• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Identification of Haploid Maize Kernel Using NIR Spectroscopy in Reflectance and Transmittance Modes: A Comparative Study

    2016-06-15 16:36:05QINHongMAJingyiCHENShaojiangYANYanluLIWeijunWANGPingLIUJin
    光譜學(xué)與光譜分析 2016年1期
    關(guān)鍵詞:單倍體朝向識別率

    QIN Hong, MA Jing-yi,, CHEN Shao-jiang, YAN Yan-lu,LI Wei-jun*, WANG Ping, LIU Jin

    1. Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China 2. College of Information and Control Engineering,China University of Petroleum (Huadong),Qingdao 266580,China 3. National Maize Improvement Center, China Agricultural University, Beijing 100193, China 4. College of Information and Electrical Engineering,China Agricultural University,Beijing 100083,China

    Identification of Haploid Maize Kernel Using NIR Spectroscopy in Reflectance and Transmittance Modes: A Comparative Study

    QIN Hong1, MA Jing-yi1,2, CHEN Shao-jiang3, YAN Yan-lu4,LI Wei-jun1*, WANG Ping2, LIU Jin3

    1. Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China 2. College of Information and Control Engineering,China University of Petroleum (Huadong),Qingdao 266580,China 3. National Maize Improvement Center, China Agricultural University, Beijing 100193, China 4. College of Information and Electrical Engineering,China Agricultural University,Beijing 100083,China

    The spectra measurements mode that suitable for haploid maize kernel identification was explored using MicroNIR-1700 series of miniature near infrared spectrometer by JDSU company. Based on Near Infrared Spectroscopy (NIRS) qualitative analysis techniques, we conducted a comparative study using reflectance and transmittance spectra to identify haploid maize kernels. Partial least squares-discriminant analysis(PLS-OLDA) was used to compress the pretreated spectral data, and then the identification models were built based on Support Vector Machine (SVM). The measured data were recorded in reflectance and transmittance modes and the recognition correct rates were calculated. For measurements taken in reflectance mode, the average recognition rate was less than 60% regardless of embryo side positions. In transmittance mode, however, the average recognition rate reached 93.2%. The experiment results show that diffuse reflection spectrum could only obtain corn grain surface information, so embryo side positions severely affect haploid maize kernel identification effect when reflectance measurements mode have been employed, but they have far less impact on transmittance mode. The near infrared diffuse transmittance spectra analyzes non-uniform samples can achieve the analysis of optical path depth information accumulation, all information of the sample interior can be obtained, so transmittance spectra could identify haploid maize effectively and be desensitized to kernel positions. NIRS qualitative analysis techniques with features of rapid, nondestructive could identify the haploid and Micro-NIR spectrometer scan fast and cost less, which have utility for automatically selecting haploid maize kernels from hybrid kernels.

    Near Infrared Spectroscopy; Haploid maize identification; Reflectance spectra;Transmittance spectra; Qualitative analysis

    Biography:QIN Hong, (1977—), Female, Engineer, Institute of Semiconductors, Chinese Academy of Sciences e-mail:qinh@semi.ac.cn *Corresponding author e-mail:wjli@semi.ac.cn

    Introduction

    It can accelerate the process of breeding and improve the efficiency of breeding, by using the haploid technology for getting pure line and then breeding inbred lines. Thus, in recent years, the haploid breeding of maize on the basis of biological induction has gradually become one of the key technologies of maize breeding[1]. Due to the low probability of natural production of haploid (0.05%~0.1%), less than 10% even artificially induced[2], it is significant for maize haploid breeding to study how to rapidly and accurately identify the haploid kernel from the induction produced large amounts of kernels.

    At present, the conventional method for identification of haploid breeding units is the genetic marker method[3], which mainly rely on color indication of the kernel and artificial means for the identification and separation of kernel haploid. Artificial selection, relying on naked-eye observation, easily leads to fatigue of vision and brain, reduces efficiency while increases misidentification, and is subjectively, laborious and time consuming. In addition, a lot of material is very weak for color indication, this will lead to identification efficiency is reduced, the identification result is not ideal. Therefore, we need to develop rapid identification technology which is easier for automation implementation. Zhang Junxiong, etc.[4]studied a feature extraction and dynamic recognition method for maize haploid seeds embryos. The correct recognition rate for maize haploid is 98.04%, for chimeras is 94.44%. The method is based on machine vision technology, suitable for varieties with clear color indication, and needs to identify seed embryo surface, and place maize seeds according to the orientation of embryo surface, not easy to implement automation in its true sense. Liu Jin, etc.[5], studied pollen xenia effect and nuclear magnetic resonance (NMR) technology based on the oil content, to separate maize haploid kernels adopting the method of oil content detection, with an average recognition rate of 92.3%, recognition speed of 4 sec/kernels. This method is of good results in detection and separation, but can only identify kernels of high oil content inducer, and is difficult to popularize for public due to the expensiveness of NMR instruments.

