@126.com。

    許冰(1960-),男(漢族),浙江天臺人。研究員,主要研究工作是自適應(yīng)光學(xué)技術(shù)。E-mail:bing_xu_ioe@163.com。

    TP391

    A

    10.3969/j.issn.1003-501X.2016.11.008

    猜你喜歡
    中國科學(xué)院信噪比光學(xué)
    《中國科學(xué)院院刊》新媒體
    中國科學(xué)院院士
    ——李振聲
    滑輪組的裝配
    光學(xué)常見考題逐個擊破
    祝賀戴永久編委當選中國科學(xué)院院
    基于深度學(xué)習的無人機數(shù)據(jù)鏈信噪比估計算法
    低信噪比下LFMCW信號調(diào)頻參數(shù)估計
    電子測試(2018年11期)2018-06-26 05:56:02
    低信噪比下基于Hough變換的前視陣列SAR稀疏三維成像
    《中國科學(xué)院院刊》創(chuàng)刊30周年
    保持信噪比的相位分解反褶積方法研究
    ponron亚洲| 能在线免费看毛片的网站| 全区人妻精品视频| 中文字幕av在线有码专区| 久久久精品大字幕| 免费看光身美女| a级毛色黄片| 国产精品嫩草影院av在线观看| 亚洲高清免费不卡视频| 嫩草影院新地址| av在线播放精品| 国产精品爽爽va在线观看网站| 亚洲av.av天堂| 精品国产三级普通话版| 日韩欧美精品v在线| 国产高潮美女av| 国产精品久久久久久久电影| 三级男女做爰猛烈吃奶摸视频| 内射极品少妇av片p| 欧美日本视频| 小蜜桃在线观看免费完整版高清| 国产色爽女视频免费观看| 中文字幕久久专区| 中文在线观看免费www的网站| 国产高清三级在线| 国产又黄又爽又无遮挡在线| 国产在视频线在精品| 国产乱人偷精品视频| 高清毛片免费看| 精品久久久久久成人av| 亚洲不卡免费看| 亚洲国产精品久久男人天堂| 国产91av在线免费观看| 久热久热在线精品观看| 国产黄色视频一区二区在线观看 | 啦啦啦啦在线视频资源| 日韩 亚洲 欧美在线| 久久久国产成人免费| 亚洲国产色片| 水蜜桃什么品种好| av女优亚洲男人天堂| 日韩 亚洲 欧美在线| 国产美女午夜福利| 午夜激情福利司机影院| 欧美色视频一区免费| 国产成人aa在线观看| 国产美女午夜福利| 国产精品一二三区在线看| 美女高潮的动态| 日本黄色片子视频| 国产亚洲一区二区精品| 久久久国产成人精品二区| 久久久久网色| 狂野欧美白嫩少妇大欣赏| 中文字幕亚洲精品专区| 亚洲久久久久久中文字幕| 欧美极品一区二区三区四区| 亚洲国产成人一精品久久久| 别揉我奶头 嗯啊视频| 乱码一卡2卡4卡精品| 丝袜喷水一区| 亚洲三级黄色毛片| 啦啦啦韩国在线观看视频| 国产精品人妻久久久久久| 午夜免费男女啪啪视频观看| 中文字幕av在线有码专区| kizo精华| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲欧美日韩东京热| 精品酒店卫生间| 免费观看在线日韩| 中文天堂在线官网| 大话2 男鬼变身卡| 22中文网久久字幕| 日韩av在线免费看完整版不卡| 亚洲精品乱码久久久久久按摩| 少妇人妻一区二区三区视频| 欧美日韩精品成人综合77777| 精品国产三级普通话版| 在线免费观看的www视频| 久久精品影院6| 国产精品爽爽va在线观看网站| 在线观看美女被高潮喷水网站| 一区二区三区四区激情视频| 午夜福利在线观看吧| 国产精品嫩草影院av在线观看| 一级黄片播放器| 成人二区视频| 亚洲国产精品久久男人天堂| 啦啦啦观看免费观看视频高清| 中文字幕av在线有码专区| 