任小春 李玉龍 武圣儒 雷新宇 郭 偉 黨燕娜 龔月生 楊小軍
(西北農(nóng)林科技大學(xué)動物科技學(xué)院,楊凌 712100)
黃芪多糖對種公雞不同組織miR-16表達(dá)的影響及其功能預(yù)測分析
任小春李玉龍武圣儒雷新宇郭偉黨燕娜龔月生*楊小軍*
(西北農(nóng)林科技大學(xué)動物科技學(xué)院,楊凌 712100)
摘要:本試驗(yàn)研究黃芪多糖(APS)對種公雞不同組織中miR-16表達(dá)的影響,結(jié)合miR-16預(yù)測靶基因的GO和KEGG功能富集性分析,旨在探討APS對不同組織功能的潛在調(diào)控作用。選取1日齡科寶500父母代肉種雞64只,隨機(jī)分為對照組和APS組,每組4個(gè)重復(fù),每個(gè)重復(fù)8只雞。對照組飼喂玉米-豆粕型基礎(chǔ)飼糧,APS組在基礎(chǔ)飼糧中添加10 g/kg APS,試驗(yàn)期40周。結(jié)果表明:1)相比于對照組,APS組可以提高種公雞的采精量和有效精子數(shù),降低精子畸形率,但差異不顯著(P>0.05)。2)miR-16具有組織差異性,APS可顯著或極顯著上調(diào)肝臟、脾臟、十二指腸黏膜、回腸黏膜miR-16的表達(dá)(P<0.05或P<0.01),顯著降低睪丸miR-16的表達(dá)(P<0.05)。3)對miR-16預(yù)測靶基因進(jìn)行GO富集分析,表明預(yù)測靶基因在跨膜運(yùn)輸、泛素依賴的蛋白質(zhì)降解、胞內(nèi)蛋白運(yùn)輸、糖酵解等物質(zhì)代謝相關(guān)生物過程顯著或極顯著富集(P<0.05或P<0.01)。KEGG富集分析表明,miR-16靶基因在黏著斑、胰島素信號通路、糖酵解/糖異生等與機(jī)體物質(zhì)代謝、細(xì)胞增殖分化相關(guān)通路顯著富集(P<0.05),在Toll樣受體信號通路、自然殺傷細(xì)胞介導(dǎo)的細(xì)胞毒性等免疫相關(guān)通路也有富集。由此可見,APS上調(diào)種公雞脾臟、肝臟、十二指腸黏膜、回腸黏膜組織的miR-16表達(dá),下調(diào)睪丸miR-16表達(dá);miR-16預(yù)測靶基因與物質(zhì)代謝、免疫調(diào)控密切相關(guān)。APS通過調(diào)控種公雞不同組織miR-16表達(dá),影響機(jī)體物質(zhì)代謝和免疫調(diào)控功能。
關(guān)鍵詞:黃芪多糖;種公雞;miR-16;精液品質(zhì);組織表達(dá);功能分析
黃芪多糖(Astragaluspolysaccharide,APS)是提取自黃芪根的一種水溶性雜多糖,具有機(jī)體物質(zhì)代謝調(diào)控[1]、抗炎[2-3]、抗氧化[4-5]、抗腫瘤[6-7]、免疫調(diào)控[8]等生物學(xué)活性,作為非營養(yǎng)性飼料添加劑,可有效改善畜禽的機(jī)體健康及生產(chǎn)性能。闡明APS調(diào)節(jié)動物物質(zhì)代謝及免疫功能的潛在機(jī)理,有助于生產(chǎn)中更有效使用APS。APS通過影響免疫及代謝相關(guān)基因的表達(dá),發(fā)揮其調(diào)控作用,多數(shù)基因的表達(dá)存在miRNA的調(diào)控作用,miRNA通過RNA-RNA互作,在轉(zhuǎn)錄后調(diào)控基因表達(dá)[9]。證據(jù)表明,營養(yǎng)成分和水平均可影響動物miRNA表達(dá),進(jìn)而調(diào)控機(jī)體健康狀態(tài)[10]。miRNA的表達(dá)具有組織特異性,并隨機(jī)體發(fā)育狀況改變而改變[11],一方面,miRNA在細(xì)胞的增殖分化及凋亡、機(jī)體發(fā)育、代謝、免疫反應(yīng)等過程中具調(diào)節(jié)作用,保證機(jī)體的正常發(fā)育[12-15];另一方面,miRNA可調(diào)控基因表達(dá)適應(yīng)環(huán)境的變化,有利于機(jī)體健康狀態(tài)的保持[16-17]。因此,在受到相同的營養(yǎng)素刺激下,同一miRNA的表達(dá)也存在差異,進(jìn)而調(diào)控不同組織發(fā)揮各自的功能。
miR-16源于miR-16-1和miR-16-2 2個(gè)前體,分別位于雞1號和9號染色體上,基因轉(zhuǎn)錄經(jīng)剪接形成成熟的miR-16,成熟miR-16具有抑制腫瘤[18-20]、參與機(jī)體免疫應(yīng)答[21-22]、調(diào)控關(guān)鍵酶、影響糖代謝[23-24]等作用。課題組前期高通量測序研究表明,APS可顯著降低睪丸組織miR-16的表達(dá),表明miR-16的生物學(xué)調(diào)控功能與APS存在一定對應(yīng)性,故本研究選擇miR-16作為研究對象。目前,miR-16的功能研究多在人和鼠上展開,而有關(guān)營養(yǎng)素調(diào)控作用下雞miR-16的組織表達(dá)狀況及功能研究未見報(bào)道。本研究通過向種公雞飼糧中添加APS,檢驗(yàn)9個(gè)組織中miR-16的表達(dá),結(jié)合其預(yù)測靶基因的生物信息分析,為后期研究miR-16介導(dǎo)下APS對機(jī)體代謝及免疫性能的調(diào)控功能提供線索。
1材料與方法
1.1試驗(yàn)材料
APS:粉劑,純度70%,購自華北制藥有限公司。
試驗(yàn)動物:1日齡科寶500父母代肉種雞,購自北京家禽育種有限公司。
1.2試驗(yàn)設(shè)計(jì)