    NIRS qualitative analysis techniques with features of rapid, nondestructive, low cost detection, easy to operate, etc.[6], are very extensive in the applied research of crop seed identification, and superior results of identification have been achieved. But the NIR qualitative research for haploid maize seed identification has not yet been reported. At present, the conventional near infrared spectral analysis mainly focus on diffuse reflectance spectra, the object samples for diffuse reflectance spectra analysis request uniform samples, and need to meet certain quality or volume requirements. Maize seeds are different in size and shape, and the concentration of composition within the kernel are uneven, the difference of shape is small between maize haploid and polyploid of the same variety, the nature of the differences between them exist in the kernel interior especially embryo. Using diffuse reflectance spectrometry to analyze a single seed, the size, shape, surface morphology and position placed, etc. of the seed will severely affect the results of the analysis, which is called position effect. Position effect leads to the conventional near infrared spectra analysis technique is not applicable to single kernel seed, which is one of the main reasons for that single kernel seed near infrared spectra analysis is currently not practical. While the near infrared diffuse transmittance spectra analyzes non-uniform samples can achieve the analysis of optical path depth information accumulation, all information of the sample interior can be obtained, the influence of position effect to analysis is reduced to a great extent. In this paper, qualitative near infrared spectroscopy analysis method is applied to the identification of maize haploid kernels, and identification results of diffuse reflectance spectra and diffuse transmittance spectra are compared. Experimental results show that in the case of regardless of embryo orientation, spectra obtained from the way of diffuse reflectance measuring cannot effectively identify maize haploid. While adopting diffuse transmittance measurement method, of which the near infrared spectra composition carries more information of the kernel interior, so as to achieve the effective identification of maize haploid and polyploid. Diffuse transmittance identification method based on micro spectrometer is of no special requirements for samples, simple operation, fast speed, low cost, easy to implement practical automatic identification and sorting system for maize haploid seeds.

    1 Experiments

    1.1 Instruments and equipment

    For instrument we use MicroNIR-1700 series of miniature near infrared spectrometer by JDSU company, schematic diagram is shown in Fig.1. Instrument parameters are as follows: light source are the double integration vacuum tungsten lamps, spectral components: linear variable filter (LVF), probe types: 128 linear elements uncooled indium gallium arsenic (InGaAs) diode array, wavelength range: 950~1 650 nm, resolution: 12.5 nm, measuring time (typical): 0.25 seconds. Data analysis software is Matlab2010b (the United States, the Mathworks company).

    Fig.1 Schematic diagram of the MicroNIR reflectance measurements

    Experiments were divided into diffuse reflectance and diffuse transmittance of two groups: diffuse reflectance experiment used the built-in light source of micro spectrometer, i.e. double integration vacuum tungsten lamps, light illuminated the maize kernel from the bottom, the optical signal detector captured was the diffuse reflectance of the maize kernel; the built-in light source was shut in the diffuse transmittance experiment, the halogen tungsten lamp was used as external light source, light illuminated the maize kernel from the top diagonal, the optical signal detector captured was the diffuse transmittance of the maize kernel.

    1.2 Sample source and spectra acquisition

    The haploid and polyploid of maize kernels, provided by national maize improvement center, which are Navajo genetic marker imported and hybridization induced, are experimented as the research object.

    In diffuse reflectance experiments, the data was collected for five days (October 16, 2013, October 17, 2013, October 18, 2013, October 21, 2013 and October 22, 2013), 100 each haploid and polyploid spectra were collected every day, including 35 kernel embryo face down and 35 kernel embryo face up, 30 seed kernels were placed randomly. The data of five days were numbered as R1~R5 according to the sequence of collection time. Spectral curves are shown in Fig.2(a).

    In diffuse transmittance experiments, data was collected for three days (May 26, 2014, May 27, 2014 and May 28, 2014), a set of data was collected in the morning and another in the afternoon every day with a total of 6 sets of data, 50 spectral data for haploid and polyploidy in each set, all kernels are randomly placed. The data of three days were numbered as T1~T5 according to the sequence of collection time. Spectral curves are shown in Fig.2(b). It is observed from the spectrogram, absorbance range of diffuse reflectance spectra is 0.15~0.45, the discrete degree is about 0.3; and absorbance range of diffuse transmittance spectra is 0~0.15, the discrete degree is about 0.15. The same kind of corn seeds were with similar structure and composition. Near-infrared diffuse transmission spectrum of single grain reflects its overall structure and components, so near infrared spectrum of the same kind maize seeds was with the relatively closer characteristics and the smaller discrete degree, this is not the foundation of the same kind of corn seed identification. This is the identified foundation of different kinds of maize seed. While the diffuse reflection spectrum is different. If the endosperm of seeds was faced with light, the starchy material of endosperm (characteristic compooents) was with stronger absorption of light, reflected in the diffuse reflection spectrum was with the relatively stronger O—H characteristic peak. If the embryo of seeds was faced with light, the protein material of endosperm (characterisuic components) was with stronger absorption of light, reflected in the diffuse reflection spectrum was with the relatively stronger N—H characteristic peak. The actual measured spectra of these two types of seed spectrum was usually mixed together, resulting in the discrete degree of the diffuse reflectance spectral set was greater than the diffuse transmittance and therefore the accuracy of the seed identification was affected. Compared with diffuse reflectance spectra, the discrete degree of absorbance for diffuse transmittance spectra is smaller; the accuracy of spectral analysis is higher[7].

    Fig.2 Schematic diagram of the spectral curve

    1.3 Spectral preprocessing, feature extraction and modeling

    The preprocessing for original spectral data[8]applies the combination of Smoothing, First Derivative (FD) and Vector Normalization (VN) (this section is not the key point studied in this paper, thus here is no detailed introduction).

    After above preprocessing for the original spectra, based on the method of literature[8], PLS+OLDA is used for data feature extraction. Partial least-squares regression (PLS)[9]data decomposition and regression were combined to one step, the obtained eigenvalue vectors were directly related to the nature of varieties classified, the extracted comprehensive composition can maximally reflect the features of category information. Orthogonal linear discriminant analysis (OLDA) is an improvement of linear discriminant analysis (LDA), which is a kind of classical effective method of dimension reduction. By finding a projection matrix composed of discriminant vector, the projection of raw data towards low dimension space, makes similar samples as focused as possible, non-similar sample as disperse as possible, i.e. maximize the ratio of distribution of inter-class and intra-class[10]. The OLDA[11]makes the discriminant vector a set of mutually orthogonal projection vector.

