• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Characteristic Spectral Selection Method Based on Forward and Backward Interval Partial Least Squares

    2016-06-15 16:37:45QUFangfangRENDongHOUJinjianZHANGZhongLUAnxiangWANGJihuaXUHonglei
    光譜學與光譜分析 2016年2期
    關鍵詞:波段間隔分段

    QU Fang-fang,REN Dong*,HOU Jin-jian,,ZHANG Zhong,LU An-xiang,WANG Ji-hua,,XU Hong-lei

    1. College of Computer and Information Technology, Three Gorges University, Yichang 443002, China 2. Beijing Research Center for Agricultural Standards and Testing, Beijing 100097, China 3. Department of Mathematics and Statistics, Curtin University, Perth 6845, Australia

    The Characteristic Spectral Selection Method Based on Forward and Backward Interval Partial Least Squares

    QU Fang-fang1,REN Dong1*,HOU Jin-jian1,2,ZHANG Zhong1,LU An-xiang2,WANG Ji-hua1,2,XU Hong-lei3

    1. College of Computer and Information Technology, Three Gorges University, Yichang 443002, China 2. Beijing Research Center for Agricultural Standards and Testing, Beijing 100097, China 3. Department of Mathematics and Statistics, Curtin University, Perth 6845, Australia

    In the near-infrared spectroscopy, the Forward Interval Partial Least Squares (FiPLS) and Backward Interval Partial Least Squares (BiPLS) are commonly used modeling methods, which are based on the wavelength variable selection. These methods are usually of high prediction accuracy, but are strongly characteristic of greedy search, which causes that the intervals selected are not good enough to indicate the analyte information. To solve the problem, a spectral characteristic intervals selection strategy (FB-iPLS) based on the combination of FiPLS and BiPLS is proposed. On the basis of spectral segmentation, both FiPLSs are used to select useful intervals, and BiPLS is used to delete useless intervals, so as to perform the selection and deletion of the characteristic variables alternatively, which conducts a two-way choice of the target characteristic variables, and is used to improve the robustness of the model. The experiments on determining the ethanol concentration in pure water are conducted by modeling with FiPLS, BiPLS and the proposed method. Since different size of intervals will affect the result of the model, the experiments here will also examine the model results with different intervals of these three models. When the spectrum is divided into 60 segments, the FB-iPLS method obtains the best prediction performance. The correlation coefficients (r) of the calibration set and validation set are 0.967 7 and 0.967 0 respectively, and the cross-validation root mean square errors (RMSECV) are 0.088 8 and 0.057 1, respectively. Compared with FiPLS and BiPLS, the overall prediction performance of the proposed model is better. The experiments show that the proposed method can further improve the predictive performance of the model by resolving the greedy search feature against BiPLS and FiPLS, which is more efficient for and representative of the selection of characteristic intervals.

    Near-Infrared Spectroscopy; FiPLS; BiPLS; FB-iPLS; Greedy search; Characteristic intervals

    Biography: QU Fang-fang, (1990—), female, Master Degree Candidate in College of Computer and Information Technology, Three Gorges University e-mail: quff1128@163.com *Corresponding author e-mail: rendong5227@163.com

    Introduction

    Near-infrared spectroscopy contains a large number of absorption peaks of frequency doubling and frequency synthesis groups containing hydrogen, which can reflect the information of the tested substance in samples (concentration, category, etc.). It will give rise to spectral information overlapping and some redundant information including a lot of noises, sample background and the like. It is difficult to eliminate them by preprocessing[1]. If these data are involved in model building, which not only increases the computational complexity of the model, but reduces the preciseness[2]. Studies have shown that, the partial of the characteristics extracted from the full spectrum to modeling can significantly improve the prediction accuracy, and simplify the model. Furthermore, a robust model with good predictive performance will be achieved by eliminating irrelevant or non-linear variables[3-4].

    Conventional methods about selecting spectral region of the spectrum are the correlation coefficient method, stepwise regression method, interval and moving window partial least squares method (MWPLS), stochastic optimization methods, etc. Studies by researchers at home and abroad show that, these methods can be used to select the wavelength spectrum effectively. However, each method has its own advantages and disadvantages without any single method universal[5-6]. For correlation coefficient method based on the Linear statistical, the results are usually unreliable in the case of non-linear correlation and the uneven distribution of calibration set samples[7]. When stepwise regression method introduces or removes an independent variable at each step, the independent variables from these steps all need a significant test (F test). MWPLS method need to select the appropriate width of the window. And stochastic optimization methods include genetic algorithms, simulated annealing algorithm, and particle swarm optimization, among others. They should be made to ensure that the results are global optimum.

    Interval Partial Least Squares (iPLS) method[8]can eliminate interval ranges that are poor correlative with each other, and conduct a preliminary location of the near infrared spectroscopy sub-intervals. Based on a combination of FiPLS and BiPLS[9], a crossover selection of spectral and modeling method, which is denoted as FB-iPLS, is proposed in the paper. This method combines the characteristics of FiPLS to select useful intervals and BiPLS and to delete useless intervals. The principal component of the model is selected through cross-validation. The optimal sequences of spectra from the FiPLS and BiPLS are selected based on the minimum cross-validation root mean square error (RMSECV). The both optimal sequences are combined after removing duplicate intervals. The spectral intervals with high amount of information associated with the tested component[10]is selected. The FB-iPLS can weaken the greedy search features of FiPLS and BiPLS. The experiments on predicting ethanol concentration show that the proposed method can further improve the prediction accuracy of the model compared with the conventional FiPLS and BPLS.