選取1日齡科寶500肉雞父母代種公雞64只,隨機(jī)分為對照組和APS組,每個(gè)處理4個(gè)重復(fù),每個(gè)重復(fù)8只雞。對照組飼喂玉米-豆粕型基礎(chǔ)飼糧,APS組在基礎(chǔ)飼糧中添加10 g/kg APS。正常免疫,自由飲水,按標(biāo)準(zhǔn)飼喂。試驗(yàn)期40周。
1.3精液品質(zhì)測定
采用背腹式按摩法采集種公雞精液,第38~39周進(jìn)行采精訓(xùn)練,建立條件反射。精液采集后置于37 ℃水浴短暫保存后,立刻采用常規(guī)精液品質(zhì)評定方法,測定精液量(mL)、精子活率(直線前進(jìn)運(yùn)動精子數(shù)/總精子數(shù))、精子密度(108個(gè)/mL)和精子畸形率(%);計(jì)算有效精子數(shù)(108個(gè)),有效精子數(shù)是精液量、精子密度和精子活率3個(gè)指標(biāo)的乘積。
1.4樣品采集和總RNA提取
樣品采集:40周齡時(shí),每個(gè)重復(fù)隨機(jī)選取一只雞采樣。背腹式按摩法采精,頸部放血處死,屠宰,采集肝臟、脾臟、胸腺、睪丸和胸肌樣品放于凍存管中;分離十二指腸、空腸和回腸,用生理鹽水沖洗去除腸段內(nèi)容物,用載玻片輕輕刮取腸黏膜保存到凍存管中。樣品采集后迅速放入液氮罐中,后轉(zhuǎn)入-80 ℃保存。
總RNA提?。壕嚎俁NA提取采用熱酸酚法,其他組織樣品總RNA提取采用Trizol(TaKaRa)法。
1.5實(shí)時(shí)定量PCR
miR-16和U6 snRNA定量引物為Bulge-LoopTMmiRNA qRT-PCR Primer Set和U6 snRNA qPCR Primer Set(廣州銳博生物科技有限公司),miR-16和U6 snRNA反轉(zhuǎn)采用PrimeScriptTMRT reagent Kit with gDNA Eraser(TaKaRa)。
反轉(zhuǎn)錄體系(20 μL):5×gDNA Eraser (Buffer 2 μL,gDNA Eraser 1 μL,Total RNA(<1 μg),添加RNase Free dH2O至10 μL,42 ℃ 2 min;5×PrimeScript Buffer 4 μL,PrimeScript RT Enzyme Mix Ⅰ 1 μL,RT Primer 2 μL,加入上述10 μL反應(yīng)液,添加RNase Free dH2O至20 μL。37 ℃ 15 min,85 ℃ 15 s,4 ℃停止。
1.6miRNA靶基因預(yù)測和富集性分析
利用TargetScan和miRanda軟件預(yù)測雞miR-16的潛在靶基因,篩選出2種算法的靶基因交集用于后續(xù)生物信息學(xué)分析。采用DAVID數(shù)據(jù)庫(https://david.ncifcrf.gov/)對預(yù)測靶基因進(jìn)行GO富集分析和KEGG通路分析。
1.7數(shù)據(jù)統(tǒng)計(jì)
以2-△△Ct法計(jì)算miR-16在各組織中相對表達(dá)量。數(shù)據(jù)用SPSS 20.0軟件分析,進(jìn)行Student’st檢驗(yàn),結(jié)果用平均值±標(biāo)準(zhǔn)誤表示,P<0.05表示差異顯著,P<0.01表示差異極顯著。
2結(jié)果
2.1APS對種公雞精液品質(zhì)的影響
由表1可知,相較于對照組,APS組種公雞的采精量和有效精子數(shù)均高于對照組,畸形率低于對照組,但差異不顯著(P>0.05)。2組間精子密度和精子活率也無顯著差異(P>0.05)。
表1 APS對種公雞精液品質(zhì)的影響
同行無字母或數(shù)據(jù)肩標(biāo)相同字母表示差異不顯著(P>0.05)。
In the same row, values with no letter or the same letter superscripts mean no significant difference (P>0.05).
2.2miR-16引物特異性驗(yàn)證
在精液品質(zhì)鑒定基礎(chǔ)上,本課題組對種公雞睪丸進(jìn)行了miRNA高通量測序,發(fā)現(xiàn)APS可顯著降低睪丸組織miR-16的表達(dá),表明miR-16的生物學(xué)調(diào)控功能與APS存在一定對應(yīng)性,故本研究選擇miR-16作為后續(xù)研究的對象。本試驗(yàn)采用定制的特異莖凸環(huán)引物利用SYBR染料法檢測miR-16在種公雞不同組織中的表達(dá),miR-16和內(nèi)參基因U6 snRNA熔解曲線及實(shí)時(shí)定量PCR后,部分產(chǎn)物的熔解曲線和凝膠電泳檢測圖見圖1。由圖1可知,miR-16和U6 snRNA熔解曲線為單峰;電泳條帶均一整齊的分布在100 bp左右,表明本研究所用的miR-16引物特異性較高,其檢測結(jié)果可用于后續(xù)分析。
(A)miR-16的熔解曲線;(B)U6 snRNA(內(nèi)參基因)的熔解曲線;(C)1:空腸;2:回腸;3:十二指腸;4:精液;5睪丸;6:脾臟;7:肝臟;8肌肉;9:胸腺;M:DL500 Marker。
(A) melt curve of miR-16; (B) melt curve of U6 snRNA (used as internal standard miRNA); (C) 1: jejunum; 2: ileum; 3: duodenum; 4: semen; 5: testis; 6: spleen; 7: liver; 8: muscle; 9: thymus; M:DL500 Marker.