    In this paper, support vector machine (SVM) method is adopted to build the maize haploid identification model. SVM is a machine learning method, through a nonlinear mapping, the sample!space is mapped into a feature space of high dimension even infinite dimension, making the nonlinear separable problem in original sample space transformed into a linear separable problem in feature space[12]. The SVM method is often used in binary classification problems, thus we choose SVM as classifier for maize haploid and polyploid identification problems.

    The experimental data, including reflectance and diffuse transmittance, were processed using the same algorithm. The first step, the PLS algorithm was used to reduce the dimensionality of the pretreated data. The second step, the former 9-dimensional data obtained were reduced to a two-dimensional using the laboratory prepared OLDA algorithm code. The final step, the species identification model was established by the SVM algorithm (polynomial kernel).

    1.4 Diffuse reflectance experiment

    Modeling with data set R1, test for R2~R5, count the correct recognition rate for haploid and polyploid respectively, and averaging. The test result is shown in Table 1.

    Table 1 Result of test sets in diffuse reflectance conditions

    It can be seen from the result in Table 1, the average recognition rate for maize haploid and polyploid is between 44%~55%, less than 60%. Applying experiment scheme of diffuse reflectance illumination is unable to effectively identify maize haploid and polyploid.

    In order to further explore the influence of the maize kernel embryo surface orientation to the recognition results, the following two sets of experiments are designed. The first set of experiments modeling with 35 spectra with kernel embryo facing down in data set R4, test 35 spectra in data set R5 corresponding to the spectra of kernel embryo facing down and kernel embryo facing up, respectively. The second set of experiments modeling with 35 spectra with kernel embryo facing up in data set R4, test 35 spectra in data set R5 corresponding to the spectra of kernel embryo facing up and kernel embryo facing down, respectively. Count the correct recognition rate for haploid and polyploid respectively, and averaging. The test result is shown in Table 2.

    Table 2 Result of test sets in diffuse reflectance conditions with embryo surface orientation

    Analyzing data in Table 2, the kernel embryo placed facing down, the diffuse reflectance spectra contains information of embryo most, with the recognition rate of 100%; the kernel embryo placed facing up, diffuse reflectance spectra contains less proportion of information of embryo, recognition rate is significantly reduced; Under the worst circumstance (embryo surface orientation of modeling set and testing set are opposite), diffuse reflectance spectra cannot effectively identify haploid and polyploid. analysis results suggest due to the position effect of diffuse reflectance spectra, the essential difference between maize haploid and polyploid of the same variety exists in the kernel interior especially embryo, thus the orientation of maize kernel embryo surface is the main causes of that the diffuse reflectance spectra is unable to accurately identify maize haploid kernels. In order to achieve rapid and automatic sorting of maize haploid kernels without artificial participation, low recognition rate as a result of the orientation of maize kernel embryo surface needs to be solved.

    1.5 Diffuse transmittance experiment

    Shut the built-in light source of micro spectrometer, use the external light source to illuminate the maize kernel, collect the near infrared diffuse transmittance spectra. To prevent the damage of spectrometer caused by high light direct illumination to the detector, adjust the angle of incidence light to about 45-degree with the kernel. The detector collected are near infrared diffuse reflectance spectra through maize kernel, which carry a large number of information of sample interior, can largely reduce the influence of position effect to analysis. In this experiment, the kernels were placed randomly; orientation of embryo surface was not distinguished.

    Use T1 as modeling set, test for T2~T6, count the correct recognition rate for haploid and polyploid respectively, and averaging. The test result is shown in Table 3.

    Table 3 Result of test sets in diffuse transmittance conditions

    It is observed from data in Table 3, the minimum average recognition rate is 88%, the maximum achieves 98%, the average is 93.2%, i.e. adopting diffuse transmittance method can effectively identify maize haploid and polyploid kernel. In addition, the collection time of modeling data and the collection time of test set data were not completely on the same day. In Table 3, the collection time of modeling data of set T1 was on 26th, the collection time of data used to test set T6 was on 28th, the recognition rate can still achieve 92%, the results show that modeling with diffuse transmittance spectra is of certain time stability, to satisfy practical applications.

    Diffuse transmittance spectra collection without distinction of the orientation of maize kernel embryo surface can effectively identify maize haploid seeds, and the model stability is good, which provides technical basis for automatic collection and spectra identification. It takes only 0.25 s for a single spectra collection by miniature near infrared spectrometer; these advantages provide the possibilities for subsequent development of high throughput automatic sorting equipment for maize haploid kernels.

    2 The results and discussion

    This paper based on NIRS qualitative analysis technology, compared the identification results of maize haploid with diffuse reflectance and transmittance spectra. The experiment results show that regardless of the orientation of kernel embryo surface, using diffuse reflectance spectra cannot identify maize haploid effectively; while using diffuse transmittance spectra can effectively identify the haploid and polyploid, with an average correct recognition rate of 93.2%, and the time stability of the model is preferable. The analysis suggests that, diffuse reflectance spectra mainly contain the material information of the sample surface and shallow, tending to be more influenced by factors of maize kernels such as size, surface morphology, embryo surface orientation, etc., reducing the proportion of information of differences between haploid and polyploid category, increasing the difficulties for maize haploid identification. Diffuse transmittance experiments use an external light source to illuminate maize kernel, the detector collected are near infrared diffuse transmittance spectra through the kernel, which carry more information of differences between haploid and polyploid kernel interior. Therefore, in the circumstance that regardless of orientation, it is still able to effectively identify maize haploid and polyploid kernels.