少妇高潮的动态图| 伦理电影大哥的女人| 欧美最新免费一区二区三区| 国语自产精品视频在线第100页| 看十八女毛片水多多多| 欧美日本视频| 看片在线看免费视频| 波多野结衣巨乳人妻| 尾随美女入室| 亚洲av二区三区四区| 国产一级毛片七仙女欲春2| 又粗又爽又猛毛片免费看| av国产免费在线观看| 日本-黄色视频高清免费观看| 精品国产一区二区三区久久久樱花 | 夫妻性生交免费视频一级片| videos熟女内射| 国产成人aa在线观看| 三级毛片av免费| 18禁动态无遮挡网站| 日本一本二区三区精品| 精品久久久久久久人妻蜜臀av| 日韩,欧美,国产一区二区三区 | 日本av手机在线免费观看| 一个人观看的视频www高清免费观看| 2021少妇久久久久久久久久久| 亚洲成人久久爱视频| 欧美极品一区二区三区四区| 真实男女啪啪啪动态图| 欧美又色又爽又黄视频| 亚洲精品亚洲一区二区| 91精品一卡2卡3卡4卡| 免费av毛片视频| 欧美日韩一区二区视频在线观看视频在线 | 亚洲av成人精品一区久久| 日韩在线高清观看一区二区三区| 在线观看av片永久免费下载| 午夜激情欧美在线| 久久精品国产99精品国产亚洲性色| 欧美另类亚洲清纯唯美| 十八禁国产超污无遮挡网站| 亚洲av中文字字幕乱码综合| 岛国毛片在线播放| 国语自产精品视频在线第100页| 永久免费av网站大全| 久久国产乱子免费精品| 日韩制服骚丝袜av| 激情 狠狠 欧美| 毛片女人毛片| a级毛色黄片| 蜜桃久久精品国产亚洲av| 五月玫瑰六月丁香| 激情 狠狠 欧美| 最后的刺客免费高清国语| 午夜激情欧美在线| 欧美成人免费av一区二区三区| 高清在线视频一区二区三区 | 身体一侧抽搐| 日日啪夜夜撸| 国产精品av视频在线免费观看| 亚洲内射少妇av| 岛国在线免费视频观看| 亚洲最大成人手机在线| 国产美女午夜福利| 精品久久久久久久久久久久久| 国产成人午夜福利电影在线观看| 日本色播在线视频| 一级黄片播放器| 欧美高清性xxxxhd video| 久久久久久久亚洲中文字幕| 国产午夜精品一二区理论片| 成人高潮视频无遮挡免费网站| 永久网站在线| 欧美日韩在线观看h| 国产高清视频在线观看网站| 日韩强制内射视频| 亚洲国产最新在线播放| 韩国av在线不卡| 久久久精品大字幕| 日韩,欧美,国产一区二区三区 | 亚洲精品影视一区二区三区av| 精品无人区乱码1区二区| 国产av一区在线观看免费| 国产一级毛片在线| av在线播放精品| 国产中年淑女户外野战色| 亚洲精品乱码久久久v下载方式| 黄色欧美视频在线观看| 久久鲁丝午夜福利片| 成人毛片60女人毛片免费| 菩萨蛮人人尽说江南好唐韦庄 | 久久精品久久精品一区二区三区| 男人的好看免费观看在线视频| 欧美另类亚洲清纯唯美| a级毛色黄片| 国产精品电影一区二区三区| 免费av不卡在线播放| 国产午夜精品久久久久久一区二区三区| 在线播放国产精品三级| 国产精品久久久久久精品电影小说 | 丰满人妻一区二区三区视频av| 久久精品久久久久久噜噜老黄 | 精品久久久久久成人av| 国产午夜精品一二区理论片| 国产毛片a区久久久久| 麻豆久久精品国产亚洲av| 黄片无遮挡物在线观看| 欧美精品国产亚洲| 18禁在线无遮挡免费观看视频| 99热这里只有是精品在线观看| 大又大粗又爽又黄少妇毛片口| av福利片在线观看| 国产三级在线视频| 亚洲自偷自拍三级| 成人无遮挡网站| 蜜桃亚洲精品一区二区三区| 亚洲丝袜综合中文字幕| 一个人看的www免费观看视频| 日韩精品青青久久久久久| 久久久久久伊人网av| 观看美女的网站| 国产片特级美女逼逼视频| 国产午夜福利久久久久久| 日日摸夜夜添夜夜爱| 国产黄色视频一区二区在线观看 | 亚洲乱码一区二区免费版| 国产精品一及| 