    1 Materials and methods

    1.1 Instruments and reagents

    The infrared spectrometer produced by American PerkinElmer is adopted in the experiments. The range of wavenumber is 12 000~4 000 cm-1, the scanning times are 32, the resolution is 4 cm-1, and the interval number is 2 cm-1. The experimental instruments also include PC machine and the Germany Eppendorf manually pipette. The spectrometer software used to collect the spectral data is Spectrum Version 10.4.1. The chemical reagents ethanol and deionized pure water used in the experiments are of analytical grade. The indoor temperature is kept at about 25 ℃, humidity remained basically unchanged (less than 60%). Each sample is collected three times in parallel, and the original spectrum of the sample is the average of these three times.

    1.2 Preparation of samples

    Anhydrous ethanol and pure water are used to exactly formulate 162 of samples, with a capacity of 2 mL, concentration of 4.5%~85.0%, and 0.5% of the sample interval. And the samples are divided into two groups by SPXY method[16]with a ratio of 2∶1. The sample sizes of the calibration set and validation set are 108 and 54, respectively. Statistics of the ethanol contention in the samples are shown in Table 1. As can be seen, the concentration range of the validation set is included in the concentration range of the calibration set, which is compliance with the modeling standards.

    Table 1 Descriptive statistics for sample measurement

    1.3 Spectral preprocessing

    The near infrared absorption spectrum of 162 samples is shown in Figure 1(a). The maximum absorption peaks are at 5 162 cm-1, mainly for O—H stretching vibration, bending vibration, and a combination of C—H bending vibration of the absorption band, which is widely used for quantitative analysis of ethanol content in water.

    As different spectral preprocess methods[17]have different impact on the performance of the model, the multiplicative scatter correction (MSC), standard normal variable transformation (SNV), SNV add to the trend method (DT), Savitzky-Golay smoothing convolution (SG), sliding window smooth (SW), first-order (1-Der) and second-order (2-Der) derivative spectra are used for all of the 162 samples. The results are shown in Table 2. As can be seen, PLS combined with SNV is the best, whereris 0.952 1, and RMSECV is 0.071 5. Figure 1(b) shows the spectrum that has been processed by SNV, from which, the spectral absorption peak increased and was more obvious, and more conducive to analysis of the spectrum. Therefore, SNV is selected as a pretreatment method for the followed comparative experiments.

    Fig.1 (a) the Raw spectrum of samples;

    Table 2 Modeling results of different preprocess methods

    1.4 FiPLS and BiPLS methods

    (1) FiPLS:

    ① To divide the entire spectral region intokintervals of the same width.

    ② To perform PLS model on each interval, thus obtainingklocal regression models.

    ③ To use RMSECV to measure the accuracy of the local models. The first selected interval is the one which corresponds to the local model with the highest accuracy. Efforts should be made to take this local model as the first sub-model.

    ④ Combine the remaining (k-1) intervals individually with the first selected interval, and then get (k-1) local models. The second selected interval is the one which corresponds to the local model with the highest accuracy. The local model should be made the second sub-model. And then repeat the process until all intervals are combined.

    ⑤ To test the RMSECV value of each sub-model from steps ②—④, and choose the best one (whose RMSECV is the lowest) as the final model. Thus the finally selected intervals are these which are used in the final model.

    (2) BiPLS:

    ① To divide the entire spectral region intokintervals of the same width.

    ② To remove one interval from all of thekintervals individually, and establish PLS model with the remaining (k-1) intervals. That gives rise to k local models, which are built by (k-1) intervals.

    ③ To use RMSECV to measure the accuracy of these local models. The first removed interval is the one which corresponds to the local model with the highest accuracy. To take this local model as the first sub-model.

    ④ To individually remove one interval from the (k-1) intervals which are remained in the first sub-model, and establish PLS model with the remaining (k-2) intervals. Thus to get (k-1) local models, which are built by (k-2) intervals. The second removed interval is the one which corresponds to the local model with the highest accuracy. To take this local model as the second sub-model. To repeat the process until only one interval remained.

    ⑤ This step is the same as FiPLS.

    1.5 The proposed method

    As FiPLS and BiPLS are greedy search methods, which cannot guarantee the selected characteristic intervals are the best. Therefore, the selected intervals are not good to indicate the analyte information. Accordingly, an interval selection method, FB-iPLS is proposed in the paper, which is combined with the features of FiPLS and BiPLS. It is described below.