    3 Conclusions

    This paper based on MicroNIR-1700 series miniature near infrared spectrometer of JDSU Company, using NIRS qualitative analysis methods, did related research for maize haploid and polyploid identification problems. The study found that the differences between maize kernel haploid and polyploid were mainly in the embryo, and diffuse reflectance spectra carry information of the kernel surface and shallow, therefore, in the circumstance that regardless of orientation, near infrared diffuse reflectance spectra analysis cannot effectively identify haploid, while diffuse transmittance spectra carrying a lot of information, to a great extent overcome the shortage that diffuse reflectance spectra is kernel embryo surface orientation sensitive. Applying the diffuse transmittance analysis method that external light source illuminate maize kernel proposed in this paper, can achieve the average correct recognition rate for haploid and polyploid 93.2%, miniature near infrared spectrometer is of low cost, fast spectra collection speed, simple operation. The near infrared diffuse transmittance spectra qualitative analysis combined with micro near infrared device studied in this paper, is easy to implement high throughput automatic identification system equipment for maize haploid kernels, is of great practical value.

    [1] Shi Xiaodong, Gao Runmei. Plant Tissue Cultivation. Beijing: China Agricultural Science and Technology Press,2009.

    [2] Cai Zhuo, Xu Guoliang. Journal of Maize Sciences,2008,16(1): 1.

    [3] Zhao Yanming, Dong Shuting, Zhang Suoliang, et al. Journal of Maize Sciences,2007, 15(5):60.

    [4] Zhang Junxiong, Wu Zhanyuan, Song Peng, et al. Transactions of the Chinese Society of Agricultural Engineering,2013, 29(4):199.

    [5] Liu Jin, Guo Tingting. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(z2): 233.

    [6] Lu Wanzhen, Yuan Hongfu, Xu Guangtong, et al. Modern Near Infrared Spectroscopy Analytical Technology(Second Edition). Beijing: China Petrochemical Press, 2007.

    [7] Yan Yanlu. Modern Instrumental Analysis(Third Edition). Beijing: China Agricultural University Press,2010.

    [8] Zhang Liping, Li Weijun, WANG Ping, et al. Spectroscopy and Spectral Analysis, 2012, 32(10): 2785.

    [9] Svante Wold,Michael Sjostroma,et al. Chemometrics and Intelligent Laboratory Systems,2001,58:109.

    [10] Duda R O,Hart P E,Stork D G. Pattern Classification. Translated by Li Hongdong,Yao Tianxiang,et al. Beijing:China Machine Press,2003.

    [11] Fan Bin,Lei Zhen,et al. Proceedings of 8th IEEE International Conference on Automatic Face & Gesture Recognition,2008. 1.

    [12] Zhang Shanwen, Jia Qingjie, Jing Rongzhi. Journal of Anhui Agricultural Sciences, 2012,40(1):9.

    *通訊聯(lián)系人

    O657.3; S123

    A

    基于近紅外漫反射與漫透射光譜的玉米單倍體鑒別比較研究

    覃 鴻1,馬競一1,2,陳紹江3,嚴(yán)衍祿4,李衛(wèi)軍1*,王 平2,劉 金3

    1. 中國科學(xué)院半導(dǎo)體研究所高速電路與神經(jīng)網(wǎng)絡(luò)實驗室,北京 100083 2. 中國石油大學(xué)(華東)信息與控制工程學(xué)院,山東 青島 266580 3. 中國農(nóng)業(yè)大學(xué)國家玉米改良中心,北京 100193 4. 中國農(nóng)業(yè)大學(xué)信息與電氣工程學(xué)院,北京 100083

    使用JDSU公司的MicroNIR1700型微型近紅外光譜儀,研究了適合進(jìn)行單籽粒玉米單倍體鑒別的光譜測量方法。基于近紅外光譜定性分析技術(shù),比較了漫反射和漫透射兩種情況下玉米單倍體鑒別的效果。光譜數(shù)據(jù)經(jīng)過預(yù)處理后,采用PLS+OLDA特征提取算法,應(yīng)用SVM建立玉米單倍體鑒別模型,分別統(tǒng)計漫反射和漫透射實驗條件下,鑒別模型的正確識別率。在微型光譜儀內(nèi)置光源漫反射的光譜測量方式下,不分胚面朝向,玉米單倍體籽粒平均識別率低于60%,不能有效鑒別玉米單倍體和多倍體。而采用外置光源對籽粒進(jìn)行漫透射光譜測量方式,獲得了平均正確識別率為93.2%的鑒別效果,并且模型穩(wěn)定性好。實驗結(jié)果表明,漫反射光譜僅能獲得玉米籽粒表層信息,因此玉米籽粒胚面朝向嚴(yán)重影響漫反射光譜鑒別單倍體種子的效果;而漫透射光譜可以實現(xiàn)分析光程縱深信息全累加,能夠得到樣品內(nèi)部的信息,因此對胚面朝向不敏感,能夠有效地對隨機擺放的玉米單倍體和多倍體進(jìn)行識別。近紅外方法能快速、無損地鑒別單倍體,并且微型光譜儀采集速度快,成本低,為實現(xiàn)實用化的自動鑒別提供了條件。

    近紅外光譜;單倍體鑒別;漫透射;漫反射;定性分析

    2014-09-23,

    2014-12-10)