圖1實(shí)時(shí)定量PCR的熔解曲線(A、B)和PCR產(chǎn)物凝膠電泳檢測圖(C)
Fig.1The melting curve of real-time quantitative PCR (A and B) and gel electrophoresis detection of product (C)
2.3APS對種公雞不同組織miR-16相對表達(dá)水平的影響
由圖2可知,miR-16在所檢測的9種組織中均有不同水平的表達(dá);由圖3可知,APS可顯著或極顯著提高脾臟、肝臟、十二指腸黏膜、回腸黏膜中miR-16相對表達(dá)水平(P<0.05或P<0.01)。睪丸組織中,APS組的miR-16相對表達(dá)水平顯著下降(P<0.05)。APS對種公雞胸腺、肌肉、精液和空腸黏膜miR-16相對表達(dá)水平均無顯著影響(P>0.05)。
圖2 miR-16在種公雞不同組織中的相對表達(dá)水平
2.4miR-16靶基因的生物信息學(xué)分析
為更好理解APS通過影響miR-16的表達(dá),進(jìn)而影響雞生物學(xué)功能的發(fā)揮,本研究通過TargetScan和miRanda 2種算法預(yù)測其靶基因,2種算法獲得560個(gè)共同靶基因,進(jìn)行GO和KEGG信號通路功能富集性分析。
2.4.1miR-16靶基因的GO富集分析
對560個(gè)預(yù)測靶基因進(jìn)行GO富集分析,其中213個(gè)靶基因獲得注釋。GO富集性分析包括3個(gè)方面:生物過程、細(xì)胞組分、分子功能。由表1可知,預(yù)測靶基因極顯著富集的生物過程為跨膜運(yùn)輸、核苷酸代謝和脊索發(fā)育(P<0.01),在泛素依賴的蛋白質(zhì)降解過程、胞內(nèi)的蛋白質(zhì)運(yùn)輸、糖酵解、蛋白質(zhì)的聚泛素化、磷酸戊糖旁路、蛋白質(zhì)泛素化的負(fù)調(diào)控等物質(zhì)運(yùn)輸代謝相關(guān)生物學(xué)過程顯著富集(P<0.05)。而在與免疫相關(guān)的通路雖不顯著但有富集(P>0.05),如Toll樣受體(TLR)信號通路(包括TLR2、TLR3、TLR4、TLR5、TLR7、TLR15、TLR21)(GO:0002224、GO:0034134、GO:0034138、GO:0034142、GO:0034146、GO:0034154、GO:0035681、GO:0035682)、白細(xì)胞介素-2(IL-2)生成的負(fù)調(diào)控(GO:0032703)、白細(xì)胞介素-17(IL-17)生成的負(fù)調(diào)控(GO:0032700)、干擾素-γ(IFN-γ)生成的負(fù)調(diào)控(GO:0032689)、B細(xì)胞分化的負(fù)調(diào)控(GO:0045578)、T細(xì)胞分化(GO:0042098)。
數(shù)據(jù)柱上標(biāo)無字母表示差異不顯著(P>0.05),不同小寫字母表示差異顯著(P<0.05),不同大寫字母表示差異極顯著(P<0.01)。
Value columns with no letter superscripts mean no significant difference (P>0.05), while with different small letter superscripts mean significant difference (P<0.05), and with different capital letter superscripts mean significant difference (P<0.01).
圖3APS對種公雞不同組織中的miR-16相對表達(dá)水平的影響
Fig.3Effects of APS on the relative expression level of miR-16 in different tissues of male chicken breeder
細(xì)胞組分和分子功能方面的分析是生物學(xué)過程的輔助分析。細(xì)胞組分富集性分析顯示miR-16多數(shù)預(yù)測靶基因編碼的蛋白質(zhì)位于細(xì)胞膜上(表2)。分子功能富集性分析發(fā)現(xiàn)預(yù)測靶基因分子功能在水解酶活性極顯著富集(P<0.01)(表3),在TLR結(jié)合(GO:0035325)也有富集(P=0.08)。
表2 miR-16預(yù)測靶基因在生物過程上的GO富集分析
表3 miR-16預(yù)測靶基因在細(xì)胞組分上的GO富集分析
表4 miR-16預(yù)測靶基因在分子功能上的GO富集分析
2.4.2miR-16靶基因的KEGG富集分析
由表5可知,miR-16預(yù)測靶基因KEGG富集分析發(fā)現(xiàn)miR-16與細(xì)胞運(yùn)動、增殖分化及機(jī)體物質(zhì)代謝等生物學(xué)過程密切相關(guān),顯著富集的信號通路為黏著斑、胰島素信號通路、表皮生長因子受體(ErbB)信號通路、糖酵解/糖異生、纈氨酸/亮氨
酸/異亮氨酸的生物合成、煙酸和煙酰胺代謝、脂肪酸延長和DNA復(fù)制(P<0.05)。與免疫相關(guān)的通路也有富集(P>0.05),主要是與抗原識別呈遞相關(guān)的自然殺傷細(xì)胞介導(dǎo)的細(xì)胞毒性(ko04650)和TLR信號通路(ko04620)。
表5 miR-16預(yù)測靶基因的通路分析
續(xù)表5通路名稱Pathwaydescription匹配到單個(gè)GO顯著差異基因數(shù)Sgenenumber顯著差異基因總數(shù)TSgenenumber匹配到單個(gè)GO基因總數(shù)Bgenenumber基因總數(shù)TBgenenumberP值P-value過氧化物酶體增殖物激活受體信號通路PPARsignalingpathway51615436700.086半乳糖代謝Galactosemetabolism31612536700.094
3討論
3.1APS對種公雞精液品質(zhì)的影響