    The entire spectral region is divided intokintervals with the same width. The first sub-model of FiPLS is gotten by using the FiPLS to select one interval, while the first sub-model of BiPLS is gotten by using the BiPLS to remove one interval. The second sub-model is gotten from the remaining (k-2) (the selected interval is different from the removed interval) or (k-1) (the selected interval is the same as the removed one) intervals. We can use FiPLS to select the second interval which can help to get the highest accuracy with the first selected interval above for modeling. Likewise, the second interval of BiPLS is selected by removing the one. To repeat the process until only one interval remained or no remaining intervals. The final sub-models with the highest accuracy of FiPLS and BiPLS are selected. The intervals of both final models are combined after removing the duplicate intervals, which are the final characteristics for FB-iPLS model.

    The proposed method selects the target intervals of a two-way choice, which can weaken the greedy search feature of FiPLS and BiPLS, and further improve the accuracy of the model. The schematic diagram of FB-iPLS is showed in figure 2, where the selected intervals of FiPLS and the remaining intervals of BiPLS are the target intervals.

    Fig.2 The schematic diagram of the FB-iPLS algorithm

    2 Experimental results and analysis

    2.1 Model of FB-iPLS, BiPLS, FiPLS

    The interval divisions of different size have different impacts on the performance of the model. So when the division number is too small, it may degenerate into full-spectrum PLS algorithm, while when the number is too big, the amount of computation will be increased. In this study, the number of intervals is set from 20 to 65, at an interval of 5, and a total of 10 data points. The principal component is selected by 10-fold cross-validation. The optimal spectral for modeling is selected based on the value of RMSECV. Table 3 shows the results of the three models under different number of intervals.

    As can be seen from table 3, the averagerof calibration set and validation set of the proposed method are 0.967 8 and 0.962 0 respectively, and the average RMSECV are 0.059 2 and 0.059 5. The averagerof BiPLS are 0.972 0 and 0.958 3, and the average RMSECV are 0.056 8 and 0.064 9. The averagerof FiPLS are 0.967 4 and 0.954 6, and the average RMSECV are 0.061 0 and 0.065 1. The results of calibration set of these three methods are similar. But for the validation set, the results of FB-iPLS are better than BiPLS and FiPLS. The reason may be that, FB-iPLS not only selects useful intervals according to FiPLS (which are only selected into, with poor adaptability, but an increasing stability), but also removes useless intervals according to BiPLS (which are only removed out, with good adaptability, but a weakening stability). FB-iPLS weakens the greedy search features of BiPLS and FiPLS, and enhances the stability and adaptability of the model, so it can get better prediction results.

    Table 3 The model results of different number of intervals

    2.2 Comparative analysis of the best and worst results

    The bold data in table 3 represent the best and worst results among different number of intervals of these three methods, where both FB-iPLS and BiPLS get the best results at the intervals of 55, and get the worst results at the intervals of 60. FiPLS gets the best results at the intervals of 40, and gets the worst results at the intervals of 25. Table 4 shows the best and worst comparison results of these three methods.

    From table 4, the selected intervals of BiPLS are few, which may lead to inadequate useful information for modeling, and the prediction result is poor. The number of intervals and principal components that are selected by FiPLS are large, which may cause the model to be too complicated. Relatively, the selected number of variables and principal components of FB-iPLS are moderate. The best and worst R of FB-iPLS are 0.967 0 and 0.954 5, respectively, both higher than BiPLS (0.961 3 and 0.948 1) and FiPLS (0.959 5 and 0.947 1). And the best and worst RMSECV of FB-iPLS are 0.057 1 and 0.061 5, respectively, both lower than BiPLS (0.062 3 and 0.071 5) and FiPLS (0.058 8 and 0.067 2).

    Table 4 The best and worst model results

    Figure 3 shows the selected interval regions by the proposed method. When the spectral is divided into 60 intervals, results will be the best. The serial numbers are 3,4,5,6,7,8,9,10,11,14,15, 16,17,33,37,46,51, and the corresponding spectral regions are 11 734~10 534, 10 268~936, 7 740~7 608, 7 208~7 076, 6 012~5 818, 5 348~5 214 cm-1.

    Fig.3 The selected intervals by FB-iPLS

    Fig.4 The best prediction results of FB-iPLS

    And Figure 4 shows the prediction result of the proposed method.

    3 Conclusions

    Compared with full spectrum modeling, both FiPLS and BiPLS can effectively select the characteristic variables and remove redundancy. Although the accuracy of the modes is relatively high, FiPLS is a method for intervals that is only selected into, and BiPLS intervals that are only remove out. Both of them are of a strong feature of greedy search, and need to be further optimized. As an interval selection method, FB-iPLS is proposed in this paper based on the combination of the two methods. During the process of selection, the corresponding spectral regions are selected and removed at the same time, which can effectively weaken the greedy search features and enhance the stability and effectiveness of the model. For investigating the impacts of the different interval size on the model results, the experiments on comparing the accuracy of the three models under different size of intervals are conducted. The results show that the average prediction accuracy of FB-iPLS is higher than that of BiPLS and FiPLS, and the best and worst prediction accuracy of FB-iPLS are also higher than the other two methods. The proposed method can be effectively used in quantitative analysis for spectral modeling.

    [1] SUN Hong-ye. Changchun University of Science and Technology, 2014.

    [2] Mall U, Wohler C, Grumpe A, et al. Advances in Space Research, 2013.

    [3] Teye E, Huang X, Lei W, et al. Food Research International, 2014, 55: 288.