    2014-09-23; accepted:2014-12-10

    National Key Scientific Instrument and Equipment Development Project(2014YQ470377), the China Scholarship Council (201404910237)

    10.3964/j.issn.1000-0593(2016)01-0292-06

    猜你喜歡
    單倍體朝向識別率
    朝向馬頭的方向
    遼河(2022年1期)2022-02-14 21:48:35
    朝向馬頭的方向
    遼河(2022年1期)2022-02-14 05:15:04
    不同除草劑對玉米單倍體成熟胚的加倍效果
    基于類圖像處理與向量化的大數(shù)據(jù)腳本攻擊智能檢測
    計算機工程(2020年3期)2020-03-19 12:24:50
    基于真耳分析的助聽器配戴者言語可懂度指數(shù)與言語識別率的關(guān)系
    烏龜快跑
    提升高速公路MTC二次抓拍車牌識別率方案研究
    玉米單倍體育性自然恢復(fù)研究進(jìn)展
    高速公路機電日常維護(hù)中車牌識別率分析系統(tǒng)的應(yīng)用
    微生物學(xué)
    亚洲三区欧美一区| 成年人午夜在线观看视频| av片东京热男人的天堂| 中文欧美无线码| 国产精品偷伦视频观看了| 久久免费观看电影| 青草久久国产| 亚洲成人av在线免费| 久久久久久久久久久免费av| 人妻一区二区av| 日韩视频在线欧美| 午夜激情av网站| 婷婷色综合www| 久久青草综合色| 国产视频首页在线观看| 伦理电影免费视频| 多毛熟女@视频| 十分钟在线观看高清视频www| av片东京热男人的天堂| 在线观看三级黄色| 亚洲综合色网址| 2018国产大陆天天弄谢| 成年女人毛片免费观看观看9 | 久久久久精品久久久久真实原创| 欧美日韩成人在线一区二区| 欧美xxⅹ黑人| 岛国毛片在线播放| 亚洲av电影在线进入| 性高湖久久久久久久久免费观看| 高清视频免费观看一区二区| 国产伦理片在线播放av一区| 免费在线观看完整版高清| 亚洲人成网站在线观看播放| 热99久久久久精品小说推荐| 日韩欧美一区视频在线观看| 国产色婷婷99| 亚洲国产毛片av蜜桃av| 欧美日韩亚洲高清精品| 欧美成人精品欧美一级黄| 婷婷成人精品国产| 妹子高潮喷水视频| 青春草国产在线视频| 亚洲精品在线美女| 亚洲精品在线美女| 天堂俺去俺来也www色官网| 免费黄色在线免费观看| 男女午夜视频在线观看| 在线观看www视频免费| 在线免费观看不下载黄p国产| 亚洲熟女毛片儿| 亚洲五月色婷婷综合| 一区二区三区激情视频| 如何舔出高潮| 亚洲国产欧美日韩在线播放| 国产精品一二三区在线看| 性色av一级| 精品国产超薄肉色丝袜足j| 天堂俺去俺来也www色官网| 自线自在国产av| 天天影视国产精品| 成年动漫av网址| 宅男免费午夜| 久久鲁丝午夜福利片| 伦理电影大哥的女人| 性高湖久久久久久久久免费观看| 成年人免费黄色播放视频| 91精品三级在线观看| 国产毛片在线视频| 亚洲欧美成人精品一区二区| 蜜桃在线观看..| 欧美人与善性xxx| 男女床上黄色一级片免费看| 欧美老熟妇乱子伦牲交| 国产成人精品福利久久| 免费高清在线观看日韩| 国产福利在线免费观看视频| 日韩大码丰满熟妇| 69精品国产乱码久久久| 亚洲国产av新网站| 操出白浆在线播放| 国产成人免费观看mmmm| 一级片'在线观看视频| 亚洲国产中文字幕在线视频| 国产高清国产精品国产三级| 9色porny在线观看| 好男人视频免费观看在线| 丝袜脚勾引网站| 久热爱精品视频在线9| 婷婷色av中文字幕| 国产在线一区二区三区精| 女人高潮潮喷娇喘18禁视频| 精品国产一区二区三区四区第35| 秋霞伦理黄片| 国产探花极品一区二区| 一级毛片黄色毛片免费观看视频| 狠狠婷婷综合久久久久久88av| 亚洲精品日韩在线中文字幕| 18在线观看网站| 中文字幕人妻熟女乱码| 一本色道久久久久久精品综合| 欧美久久黑人一区二区| 久久97久久精品| 成年人午夜在线观看视频| 国产日韩欧美视频二区| 天天躁夜夜躁狠狠躁躁| av视频免费观看在线观看| 久久狼人影院| 人妻一区二区av| av.