校园人妻丝袜中文字幕| 麻豆成人午夜福利视频| 真实男女啪啪啪动态图| h日本视频在线播放| 看非洲黑人一级黄片| 青青草视频在线视频观看| 亚洲四区av| videos熟女内射| 人体艺术视频欧美日本| 日韩精品有码人妻一区| 99九九线精品视频在线观看视频| 久久精品夜色国产| 国产淫语在线视频| 亚洲av二区三区四区| 国产午夜精品久久久久久一区二区三区| 有码 亚洲区| 日韩亚洲欧美综合| 成人亚洲精品av一区二区| 色5月婷婷丁香| 成人毛片a级毛片在线播放| 99热网站在线观看| 一级毛片久久久久久久久女| 男插女下体视频免费在线播放| 少妇裸体淫交视频免费看高清| 一边摸一边抽搐一进一小说| 欧美成人精品欧美一级黄| 成人午夜精彩视频在线观看| 精品少妇黑人巨大在线播放 | 免费观看a级毛片全部| 国产一区二区在线av高清观看| 一级黄色大片毛片| 免费观看a级毛片全部| 国产高清国产精品国产三级 | 大香蕉97超碰在线| av在线老鸭窝| 精品酒店卫生间| 26uuu在线亚洲综合色| 一区二区三区四区激情视频| 欧美丝袜亚洲另类| 精品久久久噜噜| 国产精品一区二区在线观看99 | 成人高潮视频无遮挡免费网站| 2021天堂中文幕一二区在线观| 91久久精品国产一区二区三区| 99热全是精品| 久久久欧美国产精品| 中文天堂在线官网| 亚洲内射少妇av| 最近的中文字幕免费完整| 国产激情偷乱视频一区二区| 午夜福利网站1000一区二区三区| 国产精品一区二区三区四区久久| 色播亚洲综合网| 免费黄网站久久成人精品| www.av在线官网国产| 少妇被粗大猛烈的视频| 日本爱情动作片www.在线观看| 国产一级毛片在线| 色综合色国产| 免费观看a级毛片全部| 噜噜噜噜噜久久久久久91| 三级毛片av免费| 91精品一卡2卡3卡4卡| 国产午夜精品久久久久久一区二区三区| 亚洲av一区综合| 亚洲人成网站在线播| 欧美日本视频| 国产亚洲5aaaaa淫片| 视频中文字幕在线观看| 亚洲国产成人一精品久久久| www.av在线官网国产| 日韩精品有码人妻一区| 丝袜美腿在线中文| 中文字幕制服av| 网址你懂的国产日韩在线| 国产一区二区在线观看日韩| 亚洲一区高清亚洲精品| 丝袜喷水一区| 国产精品一区二区性色av| 亚洲国产欧洲综合997久久,| 六月丁香七月| 国产在线一区二区三区精 | 亚洲自拍偷在线| 岛国在线免费视频观看| 中文字幕亚洲精品专区| 夫妻性生交免费视频一级片| 3wmmmm亚洲av在线观看| 色播亚洲综合网| 在线播放国产精品三级| 精品熟女少妇av免费看| 久久久久久久久久黄片| 国产真实乱freesex| 国产亚洲精品av在线| 久久99蜜桃精品久久| 久久韩国三级中文字幕| 亚洲国产精品久久男人天堂| 国产老妇女一区| 亚洲av成人av| 国产人妻一区二区三区在| 日韩成人伦理影院| 亚洲精品成人久久久久久| 国产黄片视频在线免费观看| 日韩欧美国产在线观看| or卡值多少钱| 精品人妻熟女av久视频| 久久久欧美国产精品| 日日啪夜夜撸| 狠狠狠狠99中文字幕| 日本三级黄在线观看| 黄色日韩在线| 亚洲av男天堂| 老司机影院成人| 欧美变态另类bdsm刘玥| 哪个播放器可以免费观看大片| 日韩强制内射视频| 国产单亲对白刺激| 插逼视频在线观看| 久久久精品94久久精品| 欧美丝袜亚洲另类| 国产成人freesex在线| eeuss影院久久| 春色校园在线视频观看| 最近最新中文字幕大全电影3| 中文天堂在线官网| 视频中文字幕在线观看| 亚洲精品一区蜜桃| 午夜福利网站1000一区二区三区| 观看美女的网站| 一级爰片在线观看| ponron亚洲| 欧美激情在线99| 亚洲av不卡在线观看| av福利片在线观看| 国产亚洲午夜精品一区二区久久 | 少妇人妻一区二区三区视频| 欧美成人a在线观看| 又黄又爽又刺激的免费视频.