    [4] JIA Sheng-yao, TANG Xu, YANG Xiang-long, et al. Spectroscopy and Spectral Analysis, 2014, 34(8): 2070.

    [5] FAN Shu-xiang, HUANG Wen-qian, LI Jiang-bo, et al. Spectroscopy and Spectral Analysis, 2014, 34(8): 18.

    [6] SHI Ji-yong, ZHOU Xiao-bo, ZHAO Jie-wen, et al. Journal of Infrared and Millimeter Waves, 2011, 5: 458.

    [7] CHU Xiao-li. Molecular Spectroscopy Analytical Technology Combined with Chemometrics and Its Applications. Beijing: Chemical Industry Press, 2011. 4.

    [8] Suhandy D, Yulia M, Ogawa Y, et al. Engineering in Agriculture, Environment and Food, 2013, 6(3): 111.

    [9] ZHOU Xiao-bo, ZHAO Jie-wen, HUANG Xing-yi. Chinese Mechanical Engineering Society,2006. 6.

    [10] WANG Chun-peng, YU Zuo-jun, MENG Fan-qiang. Journal of Chemical Industry and Engineering, 2013, 12: 4592.

    [11] ZHAN Xiao-ri, ZHU Xiang-rong, SHI Xin-yuan, et al. Spectroscopy and Spectral Analysis, 2009, 29(4): 964.

    *通訊聯(lián)系人

    O657.3

    A

    基于向前和向后間隔偏最小二乘的特征光譜選擇方法

    瞿芳芳1,任 東1*,侯金健1,2,張 忠1,陸安詳2,王紀華1,2,許弘雷3

    1. 三峽大學計算機與信息學院,湖北 宜昌 443002 2. 北京農業(yè)質量標準與檢測技術研究中心,北京 100097 3. Department of Mathematics and Statistics, Curtin University, Perth 6845, Australia

    在近紅外光譜分析中,向前間隔偏最小二乘法(FiPLS)和向后間隔偏最小二乘法(BiPLS)是常用的基于波長變量選擇的建模方法,其模型精度較高,但貪婪搜索特性較強,導致選出的波段并不能較好地反映待測成分的信息。針對該問題,提出一種基于兩者組合策略的光譜特征波段選擇方法(FB-iPLS)。在光譜分段的基礎上,既利用FiPLS選取有用波段,同時利用BiPLS刪除無用波段,來交互執(zhí)行特征變量的選擇與刪除,對目標特征波段進行雙向選擇,用于提高模型的穩(wěn)健性。用該方法建立水中乙醇含量的定量預測模型,并與FiPLS和BiPLS算法對比。由于光譜分段大小會對模型的結果有影響,該實驗還考查這三種方法在不同光譜分段處的結果。在光譜劃分60段時,提出的FB-iPLS方法取得最佳預測性能,其校正集與驗證集相關系數(shù)r分別為0.967 7,0.967 0,交互驗證均方根誤差RMSECV分別為0.088 8,0.057 1。與FiPLS和BiPLS相比,該方法無論在不同光譜分段區(qū)間還是在各自最優(yōu)與最差分段處,模型的整體預測性能都有所提高。實驗結果表明,提出的方法能改善BiPLS與FiPLS貪婪搜索的特性,對特征波段的選取更高效、更具代表性,能進一步提高模型的預測性能。

    近紅外光譜; FiPLS; BiPLS; FB-iPLS; 貪婪搜索; 特征波段

    2014-11-25,

    2015-04-20)

    2014-11-25; accepted: 2015-04-20

    The National Science and Technology Projects in Rural Areas (2014BAD04B05), Natural Science Foundation of China (41371349)