在线天堂| 欧美亚洲 丝袜 人妻 在线| 亚洲欧美成人综合另类久久久| 性少妇av在线| 日韩大片免费观看网站| 大码成人一级视频| 亚洲精品乱久久久久久| 欧美 亚洲 国产 日韩一| 日本一区二区免费在线视频| 国产熟女欧美一区二区| 波野结衣二区三区在线| 欧美xxⅹ黑人| 欧美日韩成人在线一区二区| a级毛片在线看网站| 伊人亚洲综合成人网| 18在线观看网站| av免费观看日本| 精品久久蜜臀av无| 丰满迷人的少妇在线观看| 我的亚洲天堂| 女人爽到高潮嗷嗷叫在线视频| 亚洲自偷自拍图片 自拍| 亚洲国产精品成人久久小说| 欧美成人精品欧美一级黄| 亚洲成人一二三区av| 999久久久国产精品视频| 精品人妻一区二区三区麻豆| 午夜福利乱码中文字幕| 不卡视频在线观看欧美| 一级毛片黄色毛片免费观看视频| 亚洲精品aⅴ在线观看| 黄片无遮挡物在线观看| 天天躁日日躁夜夜躁夜夜| 色婷婷久久久亚洲欧美| 老汉色∧v一级毛片| 搡老岳熟女国产| 欧美老熟妇乱子伦牲交| 波野结衣二区三区在线| 日韩av不卡免费在线播放| 亚洲欧美成人综合另类久久久| www.熟女人妻精品国产| 国产免费视频播放在线视频| 曰老女人黄片| 亚洲成人一二三区av| 欧美av亚洲av综合av国产av | 永久免费av网站大全| 国产av码专区亚洲av| 免费观看av网站的网址| 男人操女人黄网站| 少妇人妻久久综合中文| 精品第一国产精品| 美女福利国产在线| 曰老女人黄片| 丝瓜视频免费看黄片| 一区福利在线观看| 亚洲在久久综合| 国产极品天堂在线| 一级片免费观看大全| 亚洲免费av在线视频| av在线播放精品| 久久久久精品性色| 中文字幕制服av| 欧美变态另类bdsm刘玥| 高清视频免费观看一区二区| 欧美在线黄色| 天天影视国产精品| 国产色婷婷99| 宅男免费午夜| 在线看a的网站| 少妇人妻 视频| 日本猛色少妇xxxxx猛交久久| 午夜免费鲁丝| 啦啦啦在线免费观看视频4| 水蜜桃什么品种好| 中文字幕亚洲精品专区| 午夜福利乱码中文字幕| 久久女婷五月综合色啪小说| av免费观看日本| 欧美少妇被猛烈插入视频| 毛片一级片免费看久久久久| 韩国av在线不卡| 国产一区有黄有色的免费视频| 久久久久精品人妻al黑| 这个男人来自地球电影免费观看 | 国产无遮挡羞羞视频在线观看| 国产免费又黄又爽又色| 国产精品.久久久| 丝袜人妻中文字幕| 日韩av免费高清视频| 亚洲婷婷狠狠爱综合网| 悠悠久久av| av视频免费观看在线观看| 欧美日韩亚洲综合一区二区三区_| 日本wwww免费看| 人人妻人人添人人爽欧美一区卜| 一二三四在线观看免费中文在| 日韩制服丝袜自拍偷拍| 1024香蕉在线观看| 亚洲一码二码三码区别大吗| 国产精品秋霞免费鲁丝片| 精品一区二区三区av网在线观看 | 十分钟在线观看高清视频www| 亚洲伊人久久精品综合| 伊人久久国产一区二区| www.精华液| 久久久久国产一级毛片高清牌| 久久久久精品久久久久真实原创| 日韩大片免费观看网站| 777久久人妻少妇嫩草av网站| 中文字幕高清在线视频| 国产精品久久久久成人av| 丰满少妇做爰视频| 欧美成人精品欧美一级黄| 97在线人人人人妻| 欧美av亚洲av综合av国产av | 两性夫妻黄色片| 国产男人的电影天堂91| 精品卡一卡二卡四卡免费| 亚洲欧美精品综合一区二区三区| 亚洲专区中文字幕在线 | 免费观看a级毛片全部| 啦啦啦在线观看免费高清www| 精品少妇久久久久久888优播| 亚洲国产精品成人久久小说| 精品亚洲乱码少妇综合久久| 久久久久精品人妻al黑| 老鸭窝网址在线观看| 这个男人来自地球电影免费观看 | 国产精品女同一区二区软件| bbb黄色大片| 1024视频免费在线观看| 男女床上黄色一级片免费看| 亚洲图色成人| 亚洲精品国产区一区二| 久久影院123| 国产黄色免费在线视频| 精品人妻熟女毛片av久久网站| av线在线观看网站| 五月天丁香电影| 久久久久视频综合| 婷婷色麻豆天堂久久| 久久久久精品久久久久真实原创| 日日撸夜夜添| 亚洲色图 男人天堂 中文字幕| 1024香蕉在线观看| 男人舔女人的私密视频| 中文字幕av电影在线播放| 久久99精品国语久久久| 精品亚洲成a人片在线观看| 中文字幕高清在线视频| 日韩制服骚丝袜av| 深夜精品福利| 少妇 在线观看| 久久午夜综合久久蜜桃| 亚洲欧洲日产国产| 亚洲av成人精品一二三区| 亚洲精品久久久久久婷婷小说| 五月开心婷婷网| 欧美日本中文国产一区发布| 国产精品久久久人人做人人爽| 天天影视国产精品| 亚洲国产精品国产精品| 熟妇人妻不卡中文字幕| 丝袜在线中文字幕| 亚洲精品在线美女| 黄色 视频免费看| 久久午夜综合久久蜜桃| 视频在线观看一区二区三区| 精品人妻在线不人妻| 欧美日韩精品网址| 午夜激情av网站| 丰满饥渴人妻一区二区三| www.