| 国产av在哪里看| 一区二区三区乱码不卡18| 可以在线观看毛片的网站| 日韩中字成人| 国产精华一区二区三区| 久久精品熟女亚洲av麻豆精品 | 成年版毛片免费区| 国产成年人精品一区二区| 免费黄色在线免费观看| 九草在线视频观看| 亚洲av.av天堂| 老司机影院成人| 欧美人与善性xxx| 亚洲av.av天堂| 少妇人妻精品综合一区二区| 免费看光身美女| 国产成年人精品一区二区| 少妇熟女欧美另类| 黄色日韩在线| 久久久精品94久久精品| 高清毛片免费看| 在线观看av片永久免费下载| 91在线精品国自产拍蜜月| 黄色欧美视频在线观看| 国产极品天堂在线| 国模一区二区三区四区视频| 国产成人a区在线观看| 亚洲乱码一区二区免费版| 久久99精品国语久久久| 岛国在线免费视频观看| 国产探花在线观看一区二区| 日本与韩国留学比较| 国产亚洲精品久久久com| 国产免费男女视频| 爱豆传媒免费全集在线观看| 在线免费观看不下载黄p国产| 岛国毛片在线播放| 又粗又硬又长又爽又黄的视频| 极品教师在线视频| 亚洲电影在线观看av| 免费观看性生交大片5| 欧美潮喷喷水| 久久久久精品久久久久真实原创| 能在线免费观看的黄片| 一个人看视频在线观看www免费| av又黄又爽大尺度在线免费看 | 国产欧美日韩精品一区二区| 久久久久精品久久久久真实原创| 国产成人aa在线观看| 大香蕉久久网| 国产精品爽爽va在线观看网站| 国产又黄又爽又无遮挡在线| 亚洲国产精品sss在线观看| 国语对白做爰xxxⅹ性视频网站| 亚洲性久久影院| 美女国产视频在线观看| 男人和女人高潮做爰伦理| 久久久久久久久久成人| 亚洲国产欧美在线一区| 麻豆av噜噜一区二区三区| 全区人妻精品视频| 我要搜黄色片| 国产欧美日韩精品一区二区| 色综合亚洲欧美另类图片| 99在线视频只有这里精品首页| 国产午夜精品论理片| av免费在线看不卡| 中文字幕精品亚洲无线码一区| 亚洲在久久综合| 国产精品一区二区三区四区久久| 亚洲国产成人一精品久久久| 神马国产精品三级电影在线观看| 国产亚洲av嫩草精品影院| 亚洲在久久综合| 亚洲内射少妇av| 久久精品国产亚洲av天美| 男女国产视频网站| 亚洲图色成人| 只有这里有精品99| 毛片女人毛片| 欧美激情久久久久久爽电影| 男女国产视频网站| 精品酒店卫生间| 成人午夜高清在线视频| 久久久久久久国产电影| 少妇高潮的动态图| 国产精品三级大全| 国产在视频线在精品| 久久国产乱子免费精品| 麻豆成人午夜福利视频| 大香蕉久久网| 乱人视频在线观看| 夜夜爽夜夜爽视频| 菩萨蛮人人尽说江南好唐韦庄 | av在线老鸭窝| 26uuu在线亚洲综合色| 日韩一区二区三区影片| 国产成人精品久久久久久| 六月丁香七月| 国产精品99久久久久久久久| 久久人人爽人人爽人人片va| 天堂影院成人在线观看| 少妇人妻一区二区三区视频| 精品人妻熟女av久视频| 插逼视频在线观看| 99久国产av精品国产电影| 成人亚洲精品av一区二区| 国内少妇人妻偷人精品xxx网站| 久久久久九九精品影院| 岛国毛片在线播放| 深爱激情五月婷婷| 国产激情偷乱视频一区二区| 亚洲av福利一区| 久久久久久久久久久丰满| 久久99精品国语久久久| 亚洲欧美中文字幕日韩二区| 九草在线视频观看| 久久综合国产亚洲精品| 青春草视频在线免费观看| 亚洲综合色惰| 亚洲av不卡在线观看| 只有这里有精品99| 热99re8久久精品国产| 三级国产精品欧美在线观看| 一区二区三区乱码不卡18| 国产白丝娇喘喷水9色精品| 在线观看美女被高潮喷水网站| 日韩欧美在线乱码| 亚州av有码| 内地一区二区视频在线| 亚洲成人精品中文字幕电影| 