    10.3964/j.issn.1000-0593(2016)02-0593-06

    猜你喜歡
    波段間隔分段
    春日暖陽
    一類連續(xù)和不連續(xù)分段線性系統(tǒng)的周期解研究
    間隔問題
    間隔之謎
    分段計算時間
    3米2分段大力士“大”在哪兒?
    太空探索(2016年9期)2016-07-12 10:00:04
    M87的多波段輻射過程及其能譜擬合
    日常維護對L 波段雷達的重要性
    西藏科技(2015年4期)2015-09-26 12:12:58
    上樓梯的學問
    L波段雷達磁控管的使用與維護
    河南科技(2014年18期)2014-02-27 14:14:53
    精品亚洲乱码少妇综合久久| 免费久久久久久久精品成人欧美视频| 婷婷色麻豆天堂久久| 午夜福利在线免费观看网站| 国产熟女欧美一区二区| 伦精品一区二区三区| 国产成人一区二区在线| 久久久久国产网址| 日韩,欧美,国产一区二区三区| 91精品三级在线观看| 久久精品人人爽人人爽视色| 一级毛片黄色毛片免费观看视频| 国产黄频视频在线观看| 精品国产一区二区久久| 在线观看免费日韩欧美大片| av在线观看视频网站免费| 亚洲美女视频黄频| 伊人久久国产一区二区| 天天影视国产精品| 国产精品国产av在线观看| 伦精品一区二区三区| 欧美最新免费一区二区三区| 欧美日韩一区二区视频在线观看视频在线| 满18在线观看网站| 久久精品亚洲av国产电影网| 国产精品秋霞免费鲁丝片| 久久久久精品久久久久真实原创| 一本色道久久久久久精品综合| 国产一区二区 视频在线| 在线观看免费高清a一片| 久久精品久久精品一区二区三区| 免费观看性生交大片5| 亚洲av国产av综合av卡| 日韩 亚洲 欧美在线| 色视频在线一区二区三区| 久久久国产一区二区| 成人18禁高潮啪啪吃奶动态图| 色视频在线一区二区三区| 天天躁日日躁夜夜躁夜夜| 18禁国产床啪视频网站| 亚洲av在线观看美女高潮| 久久婷婷青草| 看免费成人av毛片| 在线天堂最新版资源| 成人毛片60女人毛片免费| 欧美人与性动交α欧美精品济南到 | 久久热在线av| 春色校园在线视频观看| 一区二区三区激情视频| 久久精品亚洲av国产电影网| 精品一品国产午夜福利视频| 久久久久精品人妻al黑| 亚洲人成77777在线视频| 亚洲一码二码三码区别大吗| 亚洲国产精品一区二区三区在线| 午夜日本视频在线| 久久久精品国产亚洲av高清涩受| 丰满乱子伦码专区| 高清不卡的av网站| 日本猛色少妇xxxxx猛交久久| av网站在线播放免费| 免费播放大片免费观看视频在线观看| 久久久久国产一级毛片高清牌| 综合色丁香网| 人妻少妇偷人精品九色| 久久精品久久久久久久性| 国产亚洲av片在线观看秒播厂| 不卡视频在线观看欧美| 精品人妻偷拍中文字幕| 亚洲美女黄色视频免费看| 欧美bdsm另类| 欧美少妇被猛烈插入视频| 青青草视频在线视频观看| a级毛片黄视频| 女人高潮潮喷娇喘18禁视频| 人妻 亚洲 视频| 国产成人精品福利久久| 2022亚洲国产成人精品| 各种免费的搞黄视频| av国产精品久久久久影院| 九色亚洲精品在线播放| 精品人妻一区二区三区麻豆| 午夜福利乱码中文字幕| 亚洲,欧美精品.| h视频一区二区三区| 亚洲第一青青草原| 中文字幕另类日韩欧美亚洲嫩草| 99热国产这里只有精品6| av又黄又爽大尺度在线免费看| 免费观看无遮挡的男女| 侵犯人妻中文字幕一二三四区| 热re99久久精品国产66热6| 久久久久久久亚洲中文字幕| 国产成人午夜福利电影在线观看| 美女脱内裤让男人舔精品视频| 丝袜人妻中文字幕| 久久久国产一区二区| 性色avwww在线观看| 久久久精品区二区三区| 免费少妇av软件| 丝袜美腿诱惑在线| 国产欧美日韩综合在线一区二区| 男女国产视频网站| 国产精品久久久久成人av| 老熟女久久久| 女性生殖器流出的白浆| 一级片免费观看大全| 亚洲成国产人片在线观看| 成人漫画全彩无遮挡| 女性被躁到高潮视频| 久久久久久久亚洲中文字幕| 成人亚洲欧美一区二区av| 国产精品一国产av| 国产片内射在线| 久久精品国产综合久久久| 黄网站色视频无遮挡免费观看| 丁香六月天网| 波野结衣二区三区在线| 国产精品一国产av| 在线观看三级黄色| 久久韩国三级中文字幕| 国产精品免费视频内射| 男女午夜视频在线观看| 久久鲁丝午夜福利片| 亚洲精品aⅴ在线观看| 日日撸夜夜添| 在线观看三级黄色| 亚洲精品国产色婷婷电影| 美女福利国产在线| 久久精品久久久久久久性| 