自偷自拍.com| 久久天堂一区二区三区四区| 少妇被粗大的猛进出69影院| 捣出白浆h1v1| 国产精品二区激情视频| 亚洲成人国产一区在线观看 | 黄色视频在线播放观看不卡| av女优亚洲男人天堂| 在线观看免费视频网站a站| 男女免费视频国产| 国产成人免费观看mmmm| 美国免费a级毛片| 国产又爽黄色视频| 欧美日本中文国产一区发布| 别揉我奶头~嗯~啊~动态视频 | 国产成人精品福利久久| 日韩伦理黄色片| 老司机深夜福利视频在线观看 | 男男h啪啪无遮挡| 99久久人妻综合| 精品人妻在线不人妻| 永久免费av网站大全| 狂野欧美激情性xxxx| 亚洲综合精品二区| 亚洲图色成人| 国产黄色免费在线视频| 99久久综合免费| 亚洲国产毛片av蜜桃av| 麻豆av在线久日| 国产男人的电影天堂91| 久久热在线av| 老司机靠b影院| 国产熟女欧美一区二区| 色婷婷av一区二区三区视频| 老司机在亚洲福利影院| 亚洲视频免费观看视频| 欧美精品一区二区免费开放| av天堂久久9| 亚洲国产毛片av蜜桃av| 中文欧美无线码| 久久国产亚洲av麻豆专区| 久久久国产欧美日韩av| 久久久欧美国产精品| 免费观看av网站的网址| 狠狠婷婷综合久久久久久88av| 欧美另类一区| 中文字幕亚洲精品专区| 精品国产露脸久久av麻豆| 熟女少妇亚洲综合色aaa.| 亚洲欧美日韩另类电影网站| 午夜福利一区二区在线看| 成人国产麻豆网| 免费看av在线观看网站| 亚洲av日韩在线播放| 黄色怎么调成土黄色| 亚洲国产精品国产精品| 国产伦人伦偷精品视频| 又粗又硬又长又爽又黄的视频| 777久久人妻少妇嫩草av网站| 国产免费现黄频在线看| 中文字幕色久视频| 精品亚洲成a人片在线观看| 超色免费av| 亚洲欧美一区二区三区国产| 男女免费视频国产| 国产精品久久久久久精品电影小说| 欧美xxⅹ黑人| 美女国产高潮福利片在线看| 纵有疾风起免费观看全集完整版| 黄色视频在线播放观看不卡| 午夜日本视频在线| 亚洲欧美日韩另类电影网站| 免费人妻精品一区二区三区视频| 在线观看www视频免费| 最新的欧美精品一区二区| 在线 av 中文字幕| 午夜福利网站1000一区二区三区| 中文乱码字字幕精品一区二区三区| 51午夜福利影视在线观看| 天天躁日日躁夜夜躁夜夜| 久久久国产精品麻豆| 久久97久久精品| 99国产精品免费福利视频| 亚洲国产中文字幕在线视频| 狠狠精品人妻久久久久久综合| 捣出白浆h1v1| 悠悠久久av| 国产免费福利视频在线观看| 久久午夜综合久久蜜桃| 九九爱精品视频在线观看| 人人妻人人爽人人添夜夜欢视频| 成人黄色视频免费在线看| 欧美人与性动交α欧美软件| 亚洲精品美女久久av网站| av又黄又爽大尺度在线免费看| 在现免费观看毛片| 中文字幕人妻丝袜一区二区 | 99九九在线精品视频| 国产av一区二区精品久久| 午夜老司机福利片| 国产精品一二三区在线看| 母亲3免费完整高清在线观看| 日韩欧美精品免费久久| 亚洲在久久综合| 免费av中文字幕在线| 极品少妇高潮喷水抽搐| 欧美精品人与动牲交sv欧美| 一区二区三区四区激情视频| 久久婷婷青草| 国产欧美日韩综合在线一区二区| 五月天丁香电影| av有码第一页| 中文字幕最新亚洲高清| 国产午夜精品一二区理论片| 欧美少妇被猛烈插入视频| 午夜免费观看性视频| 精品一区在线观看国产| 午夜福利,免费看| 久久热在线av| 精品酒店卫生间| 国产免费视频播放在线视频| 免费高清在线观看日韩| 国产精品熟女久久久久浪| 国产福利在线免费观看视频| 九色亚洲精品在线播放| 超色免费av| 蜜桃国产av成人99| 欧美日韩福利视频一区二区| 亚洲av成人不卡在线观看播放网 | 亚洲美女黄色视频免费看| 久久久精品区二区三区| 久久久久精品久久久久真实原创| videos熟女内射| 亚洲综合色网址| avwww免费| 成人影院久久| 久久精品国产亚洲av涩爱| 国产99久久九九免费精品| 国产精品.久久久| 热re99久久国产66热| 香蕉丝袜av| 亚洲国产最新在线播放| 叶爱在线成人免费视频播放| 免费在线观看视频国产中文字幕亚洲 | 欧美精品av麻豆av| 国产精品国产av在线观看| 亚洲一级一片aⅴ在线观看| 搡老乐熟女国产| 99热网站在线观看| 午夜福利影视在线免费观看| 男女午夜视频在线观看| 久久99精品国语久久久| 亚洲精品日本国产第一区| 不卡视频在线观看欧美| 日本猛色少妇xxxxx猛交久久| 熟妇人妻不卡中文字幕| 最新的欧美精品一区二区| 最近手机中文字幕大全| 亚洲男人天堂网一区| 午夜久久久在线观看| 少妇精品久久久久久久| 国产国语露脸激情在线看| 麻豆精品久久久久久蜜桃| 亚洲精品aⅴ在线观看| 国产精品免费视频内射| 别揉我奶头~嗯~啊~动态视频 | 国产成人a∨麻豆精品| 国产男女超爽视频在线观看| 久久精品亚洲熟妇少妇任你| 久久久亚洲精品成人影院| 久久人人爽人人片av| 欧美人与性动交α欧美精品济南到| 