APS是一種提取自中草藥黃芪的功能性多糖,本課題組前期結(jié)果發(fā)現(xiàn)種公雞飼糧添加10 g/kg APS能顯著傳代影響商品代肉雞生長性能,進(jìn)一步的轉(zhuǎn)錄組測序數(shù)據(jù)表明APS可以調(diào)節(jié)種公雞免疫相關(guān)基因的表達(dá)并可以傳代影響子代肉雞的免疫性能[25]。精液品質(zhì)可反映動物的繁殖性能,對生產(chǎn)具有指示作用,同時(shí)精子的發(fā)生及功能的發(fā)揮是APS傳代影響肉雞生長性能和免疫功能的唯一途徑。本試驗(yàn)結(jié)果表明APS雖不能顯著影響種公雞精液品質(zhì),但一定程度上能改善精液品質(zhì),如降低精子畸形率和提高有效精子數(shù)和采精量。另外,Liu等[26]體外試驗(yàn)研究發(fā)現(xiàn)黃芪提取物顯著提高精子活力和有效精子數(shù),Kim等[27]研究發(fā)現(xiàn)APS可有效緩解環(huán)磷酰胺對小鼠睪丸生殖毒性,有效改善睪丸相對重量及精液品質(zhì)。因此,本試驗(yàn)選擇飼糧添加APS在睪丸(精子生成的唯一場所)中顯著差異表達(dá)的miR-16為研究對象,并結(jié)合miR-16的組織差異表達(dá)情況及其靶基因的生物信息分析結(jié)果來為后期研究miR-16介導(dǎo)下APS對機(jī)體代謝及免疫性能的調(diào)控功能提供線索。
3.2miRNA實(shí)時(shí)定量檢測
miRNA是一種微量動態(tài)的表觀遺傳調(diào)控因子,分析不同營養(yǎng)狀態(tài)下miRNA在不同組織中的表達(dá)狀況,尋找組織特異和功能調(diào)控相關(guān)的miRNA,是了解miRNA功能的關(guān)鍵步驟,miRNA功能研究的第一步是miRNA的定量檢測。目前miRNA定量檢測方法有微陣列芯片、Northern blotting、高通量測序和實(shí)時(shí)定量PCR等。莖環(huán)實(shí)時(shí)定量PCR檢測具有靈敏度高、精確度高、檢測范圍寬等優(yōu)點(diǎn)[28],本研究采用的公司定制莖凸環(huán)引物特異性好、靈敏度高,可滿足后續(xù)定量檢測準(zhǔn)確性的需求。
3.3APS對種公雞不同組織miR-16表達(dá)的影響
miRNA表達(dá)具有時(shí)空特異性,這種特異表達(dá)與特定的生理功能密切相關(guān)[29]。Yue等[30]發(fā)現(xiàn)miR-16在成年大鼠的肝臟、脾臟、腎臟、小腸和睪丸組織均有表達(dá),且有組織差異性。本研究發(fā)現(xiàn)在肉種雞中miR-16的表達(dá)具有組織差異性,這與很多其他miRNA的研究結(jié)果相一致[31];同時(shí),本研究發(fā)現(xiàn)APS可改變多種組織(脾臟、肝臟、睪丸等)miR-16的表達(dá)狀況。外界環(huán)境發(fā)生改變時(shí),機(jī)體會發(fā)生適應(yīng)性調(diào)整,相關(guān)基因表達(dá)水平發(fā)生改變,在此過程中miRNA發(fā)揮了重要作用,miRNA通過影響其效應(yīng)靶基因的表達(dá)狀況調(diào)控機(jī)體的環(huán)境適應(yīng)性。Casas-Agustench等[32]發(fā)現(xiàn)不同的脂肪酸組分能調(diào)節(jié)大鼠肝臟和脂肪組織miRNA差異表達(dá);Meale等[33]發(fā)現(xiàn)不同脂肪組分可調(diào)節(jié)牛皮下和內(nèi)臟脂肪組織miRNA差異表達(dá);Romao等[34]發(fā)現(xiàn)高脂飲食也可調(diào)控羊皮下和內(nèi)臟組織miRNA差異表達(dá),這都說明不同營養(yǎng)因子可調(diào)控動物miRNA不同組織差異表達(dá)進(jìn)而影響機(jī)體代謝調(diào)控。體外試驗(yàn)發(fā)現(xiàn),添加姜黃素可上調(diào)miR-16表達(dá),進(jìn)而誘導(dǎo)細(xì)胞凋亡和增殖相關(guān)基因表達(dá)的改變[35-36]。一種綠茶葉提取物表沒食子兒茶素沒食子酸酯(epigallocatechin gallate,EGCG)可上調(diào)miR-16表達(dá),抑制抗凋亡蛋白B淋巴細(xì)胞瘤-2(BCL-2)基因表達(dá),激活細(xì)胞凋亡過程[37]。目前miRNA相關(guān)研究多著眼于營養(yǎng)因素、miRNA和機(jī)體健康狀況三者間的關(guān)聯(lián)性,適當(dāng)?shù)臓I養(yǎng)供給有利于保持miRNA的正常表達(dá),使機(jī)體處于健康狀態(tài)[10]。APS作為一種提自植物的高效免疫調(diào)節(jié)劑,同樣可通過影響多種組織中miR-16的表達(dá),進(jìn)而調(diào)節(jié)相關(guān)基因的表達(dá),發(fā)揮其生物學(xué)調(diào)控效應(yīng)來維持機(jī)體健康狀態(tài)。Yuan等[38]發(fā)現(xiàn)APS以劑量效應(yīng)模式調(diào)控脾臟腫瘤壞死因子-α(TNF-α)和白細(xì)胞介素(IL)-1β的表達(dá)。在脂多糖(LPS)的刺激下,Liu等[39]發(fā)現(xiàn)APS可以調(diào)節(jié)腸道黏膜IL-1β的表達(dá)。睪丸通過血-睪屏障、支持細(xì)胞、間質(zhì)免疫細(xì)胞、細(xì)胞因子和雄激素在內(nèi)的多種因素構(gòu)成一個(gè)復(fù)雜的免疫網(wǎng)絡(luò)體系。Zhang等[40]在雞睪丸檢測到TLR-2-Ⅰ、 -2-Ⅱ、 -3、 -4、 -5、 -15、-21的表達(dá),而LPS刺激可以改變睪丸IL-1β和IL-6的表達(dá)。大量研究表明,APS可以調(diào)控包括TNF-α、IL-1β、IL-8、干擾素-γ(IFN-γ)在內(nèi)的細(xì)胞因子的表達(dá)[38,39,41-44],且miR-16能通過與上述細(xì)胞因子的一段高度保守區(qū)域的互補(bǔ),進(jìn)而發(fā)揮調(diào)控效應(yīng),影響機(jī)體免疫性能。本試驗(yàn)結(jié)果顯示APS上調(diào)十二指腸黏膜、回腸黏膜和脾臟組織中miR-16的表達(dá)以及下調(diào)睪丸組織miR-16的表達(dá),其可能調(diào)控miR-16表達(dá)影響相關(guān)細(xì)胞因子表達(dá)進(jìn)而影響機(jī)體免疫性能。另外,APS可誘導(dǎo)脂肪代謝相關(guān)基因過氧化物酶體增殖物激活受體α(PPAR-α)的表達(dá)[1],而PPAR-α基因所在的PPAR信號通路是miR-16預(yù)測靶基因的富集通路,而本試驗(yàn)發(fā)現(xiàn)APS組種公雞肝臟miR-16表達(dá)顯著升高,表明miR-16可能介導(dǎo)APS對肝臟脂肪代謝相關(guān)基因的調(diào)控。