国产精品久久久av美女十八| 国产成人一区二区在线| 成人毛片60女人毛片免费| 国产一区亚洲一区在线观看| av国产久精品久网站免费入址| 欧美日韩精品网址| 免费观看性生交大片5| 久久精品久久久久久久性| 另类亚洲欧美激情| 美女大奶头黄色视频| 成年女人毛片免费观看观看9 | 老鸭窝网址在线观看| 精品国产一区二区久久| 久久久久久久精品精品| 国产 精品1| 日韩一区二区视频免费看| a级片在线免费高清观看视频| 大陆偷拍与自拍| videosex国产| 黄片无遮挡物在线观看| 男女高潮啪啪啪动态图| 日韩 亚洲 欧美在线| 成年动漫av网址| 精品国产一区二区三区久久久樱花| av福利片在线| 久久精品久久精品一区二区三区| 三级国产精品片| 老汉色∧v一级毛片| 亚洲图色成人| 99re6热这里在线精品视频| 一个人免费看片子| 亚洲国产日韩一区二区| 国产极品天堂在线| 丰满乱子伦码专区| 久久久久精品性色| 欧美精品高潮呻吟av久久| 成人亚洲欧美一区二区av| 久久精品亚洲av国产电影网| 啦啦啦在线观看免费高清www| 久久影院123| 97人妻天天添夜夜摸| 亚洲精品在线美女| 香蕉精品网在线| 伊人久久大香线蕉亚洲五| 两个人免费观看高清视频| 人人妻人人爽人人添夜夜欢视频| 成人亚洲欧美一区二区av| 欧美精品人与动牲交sv欧美| 黄片无遮挡物在线观看| 免费不卡的大黄色大毛片视频在线观看| 最黄视频免费看| 男女高潮啪啪啪动态图| 久久久久人妻精品一区果冻| 激情五月婷婷亚洲| 国产一区二区三区av在线| 国产 一区精品| 高清av免费在线| 国产高清国产精品国产三级| 国产男女超爽视频在线观看| 2022亚洲国产成人精品| 欧美精品国产亚洲| 不卡av一区二区三区| 日韩欧美一区视频在线观看| 婷婷色麻豆天堂久久| 久久久久久久精品精品| 久久人人97超碰香蕉20202| 看十八女毛片水多多多| 女人精品久久久久毛片| 久久国内精品自在自线图片| 国产精品久久久久久精品古装| 亚洲成av片中文字幕在线观看 | 午夜久久久在线观看| 侵犯人妻中文字幕一二三四区| 久久毛片免费看一区二区三区| 亚洲av欧美aⅴ国产| 国产极品天堂在线| 国产精品 欧美亚洲| 欧美日韩av久久| av视频免费观看在线观看| 男女下面插进去视频免费观看| 久久久国产一区二区| 国产精品嫩草影院av在线观看| 国产成人精品一,二区| 超碰97精品在线观看| 国产乱来视频区| 国产片内射在线| 男女国产视频网站| 五月天丁香电影| 久久久久久久国产电影| 欧美xxⅹ黑人| 国产精品人妻久久久影院| 亚洲精品av麻豆狂野| 热re99久久精品国产66热6| 久久精品熟女亚洲av麻豆精品| 母亲3免费完整高清在线观看 | 日本猛色少妇xxxxx猛交久久| 欧美 亚洲 国产 日韩一| 亚洲精品一区蜜桃| 在线看a的网站| 成人国产av品久久久| 天天影视国产精品| 黄频高清免费视频| 亚洲国产欧美在线一区| 五月天丁香电影| 国产精品国产av在线观看| 免费高清在线观看视频在线观看| 大片电影免费在线观看免费| 亚洲av免费高清在线观看| 18+在线观看网站| 日韩中字成人| 亚洲国产最新在线播放| 国产日韩欧美亚洲二区| 一级毛片黄色毛片免费观看视频| 精品久久久久久电影网| 亚洲一区中文字幕在线| av视频免费观看在线观看| 亚洲美女黄色视频免费看| 99久久综合免费| 日日啪夜夜爽| 成人免费观看视频高清| 最新中文字幕久久久久| av在线播放精品| 丝袜脚勾引网站| 午夜免费观看性视频| 亚洲精品视频女| 制服人妻中文乱码| 建设人人有责人人尽责人人享有的| 99国产精品免费福利视频| 永久网站在线| 99热网站在线观看| 美女国产高潮福利片在线看| 国产xxxxx性猛交| 18在线观看网站| 精品少妇内射三级| 国产日韩欧美在线精品| 国产男女超爽视频在线观看| 欧美中文综合在线视频| 超碰97精品在线观看| 亚洲成色77777| 一本—道久久a久久精品蜜桃钙片| 老司机影院成人| 91精品三级在线观看| 亚洲精品乱久久久久久| 麻豆精品久久久久久蜜桃| 在线天堂中文资源库| 亚洲av福利一区| 超碰97精品在线观看| 国产男女超爽视频在线观看| 天堂俺去俺来也www色官网| 精品国产一区二区三区四区第35| 国产精品一国产av| 亚洲国产精品成人久久小说| 国产毛片在线视频| 在线观看三级黄色| 老汉色∧v一级毛片| 永久网站在线| 亚洲欧洲精品一区二区精品久久久 | h视频一区二区三区| freevideosex欧美| 久久99热这里只频精品6学生| 精品人妻一区二区三区麻豆| 纵有疾风起免费观看全集完整版| 久久热在线av| 亚洲图色成人| 