熟妇人妻不卡中文字幕| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品国产av在线观看| 巨乳人妻的诱惑在线观看| 下体分泌物呈黄色| 黑丝袜美女国产一区| 国精品久久久久久国模美| 国产精品二区激情视频| 久久ye,这里只有精品| 国产xxxxx性猛交| 爱豆传媒免费全集在线观看| 久久久久久人妻| 亚洲美女黄色视频免费看| 人人澡人人妻人| 国产精品久久久久久精品电影小说| 久久久国产精品麻豆| 日日摸夜夜添夜夜爱| 日韩欧美一区视频在线观看| 久久免费观看电影| 嫩草影院入口| 99国产精品免费福利视频| 国产亚洲最大av| 国产淫语在线视频| 18禁裸乳无遮挡动漫免费视频| 日日啪夜夜爽| 操美女的视频在线观看| 在线亚洲精品国产二区图片欧美| 91国产中文字幕| 国产精品一区二区精品视频观看| 在线看a的网站| 亚洲婷婷狠狠爱综合网| 亚洲av日韩在线播放| 精品少妇一区二区三区视频日本电影 | 久久精品国产亚洲av高清一级| 97人妻天天添夜夜摸| 观看av在线不卡| 国产日韩欧美亚洲二区| 欧美另类一区| videosex国产| 日韩 亚洲 欧美在线| 最黄视频免费看| 人人妻,人人澡人人爽秒播 | 国产精品一区二区在线不卡| www.av在线官网国产| 欧美乱码精品一区二区三区| 最近最新中文字幕大全免费视频 | 国产精品二区激情视频| 亚洲欧美清纯卡通| 又大又爽又粗| 久久久久久久国产电影| 国产国语露脸激情在线看| 国产亚洲av片在线观看秒播厂| 亚洲欧洲精品一区二区精品久久久 | 亚洲人成电影观看| 嫩草影视91久久| 欧美中文综合在线视频| 国产在线视频一区二区| 欧美人与性动交α欧美软件| 成人手机av| 国产乱人偷精品视频| 亚洲综合色网址| 久久精品国产亚洲av涩爱| 亚洲国产最新在线播放| 又大又爽又粗| 精品国产超薄肉色丝袜足j| av福利片在线| 日韩视频在线欧美| 国产精品一区二区在线不卡| 美女脱内裤让男人舔精品视频| 国产黄色视频一区二区在线观看| 欧美日韩福利视频一区二区| 久久婷婷青草| 91精品伊人久久大香线蕉| 高清黄色对白视频在线免费看| 999精品在线视频| xxx大片免费视频| 亚洲男人天堂网一区| 中文字幕精品免费在线观看视频| 免费高清在线观看视频在线观看| 在线观看人妻少妇| 青春草亚洲视频在线观看| 午夜福利在线免费观看网站| 韩国av在线不卡| 国产精品秋霞免费鲁丝片| 亚洲精品久久成人aⅴ小说| 啦啦啦中文免费视频观看日本| 满18在线观看网站| 午夜精品国产一区二区电影| 2018国产大陆天天弄谢| 日韩熟女老妇一区二区性免费视频| 777久久人妻少妇嫩草av网站| 视频区图区小说| 少妇被粗大的猛进出69影院| 丰满少妇做爰视频| 最新的欧美精品一区二区| videos熟女内射| 久久久久久久久免费视频了| 中文字幕另类日韩欧美亚洲嫩草| 久久精品久久久久久久性| 一级毛片 在线播放| 亚洲男人天堂网一区| 99久国产av精品国产电影| 中文欧美无线码| 国产xxxxx性猛交| 啦啦啦视频在线资源免费观看| 一级片免费观看大全| 国产在线一区二区三区精| av一本久久久久| 人体艺术视频欧美日本| 麻豆乱淫一区二区| 成年女人毛片免费观看观看9 | 国产熟女欧美一区二区| 亚洲精品中文字幕在线视频| 一边亲一边摸免费视频| 亚洲成色77777| 精品少妇一区二区三区视频日本电影 | 日韩欧美精品免费久久| 两性夫妻黄色片| 亚洲国产看品久久| 中文字幕高清在线视频| 免费人妻精品一区二区三区视频| 搡老岳熟女国产| 久久99热这里只频精品6学生| 国产精品av久久久久免费| 在线 av 中文字幕| 两性夫妻黄色片| 黑人巨大精品欧美一区二区蜜桃| 成人国语在线视频| 午夜免费观看性视频| 天堂8中文在线网| 免费观看av网站的网址| 999精品在线视频| 日韩大片免费观看网站| 欧美黄色片欧美黄色片| 日本欧美国产在线视频| 99香蕉大伊视频| 国产淫语在线视频| 国精品久久久久久国模美| 99精国产麻豆久久婷婷| 亚洲欧美清纯卡通| 男女免费视频国产| 一级黄片播放器| 制服诱惑二区| 日韩制服丝袜自拍偷拍| 亚洲成国产人片在线观看| 精品一品国产午夜福利视频| 亚洲欧洲精品一区二区精品久久久 | 国产精品国产av在线观看| 激情五月婷婷亚洲| 一边摸一边抽搐一进一出视频| 一区福利在线观看| 免费久久久久久久精品成人欧美视频| 国产又爽黄色视频| 啦啦啦在线观看免费高清www| 免费看不卡的av| 国精品久久久久久国模美| 色网站视频免费| 水蜜桃什么品种好| av在线观看视频网站免费| 丝袜在线中文字幕| 亚洲一级一片aⅴ在线观看| 久久久国产欧美日韩av| 激情五月婷婷亚洲|