国产美女午夜福利| 三级国产精品欧美在线观看| 最后的刺客免费高清国语| 国产白丝娇喘喷水9色精品| 久久99热这里只频精品6学生 | 亚洲精品日韩av片在线观看| 日韩一区二区三区影片| 国内少妇人妻偷人精品xxx网站| 大香蕉97超碰在线| 美女脱内裤让男人舔精品视频| 欧美成人a在线观看| 国产成人freesex在线| 日韩成人av中文字幕在线观看| 亚洲无线观看免费| 乱人视频在线观看| 精品久久久久久久人妻蜜臀av| 欧美精品国产亚洲| 午夜精品一区二区三区免费看| 亚州av有码| 十八禁国产超污无遮挡网站| 日本wwww免费看| 中文字幕免费在线视频6| 男人舔奶头视频| 好男人在线观看高清免费视频| 在线观看66精品国产| 性插视频无遮挡在线免费观看| 欧美日韩国产亚洲二区| 国产亚洲最大av| 国产午夜精品一二区理论片| 舔av片在线| 亚洲精华国产精华液的使用体验| 成年女人永久免费观看视频| 黄色欧美视频在线观看| 国产精品一区二区三区四区久久| 老师上课跳d突然被开到最大视频| 亚洲综合色惰| 精品人妻一区二区三区麻豆| 热99在线观看视频| 亚洲久久久久久中文字幕| 欧美日韩精品成人综合77777| 特大巨黑吊av在线直播| 日韩欧美精品v在线| 国产单亲对白刺激| 亚洲精品成人久久久久久| 欧美极品一区二区三区四区| 少妇被粗大猛烈的视频| 亚洲人成网站在线播| 热99在线观看视频| 又爽又黄a免费视频| 97超视频在线观看视频| 精品久久久久久久久久久久久| 美女国产视频在线观看| 99久久成人亚洲精品观看| 国产成人免费观看mmmm| 国产高清三级在线| 精品午夜福利在线看| 国产免费又黄又爽又色| 国产国拍精品亚洲av在线观看| 啦啦啦观看免费观看视频高清| 国产成年人精品一区二区| 黄色欧美视频在线观看| 九色成人免费人妻av| 少妇的逼水好多| 舔av片在线| 日韩国内少妇激情av| 国产高清有码在线观看视频| 国产午夜精品论理片| 超碰av人人做人人爽久久| 精品少妇黑人巨大在线播放 | 91精品一卡2卡3卡4卡| 免费看美女性在线毛片视频| 日本熟妇午夜| 日日干狠狠操夜夜爽| 国产黄片美女视频| 欧美xxxx黑人xx丫x性爽| 亚洲国产高清在线一区二区三| 在现免费观看毛片| 国产精品综合久久久久久久免费| 能在线免费观看的黄片| 午夜福利在线在线| 久久久国产成人精品二区| 哪个播放器可以免费观看大片| 久久久久久久久久成人| 嫩草影院精品99| 免费看光身美女| 亚洲五月天丁香| 国产老妇女一区| 好男人在线观看高清免费视频| 中文字幕av成人在线电影| a级毛色黄片| www日本黄色视频网| 国产精品久久电影中文字幕| 久久精品夜夜夜夜夜久久蜜豆| 国产又黄又爽又无遮挡在线| 高清av免费在线| 91精品一卡2卡3卡4卡| 观看美女的网站| 免费无遮挡裸体视频| 亚洲精品国产av成人精品| 国产精品一区二区性色av| 国产中年淑女户外野战色| 精品人妻视频免费看| 欧美成人午夜免费资源| 五月玫瑰六月丁香| 人人妻人人看人人澡| 在线观看美女被高潮喷水网站| 国产精品一区二区三区四区免费观看| 亚洲va在线va天堂va国产| 永久免费av网站大全| 久久精品夜色国产| 国产真实伦视频高清在线观看| 亚洲美女搞黄在线观看| 日韩三级伦理在线观看| 久久精品熟女亚洲av麻豆精品 | 日韩精品有码人妻一区| 国产又黄又爽又无遮挡在线| 九色成人免费人妻av| 伦精品一区二区三区| 性插视频无遮挡在线免费观看| 精品熟女少妇av免费看| 少妇人妻精品综合一区二区| 成人三级黄色视频| 老师上课跳d突然被开到最大视频| 亚洲内射少妇av| 色5月婷婷丁香| 免费搜索国产男女视频| 日本-黄色视频高清免费观看| 一级黄片播放器| 久久精品夜夜夜夜夜久久蜜豆|