国产女主播在线喷水免费视频网站| 777米奇影视久久| 99热全是精品| 国产欧美亚洲国产| 精品久久蜜臀av无| 亚洲精品第二区| 国产乱人偷精品视频| 国产精品嫩草影院av在线观看| 国产xxxxx性猛交| 久久久久久久久久久久大奶| 国产日韩一区二区三区精品不卡| 精品99又大又爽又粗少妇毛片| 精品国产露脸久久av麻豆| 久久久久人妻精品一区果冻| 国产亚洲精品第一综合不卡| 母亲3免费完整高清在线观看 | 国语对白做爰xxxⅹ性视频网站| 精品视频人人做人人爽| 亚洲精品自拍成人| 久久青草综合色| 久热久热在线精品观看| 高清在线视频一区二区三区| 在线观看www视频免费| 亚洲精品美女久久久久99蜜臀 | 久久精品夜色国产| tube8黄色片| 边亲边吃奶的免费视频| 国产免费一区二区三区四区乱码| 国产精品久久久av美女十八| 少妇被粗大猛烈的视频| 97精品久久久久久久久久精品| 色94色欧美一区二区| 男女国产视频网站| 十八禁高潮呻吟视频| 亚洲精品久久久久久婷婷小说| 人妻人人澡人人爽人人| 欧美激情 高清一区二区三区| 亚洲av.av天堂| 久久精品久久久久久久性| 欧美激情高清一区二区三区 | 一边亲一边摸免费视频| 欧美亚洲日本最大视频资源| 香蕉丝袜av| 少妇被粗大猛烈的视频| 日韩一本色道免费dvd| 搡老乐熟女国产| 熟妇人妻不卡中文字幕| 人成视频在线观看免费观看| 久久热在线av| 精品一品国产午夜福利视频| 日韩制服骚丝袜av| 日韩一区二区三区影片| 精品国产乱码久久久久久男人| xxxhd国产人妻xxx| 少妇的逼水好多| 七月丁香在线播放| 精品国产超薄肉色丝袜足j| 99国产综合亚洲精品| 成人漫画全彩无遮挡| 天天影视国产精品| 亚洲美女黄色视频免费看| 女性被躁到高潮视频| 免费大片黄手机在线观看| 亚洲成国产人片在线观看| 夜夜骑夜夜射夜夜干| av视频免费观看在线观看| 欧美bdsm另类| 激情五月婷婷亚洲| 中国三级夫妇交换| 亚洲精品国产av成人精品| 亚洲精品一二三| 亚洲美女黄色视频免费看| 亚洲色图综合在线观看| 宅男免费午夜| 精品一区二区免费观看| 亚洲五月色婷婷综合| 国产成人精品在线电影| 精品午夜福利在线看| www.自偷自拍.com| 国产精品国产三级专区第一集| 国产精品久久久久成人av| 欧美+日韩+精品| 国产一区亚洲一区在线观看| 建设人人有责人人尽责人人享有的| 国产高清不卡午夜福利| 久久人人爽av亚洲精品天堂| 国产xxxxx性猛交| 看非洲黑人一级黄片| 免费观看a级毛片全部| 女性被躁到高潮视频| 老司机影院毛片| 亚洲精品国产一区二区精华液| 纯流量卡能插随身wifi吗| 天天操日日干夜夜撸| 毛片一级片免费看久久久久| 成人午夜精彩视频在线观看| 国产极品粉嫩免费观看在线| 麻豆乱淫一区二区| 精品人妻偷拍中文字幕| 又黄又粗又硬又大视频| 久久精品国产亚洲av涩爱| 午夜久久久在线观看| 免费黄网站久久成人精品| 最近最新中文字幕大全免费视频 | 少妇精品久久久久久久| 国产成人精品无人区| 最近中文字幕高清免费大全6| 免费少妇av软件| 日韩不卡一区二区三区视频在线| 亚洲三区欧美一区| 母亲3免费完整高清在线观看 | 亚洲图色成人| 极品少妇高潮喷水抽搐| 巨乳人妻的诱惑在线观看| 91aial.com中文字幕在线观看| 欧美日韩av久久| 色网站视频免费| 久久精品久久精品一区二区三区| 久久国产精品男人的天堂亚洲| 香蕉国产在线看| 国产免费一区二区三区四区乱码| 捣出白浆h1v1| 国产成人精品婷婷| 国产亚洲一区二区精品| 国产精品 国内视频| 中文乱码字字幕精品一区二区三区| 精品国产一区二区三区久久久樱花| 亚洲色图综合在线观看| 在线观看免费视频网站a站| 亚洲色图 男人天堂 中文字幕| 天天躁日日躁夜夜躁夜夜| 啦啦啦中文免费视频观看日本| 国产日韩欧美在线精品| 99热国产这里只有精品6| 超碰成人久久| 亚洲精品美女久久av网站| 美女xxoo啪啪120秒动态图| 在线观看一区二区三区激情| 免费在线观看黄色视频的| 日韩 亚洲 欧美在线| 夫妻性生交免费视频一级片| 欧美精品国产亚洲| 在线观看一区二区三区激情| 一区二区av电影网| 伊人久久大香线蕉亚洲五| 亚洲天堂av无毛| 男人爽女人下面视频在线观看| 肉色欧美久久久久久久蜜桃| 热re99久久国产66热| 欧美激情极品国产一区二区三区| 美女脱内裤让男人舔精品视频| 亚洲精品乱久久久久久| 久久精品国产鲁丝片午夜精品| 五月伊人婷婷丁香| 久久人人爽人人片av| 天堂中文最新版在线下载| 午夜91福利影院| www.av在线官网国产| 久久人人爽av亚洲精品天堂| 