3.4miR-16靶基因的功能預(yù)測分析
miRNA通過與靶基因的3'UTR結(jié)合,使靶基因的mRNA降解或者在蛋白質(zhì)翻譯水平上抑制翻譯,來發(fā)揮其生物調(diào)控功能[45]。本研究發(fā)現(xiàn)APS可顯著改變種公雞多種組織miR-16的表達(dá)水平,因此我們進(jìn)一步采用TargetScan和miRanda 2種算法預(yù)測miR-16的靶基因,將二者交集作為預(yù)測靶基因,進(jìn)行GO分析和KEGG通路富集分析獲得富集的信號通路。
GO分析顯示預(yù)測靶基因主要富集在跨膜運(yùn)輸、泛素依賴的蛋白質(zhì)降解過程和胞內(nèi)蛋白質(zhì)運(yùn)輸、糖酵解等與物質(zhì)運(yùn)輸代謝相關(guān)的生物過程,而KEGG富集分析結(jié)果與GO分析結(jié)果一致,多數(shù)靶基因富集在與物質(zhì)代謝相關(guān)的信號通路中,表明miR-16可與物質(zhì)代謝相關(guān)基因互作參與機(jī)體調(diào)控。
miR-16與能量代謝過程密切相關(guān),其預(yù)測靶基因富集的糖酵解/糖異生條目就是能量代謝的重要內(nèi)容,而APS調(diào)控下免疫活性的發(fā)揮同樣需要消耗大量的能量,與能量代謝活動息息相關(guān)。Calin等[23]發(fā)現(xiàn)miR-15a/miR-16-1簇在慢性淋巴細(xì)胞性白血病中表達(dá)顯著下調(diào)或缺失,可顯著下調(diào)糖酵解途徑關(guān)鍵酶果糖二磷酸醛縮酶A(aldolase A,ALDOA)的活性。胰島素信號通路可廣泛影響葡萄糖的攝取、三大營養(yǎng)物質(zhì)合成、細(xì)胞增殖分化和凋亡等生物學(xué)反應(yīng)[46]。葡萄糖轉(zhuǎn)運(yùn)蛋白4(glucose transporter 4,GLUT4)是胰島素信號通路重要的調(diào)控因子,可介導(dǎo)葡萄糖從胞外進(jìn)入胞內(nèi),調(diào)節(jié)細(xì)胞內(nèi)糖和脂肪酸代謝。Talari等[24]發(fā)現(xiàn)在成肌細(xì)胞過表達(dá)miR-16后通過上調(diào)GLUT4增強(qiáng)胰島素介導(dǎo)的葡萄糖攝取作用,進(jìn)而影響細(xì)胞糖代謝。而外源添加APS亦可對能量代謝產(chǎn)生影響,Chen等[1]的研究發(fā)現(xiàn)APS可誘導(dǎo)GLUT4高表達(dá),并抑制PPAR-α及其靶基因脂肪酸轉(zhuǎn)運(yùn)蛋白(FATP)、基輔酶A合成酶(ACS)的表達(dá),從而影響能量代謝。本試驗(yàn)發(fā)現(xiàn)APS可調(diào)節(jié)作為代謝中樞的肝臟的miR-16表達(dá),而靶基因富集分析結(jié)果及前人研究顯示miR-16與能量代謝密切相關(guān),說明APS可通過調(diào)控miR-16表達(dá)進(jìn)而影響能量代謝。另外,腸道作為機(jī)體重要的消化吸收器官,APS可上調(diào)十二指腸黏膜和回腸黏膜miR-16的表達(dá),且其靶基因富集于跨膜運(yùn)輸、胞內(nèi)蛋白質(zhì)運(yùn)輸?shù)扰c物質(zhì)運(yùn)輸和糖酵解等物質(zhì)代謝相關(guān)的通路,說明APS可能通過調(diào)控miR-16表達(dá)影響物質(zhì)運(yùn)輸進(jìn)而影響物質(zhì)代謝。
APS可顯著提高miR-16在種公雞脾臟、十二指腸黏膜和回腸黏膜中的表達(dá)。有研究報(bào)道,miR-16可能是TLR介導(dǎo)的炎癥反應(yīng)的重要調(diào)控因子,miR-16能快速降解在3’UTR區(qū)富含AU元件(AU-rich elements,AREs)的mRNA[47],而大多數(shù)細(xì)胞因子和趨化因子如TNF-α、IL-8和IL-6等的3’UTR區(qū)均含有AREs[48]。Jing等[47]的研究證實(shí),miR-16能夠直接結(jié)合TNF-αmRNA的AREs,降低mRNA的穩(wěn)定性并促進(jìn)其降解,轉(zhuǎn)染miR-16序列特異性互補(bǔ)寡核苷酸片段則能逆轉(zhuǎn)這種作用。進(jìn)一步分析發(fā)現(xiàn),炎癥因子IL-12和IL-23共有亞基IL-12p40的3'端非編碼區(qū)也同樣存在著AREs,miR-16同樣可以結(jié)合到TNF-α和IL-12p40的AREs上,從而調(diào)控眾多炎癥因子TNF-α、IL-12、IL-23、IL-17、IFN-γ、IL-lβ和IL-6等的蛋白質(zhì)表達(dá)水平[49]。另外,miR-16還可下調(diào)TLR4和IL-1受體相關(guān)激酶的轉(zhuǎn)錄活性來抑制LPS誘導(dǎo)的炎癥反應(yīng)[50]。在本試驗(yàn)中,miR-16預(yù)測靶基因也在免疫相關(guān)GO和KEGG信號通路上也有所富集,說明miR-16與機(jī)體免疫調(diào)控密切相關(guān),結(jié)合之前的研究[47-50]可說明miR-16具有炎癥抑制活性,保證機(jī)體正常的健康狀態(tài)。另外,研究顯示APS具有高免疫調(diào)節(jié)活性,可影響脾臟[38,51]及腸道黏膜免疫系統(tǒng)[39,41-44]的免疫活性。Shi等[44]的研究發(fā)現(xiàn)APS可有效提高黏膜完整性及其免疫功能,拮抗LPS誘導(dǎo)的IL-1和IFN-γ表達(dá)量升高,利于防止炎癥發(fā)生和促進(jìn)空腸黏膜完整性;Wang等[42-43]體外試驗(yàn)研究發(fā)現(xiàn)APS可有效抑制LPS處理Caco2細(xì)胞的促炎性細(xì)胞因子(TNF-α,IL-1β及IL-8)表達(dá)激活,并可有效提高Caco2細(xì)胞緊密連接蛋白和閉合蛋白的表達(dá)量,發(fā)揮炎癥抑制和黏膜完整性保護(hù)作用。本試驗(yàn)發(fā)現(xiàn)APS可顯著提高種公雞十二指黏膜、回腸黏膜、脾臟miR-16表達(dá)水平,APS可能通過上調(diào)miR-16來行使其腸道黏膜、脾臟組織中的免疫調(diào)控功能。