久久精品熟女亚洲av麻豆精品| 国产精品亚洲av一区麻豆 | 女性被躁到高潮视频| 看十八女毛片水多多多| 在线观看美女被高潮喷水网站| 午夜福利一区二区在线看| 黑人猛操日本美女一级片| 欧美在线黄色| 一本色道久久久久久精品综合| 精品亚洲成国产av| 色吧在线观看| 涩涩av久久男人的天堂| 色婷婷av一区二区三区视频| av线在线观看网站| 久久久久精品久久久久真实原创| 热re99久久精品国产66热6| freevideosex欧美| a级毛片黄视频| 色网站视频免费| 成人影院久久| 青春草视频在线免费观看| 少妇被粗大猛烈的视频| 啦啦啦啦在线视频资源| 老鸭窝网址在线观看| 国产免费一区二区三区四区乱码| 亚洲成av片中文字幕在线观看 | 亚洲四区av| 黄色一级大片看看| 亚洲精品久久午夜乱码| 国产成人一区二区在线| 日本猛色少妇xxxxx猛交久久| 国产淫语在线视频| 一级片'在线观看视频| 久久国产精品男人的天堂亚洲| 午夜激情久久久久久久| 欧美97在线视频| av网站在线播放免费| 美女中出高潮动态图| 亚洲欧洲日产国产| 久热这里只有精品99| 丰满乱子伦码专区| 亚洲国产看品久久| 精品午夜福利在线看| 日本欧美视频一区| 在线观看三级黄色| 久久久久久久亚洲中文字幕| 爱豆传媒免费全集在线观看| 丁香六月天网| 少妇人妻久久综合中文| 亚洲伊人色综图| 日日撸夜夜添| 91成人精品电影| 各种免费的搞黄视频| 少妇精品久久久久久久| 18禁裸乳无遮挡动漫免费视频| 免费黄频网站在线观看国产| 中国三级夫妇交换| 亚洲第一av免费看| 国产亚洲欧美精品永久| 成年动漫av网址| 有码 亚洲区| 成人午夜精彩视频在线观看| 欧美另类一区| 日韩欧美一区视频在线观看| √禁漫天堂资源中文www| 成年女人在线观看亚洲视频| 免费av中文字幕在线| 18禁国产床啪视频网站| 欧美精品av麻豆av| 黄片小视频在线播放| 黑人欧美特级aaaaaa片| 十八禁网站网址无遮挡| 中文字幕av电影在线播放| 成人亚洲精品一区在线观看| 国语对白做爰xxxⅹ性视频网站| 欧美激情高清一区二区三区 | 麻豆乱淫一区二区| 日本av免费视频播放| 亚洲精品国产av蜜桃| 搡女人真爽免费视频火全软件| 高清在线视频一区二区三区| 久久久久视频综合| 成年女人在线观看亚洲视频| av一本久久久久| 亚洲精品美女久久av网站| 咕卡用的链子| 日韩人妻精品一区2区三区| 婷婷色av中文字幕| 亚洲伊人久久精品综合| 美女午夜性视频免费| 一边亲一边摸免费视频| 日韩在线高清观看一区二区三区| 国产成人av激情在线播放| 国产欧美亚洲国产| 人妻人人澡人人爽人人| 制服丝袜香蕉在线| 亚洲欧美精品综合一区二区三区 | 多毛熟女@视频| 国产不卡av网站在线观看| 国产精品女同一区二区软件| 精品人妻熟女毛片av久久网站| 我的亚洲天堂| 成年女人在线观看亚洲视频| 午夜福利网站1000一区二区三区| 少妇 在线观看| 日本色播在线视频| 91成人精品电影| 国产精品免费大片| 国产伦理片在线播放av一区| 最近中文字幕高清免费大全6| 国产男女超爽视频在线观看| 中文字幕精品免费在线观看视频| 高清黄色对白视频在线免费看| 曰老女人黄片| 亚洲熟女精品中文字幕| 老司机影院成人| 成人毛片a级毛片在线播放| 国产老妇伦熟女老妇高清| 老鸭窝网址在线观看| 久久人人爽人人片av| 五月伊人婷婷丁香| 乱人伦中国视频| 久久久久视频综合| 亚洲精品中文字幕在线视频| av在线app专区| 99热国产这里只有精品6| 天天躁狠狠躁夜夜躁狠狠躁| √禁漫天堂资源中文www| 午夜福利,免费看| av国产精品久久久久影院| 夫妻性生交免费视频一级片| 中文字幕精品免费在线观看视频| 亚洲精品aⅴ在线观看| 国产一级毛片在线| 久久久久视频综合| 18禁国产床啪视频网站| 免费观看性生交大片5| 99国产综合亚洲精品| 美女国产高潮福利片在线看| 国产精品国产三级专区第一集| 女人被躁到高潮嗷嗷叫费观| 久久久久久伊人网av| 亚洲三级黄色毛片| 精品一区在线观看国产| 99re6热这里在线精品视频| 99久久综合免费| 欧美日韩一区二区视频在线观看视频在线| 亚洲欧美精品综合一区二区三区 | 国产精品 欧美亚洲| 欧美日本中文国产一区发布| 最近手机中文字幕大全| 男女啪啪激烈高潮av片| 999精品在线视频| 亚洲欧美成人综合另类久久久| 在线观看一区二区三区激情| 中国国产av一级| 黑丝袜美女国产一区| 国产精品99久久99久久久不卡 | 亚洲综合色网址| 捣出白浆h1v1| 2021少妇久久久久久久久久久| 欧美亚洲 丝袜 人妻 在线|