4結(jié)論
miR-16在種公雞不同組織中差異表達(dá),APS可上調(diào)種公雞脾臟、肝臟、十二指腸黏膜、回腸黏膜組織miR-16的表達(dá),下調(diào)睪丸組織miR-16的表達(dá),功能預(yù)測顯示miR-16靶基因與物質(zhì)代謝、免疫調(diào)控密切相關(guān),說明APS可通過調(diào)控miR-16表達(dá)影響機(jī)體物質(zhì)代謝和免疫調(diào)控功能。
參考文獻(xiàn):
[1]CHEN W,XIA Y P,CHEN W J,et al.Improvement of myocardial glycolipid metabolic disorder in diabetic hamster withAstragaluspolysaccharides treatment[J].Molecular Biology Reports,2012,39(7):7609-7615.
[2]HE X J,SHU J,XU L,et al.Inhibitory effect ofAstragaluspolysaccharides on lipopolysaccharide-induced TNF-a and IL-1β production in THP-1 cells[J].Molecules,2012,17(3):3155-3164.
[3]WANG X F,LI Y L,YANG X J,et al.Astragaluspolysaccharide reduces inflammatory response by decreasing permeability of LPS-infected Caco2 cells[J].International Journal of Biological Macromolecules,2013,61:347-352.
[4]ZHANG G G,YANG Z B,WANG Y,et al.Effects ofAstragalusmembranaceusroot processed to different particle sizes on growth performance,antioxidant status,and serum metabolites of broiler chickens[J].Poultry Science,2013,92(1):178-183.
[5]ZUO Z Y,YANG W R,WANG Y,et al.Effects ofAstragalusmembranaceuson laying performance and antioxidant status of laying hens[J].The Journal of Applied Poultry Research,2012,21(2):243-250.
[6]ZHU Z Y,LIU R Q,SI C L,et al.Structural analysis and anti-tumor activity comparison of polysaccharides fromAstragalus[J].Carbohydrate Polymers,2011,85(4):895-902.
[7]SUN S Y,ZHENG K,ZHAO H Y,et al.Regulatory effect ofAstragaluspolysaccharides on intestinal intraepithelial γδT cells of tumor bearing mice[J].Molecules,2014,19(9):15224-15236.
[8]ABUELSAAD A S A.Supplementation withAstragaluspolysaccharides altersAeromonas-induced tissue-specific cellular immune response[J].Microbial Pathogenesis,2014,66:48-56.
[9]GUIL S,ESTELLER M.RNA-RNA interactions in gene regulation:the coding and noncoding players[J].Trends in Biochemical Sciences,2015,40(5):248-256.
[10]ROSS S A,DAVIS C D.The emerging role of microRNAs and nutrition in modulating health and disease[J].Annual Review of Nutrition,2014,34(1):305-336.
[11]LIANG Y,RIDZON D,WONG L,et al.Characterization of microRNA expression profiles in normal human tissues[J].BMC Genomics,2007,8(1):166-185.
[12]BUSHATI N,COHENS M.MicroRNA functions[J].Annual Review of Cell and Developmental Biology,2007,23(1):175-205.
[13]XIAO C C,RAJEWSKY K.MicroRNA control in the immune system:basic principles[J].Cell,2009,136(1):26-36.
[14]TüFEKCI K U,MEUWISSEN R L J,GEN?.The role of microRNAs in biological processes[M]//YOUSEF M,ALLMER J.miRNomics:microRNA biology and computational analysis.New York:Humana Press,2014:15-31.
[15]LEE H M,NGUYEN D T,LU L F.Progress and challenge of microRNA research in immunity[J].Frontiers in Genetics,2014,5:178.
[16]KAPPIL M,CHEN J.Environmental influence of microRNA in children’s health[J].Current Opinion in Pediatrics,2014,26(2):243-251.
[17]HARRYANTO H.Role of microRNA in early life placental programming of insulin resistance and metabolic health[D].Ph.D.Thesis.Adelaide:The University of Adelaide,2014.
[18]MOBARRA N,SHAFIEE A,RAD S M A H,et al.Overexpression of microRNA-16 declines cellular growth,proliferation and induces apoptosis in human breast cancer cells[J].InVitroCellular & Developmental Biology:Animal,2015, 51(6):604-611.
[19]YANG T Q,LU X J,WU T F,et al.MicroRNA-16 inhibits glioma cell growth and invasion through suppression of BCL2 and the nuclear factor-κB1/MMP9 signaling pathway[J].Cancer Science,2014,105(3):265-271.
[20]HUANG E Y,LIU R H,CHU Y W.miRNA-15a/16:as tumor suppressors and more[J].Future Oncology,2015,11(16):2351-2363.
[21]ZHOU R,LI X Q,HU G K,et al.miR-16 targets transcriptional corepressor SMRT and modulates NF-kappaB-regulated transactivation of interleukin-8 gene[J].PLoS One,2012,7(1):e30772.
[22]LI T,MORGAN M J,CHOKSI S,et al.MicroRNAs modulate the noncanonical transcription factor NF-κB pathway by regulating expression of the kinase IKKα during macrophage differentiation[J].Nature Immunology,2010,11(9):799-805.
[23]CALIN G A,CIMMINO A,FABBRI M,et al.MiR-15a and miR-16-1 cluster functions in human leukemia[J].Proceedings of the National Academy of Sciences of the Unites States of America,2008,105(13):5166-5171.
[24]TALARI M,KAPADIA B,KAIN V,et al.MicroRNA-16 modulates macrophage polarization leading to improved insulin sensitivity in myoblasts[J].Biochimie,2015,119:16-26.
[25]李玉龍.APS調(diào)控種公雞基因傳代轉(zhuǎn)錄分析[D].碩士學(xué)位論文.楊凌:西北農(nóng)林科技大學(xué),2015.
[26]LIU J,LIANG P,YIN C,et al.Effects of several Chinese herbal aqueous extracts on human sperm motilityinvitro[J].Andrologia,2004,36(2):78-83.
[27]KIM W,KIM S H,PARK S K,et al.Astragalusmembranaceusameliorates reproductive toxicity induced by cyclophosphamide in male mice[J].Phytotherapy Research,2012,26(9):1418-1421.
[28]CHEN C F,RIDZON D A,BROOMER A J,et al.Real-time quantification of microRNAs by stem-loop RT-PCR[J].Nucleic Acids Research,2005,33(20):e179.
[29]SMALL E M,OLSON E N.Pervasive roles of microRNAs in cardiovascular biology[J].Nature,2011,469(7330):336-342.
[30]YUE J M,TIGYI G.Conservation of miR-15a/16-1 and miR-15b/16-2 clusters[J].Mammalian Genome,2010,21(1/2):88-94.
[31]LIANG Y,RIDZON D,WONG L,et al.Characterization of microRNA expression profiles in normal human tissues[J].BMC Genomics,2007,8(1):166.
[32]CASAS-AGUSTENCH P,FERNANDES F S,TAVARES DO CARMO M G,et al.Consumption of distinct dietary lipids during early pregnancy differentially modulates the expression of microRNAs in mothers and offspring[J].PLoS One,2015,10(2):e0117858.
[33]MEALE S J,ROMAO J M,HE M L,et al.Effect of diet on microRNA expression in ovine subcutaneous and visceral adipose tissues[J].Journal of Animal Science,2014,92(8):3328-3337.
[34]ROMAO J M,JIN W,HE M L,et al.Altered microRNA expression in bovine subcutaneous and visceral adipose tissues from cattle under different diet[J].PLoS One,2012,7(7):e40605.
[35]YANG J,CAO Y X,SUN J F,et al.Curcumin reduces the expression of Bcl-2 by upregulating miR-15a and miR-16 in MCF-7 cells[J].Medical Oncology,2010,27(4):1114-1118.
[36]GAO S M,YANG J J,CHEN C Q,et al.Pure curcumin decreases the expression of WT1 by upregulation of miR-15a and miR-16-1 in leukemic cells[J].Journal of Experimental & Clinical Cancer Research,2012,31(1):27.
[37]TSANG W P,KWOKT T.Epigallocatechin gallate up-regulation of miR-16 and induction of apoptosis in human cancer cells[J].The Journal of Nutritional Biochemistry,2010,21(2):140-146.
[38]YUAN C T,PAN X P,GONG Y,et al.Effects ofAstragaluspolysaccharides(APS) on the expression of immune response genes in head kidney,gill and spleen of the common carp,CyprinuscarpioL.[J].International Immunopharmacology,2008,8(1):51-58.
[39]LIU L,SHEN J,ZHAO C,et al.DietaryAstragaluspolysaccharidealleviated immunological stress in broilers exposed to lipopolysaccharide[J].International Journal of Biological Macromolecules,2015,72:624-632.
[40]ZHANG M,NII T,ISOBE N,et al.Expression of Toll-like receptors and effects of lipopolysaccharide on the expression of proinflammatory cytokines and chemokine in the testis and epididymis of roosters[J].Poultry Science,2012,91(8):1997-2003.
[41]ZHANG C L,REN H J,LIU M M,et al.Modulation of intestinal epithelial cell proliferation,migration,and differentiationinvitrobyAstragaluspolysaccharides[J].PLoS One,2014,9(8):e106674.
[42]WANG X F,SHEN J,LI S Z,et al.SulfatedAstragaluspolysaccharide regulates the inflammatory reaction in LPS-infected broiler chicks[J].International Journal of Biological Macromolecules,2014,69:146-150.
[43]WANG X F,WANG S Y,LI Y L,et al.SulfatedAstragaluspolysaccharide can regulate the inflammatory reaction induced by LPS in Caco2 cells[J].International Journal of Biological Macromolecules,2013,60:248-252.
[44]SHI J J,ZHAO Y,WANG Y P,et al.Inflammatory caspases are innate immune receptors for intracellular LPS[J].Nature,2014,514(7521):187-192.
[45]BARTEL D P.MicroRNAs:target recognition and regulatory functions[J].Cell,2009,136(2):215-233.
[46]SALTIEL A R,PESSIN J E.Insulin signaling pathways in time and space[J].Trends in Cell Biology,2002,12(2):65-71.
[47]JING Q,HUANG S,GUTH S,et al.Involvement of microRNA in AU-rich element-mediated mRNA instability[J].Cell,2005,120(5):623-634.
[48]ANDERSON P.Post-transcriptional control of cytokine production[J].Nature Immunology,2008,9(4):353-359.
[49]HUANG Z,MA J T,CHEN M J,et al.Dual TNF-α/IL-12p40 interference as a strategy to protect against colitis based on miR-16 precursors with macrophage targeting vectors[J].Molecular Therapy,2015,23(10):1611-1621.
[50]WANG X L,WANG X L,LIU X L,et al.miR-15a/16 are upreuglated in the serum of neonatal sepsis patients and inhibit the LPS-induced inflammatory pathway[J].International Journal of Clinical and Experimental Medicine,2015,8(4):5683-5690.
[51]ZHANG X H,WANG D Y,HU Y L,et al.Immunologic enhancement ofAstragaluspolysaccharide (APS) on the humoral immunity of chicken[J].Chinese Journal of Veterinary Science,2009,29(3):312-314,334.
(責(zé)任編輯武海龍)
Effects and Bioinformatic Analysis ofAstragalusPolysaccharide on miR-16 Expression in Different Tissue of Breeder Cocks
REN XiaochunLI YulongWU ShengruLEI XinyuGUO WeiDANG Yanna GONG Yuesheng*YANG Xiaojun*
(College of Animal Science and Technology, Northwest A&F University, Yanling 712100,China)
Abstract:This experiment was conducted to investigate the effects of Astragalus polysaccharides (APS) on miR-16 expression in different tissues of breeder cocks, combining with the functional enrichment analysis of GO and KEGG pathway of miR-16 predicted targets, and to explore the potential regulation role of APS in different tissues via miR-16. A total of 64 one-day-old Cobb 500 breeder cocks were randomly divided into control group and APS group with 4 replicates per group and 8 breeder cocks per replicate. Cocks in the control group were fed a corn-soybean meal based diet, and the others in APS group were fed the basal diet supplemented with 10 g/kg APS. The experiment lasted for 40 weeks. The results showed as follows: 1) compared with the control group, dietary supplemented with APS improved the semen volume and number of effective sperm, decreased the percentage of abnormal sperm (P>0.05). 2) miR-16 differentially expressed in different tissues; APS ssignificantly increased the miR-16 expression in liver, spleen, duodenum mucosa and ileum mucosa (P<0.05 or P<0.01), and down-regulated miR-16 expression in testis (P<0.05). 3) GO enrichment analysis of miR-16 predicted that targets were showed to be enriched for the metabolic functions in transmembrane transport, ubiquitin-dependent protein catabolic process, intracellular protein transport, glycolytic process (P<0.05 or P<0.01). KEGG pathway showed that the target genes were enriched in focal adhesion, insulin signaling pathway, glycolysis/gluconeogenesis associated with cell proliferation, differentiation and metabolism (P<0.05). And the target genes were also enriched in toll-like receptors signaling pathways and natural killer cell mediated cytotoxicity related to immune pathways. In conclusion, APS up-regulates the expression of miR-16 in liver, spleen, duodenum mucosa, ileum mucosa, while down-regulates that in testis of breeder cocks. miR-16 predicted targets collect with metabolism and immune regulation, it showes that APS regulated the miR-16 expression on different tissues of breeder cocks to affect the metabolism and immune regulation functions.[Chinese Journal of Animal Nutrition, 2016, 28(6):1887-1898]
Key words:APS; breeder cocks; miR-16; semen quality; tissue expression; bioinformatics analysis
doi:10.3969/j.issn.1006-267x.2016.06.032
收稿日期:2015-12-22
基金項(xiàng)目:國家自然科學(xué)基金項(xiàng)目(31272464);教育部新世紀(jì)優(yōu)秀人才項(xiàng)目(NCET-12-0476);陜西省農(nóng)業(yè)公關(guān)計(jì)劃(2014K01-18-02,2015NY149);陜西省科技統(tǒng)籌創(chuàng)新工程計(jì)劃項(xiàng)目(2015KTCQ02-19)
作者簡介:任小春(1989—),女,四川遂寧人,碩士研究生,動物營養(yǎng)與飼料科學(xué)專業(yè)。E-mail: 1107330872@qq.com *通信作者:龔月生,教授,碩士生導(dǎo)師,E-mail: gongyuesheng@sohu.com; 楊小軍,教授,碩士生導(dǎo)師,E-mail: yangxj@nwsuaf.edu.cn
中圖分類號:S831
文獻(xiàn)標(biāo)識碼:A
文章編號:1006-267X(2016)06-1887-12
*Corresponding authors: GONG Yuesheng, professor, E-mail: gongyuesheng@sohu.com; YANG Xiaojun, professor, E-mail: yangxj@nwsuaf.edu.cn