譚明明,唐 劍,賀忠群,鞠麗萍
(1 四川農(nóng)業(yè)大學(xué) 園藝學(xué)院,四川 雅安625014;2 重慶市奉節(jié)縣多經(jīng)站,重慶 404600)
?
嫁接對(duì)銅脅迫下甜瓜幼苗生長及內(nèi)源激素水平的影響
譚明明1,唐劍1,賀忠群1,鞠麗萍2
(1 四川農(nóng)業(yè)大學(xué) 園藝學(xué)院,四川 雅安625014;2 重慶市奉節(jié)縣多經(jīng)站,重慶 404600)
[摘要]【目的】 研究嫁接對(duì)銅脅迫下甜瓜幼苗生長發(fā)育與內(nèi)源激素水平的影響?!痉椒ā?試驗(yàn)以南瓜‘京欣砧3號(hào)’為砧木,薄皮甜瓜‘IVF09’為接穗,自根苗為對(duì)照,測(cè)定不同Cu2+濃度(0,400,800 μmol/L)脅迫下甜瓜自根苗和嫁接苗生長指標(biāo)、激素水平和氣孔導(dǎo)度的變化?!窘Y(jié)果】 在銅脅迫條件下,甜瓜幼苗生長受到抑制、葉片內(nèi)源激素水平改變,但在同一濃度Cu2+脅迫條件下嫁接苗的生物量大于自根苗。嫁接苗葉片中IAA含量顯著高于自根苗,ABA、GA3、ZR含量均顯著低于自根苗,其中在800 μmol/L Cu2+脅迫下嫁接苗葉片IAA、ZR含量與自根苗的差異最大,為自根苗的1.30和0.77倍,而在400 μmol/L Cu2+脅迫下,嫁接苗的ABA、GA3含量與自根苗的差異最大,為自根苗的0.68和0.92倍。嫁接苗葉片的ABA/IAA、ABA/GA3、ABA/ZR值均小于自根苗,且嫁接苗葉片中ABA/IAA和ABA/GA3值變化幅度小于自根苗。銅脅迫下,甜瓜嫁接苗氣孔導(dǎo)度(Gs)與ABA/ZR值呈極顯著負(fù)相關(guān),嫁接苗氣孔導(dǎo)度的調(diào)節(jié)受到了ABA和ABA/ZR值的調(diào)控,從而維持了較高的氣孔導(dǎo)度,增強(qiáng)了甜瓜對(duì)銅脅迫的耐性。【結(jié)論】 嫁接可通過改變內(nèi)源激素含量而增強(qiáng)甜瓜幼苗對(duì)銅脅迫的耐受性,并且有效維持植物內(nèi)源激素的平衡,促進(jìn)甜瓜幼苗正常生長。
[關(guān)鍵詞]甜瓜;嫁接;銅脅迫;內(nèi)源激素
銅是維持植物正常生命活動(dòng)所必需的微量元素之一,其廣泛參與各種生命活動(dòng),對(duì)于植物正常的新陳代謝與生長發(fā)育具有極其重要的意義。但是目前由于工農(nóng)業(yè)的快速發(fā)展,含銅礦產(chǎn)的開采、冶煉廠“三廢”(廢水、廢渣、廢氣)的排放、含銅化肥及農(nóng)藥的長期大量使用、城市污泥堆肥利用和含銅飼料的使用,使土壤銅污染日趨嚴(yán)重[1-5]。土壤銅污染嚴(yán)重時(shí),不僅會(huì)造成植物重金屬毒害,而且會(huì)對(duì)動(dòng)物[6]、微生物[7]及土壤酶[8]產(chǎn)生影響,引起生態(tài)系統(tǒng)失調(diào),影響到整個(gè)地區(qū)的生態(tài)環(huán)境,嚴(yán)重時(shí)還會(huì)威脅到生態(tài)系統(tǒng)的穩(wěn)定和人類的安全。嫁接作為一種農(nóng)藝措施,可以促進(jìn)植株根系吸收作用和葉片光合作用、提高植株抗氧化能力、降低質(zhì)膜的膜脂過氧化、提高滲透調(diào)節(jié)能力、調(diào)節(jié)離子吸收等,從而提高植物抗病蟲性、抗鹽、抗冷、耐高溫、耐濕及耐澇等生理特性[9-13]。同時(shí)有報(bào)道表明,嫁接是提高黃瓜[14-16]、葡萄[17]等園藝作物對(duì)銅、鎘等重金屬耐受性的有效途徑。但嫁接是否會(huì)提高甜瓜對(duì)金屬離子的耐受性尚不清楚。
內(nèi)源激素作為植物體內(nèi)的痕量信號(hào)分子,參與調(diào)控植物對(duì)逆境脅迫的適應(yīng)性,同時(shí)植物內(nèi)源激素之間通過彼此的變化過程調(diào)節(jié)代謝,增強(qiáng)植物的抗逆性。目前,關(guān)于銅脅迫對(duì)植物內(nèi)源激素影響的研究較少,但已有相關(guān)報(bào)道證明植物激素參與了植物銅素毒害,如銅污染可降低歐洲女貞、丁香內(nèi)源細(xì)胞分裂素和GA3的活性,延遲其開花[18],當(dāng)銅濃度較低時(shí),對(duì)植物器官的分化有促進(jìn)作用。Cu2+可增強(qiáng)轉(zhuǎn)基因煙草愈傷組織細(xì)胞分裂素氧化酶的活性[19],在10 μmol/L植物生長調(diào)節(jié)劑苯基脲衍生物(TDZ)處理下花生體細(xì)胞胚發(fā)生時(shí)內(nèi)源銅含量成倍增加[20],說明銅通過影響植株內(nèi)激素的含量變化而影響植物的生長。在銅脅迫下,嫁接對(duì)甜瓜內(nèi)源激素的影響還未見報(bào)道。
氣孔是植物水分和CO2氣體交換的重要通道。CO2通過氣孔進(jìn)入葉片光合組織的細(xì)胞間隙,水分通過氣孔經(jīng)蒸騰作用而擴(kuò)散于大氣中[21]。研究表明,氣孔導(dǎo)度與凈光合速率和CO2濃度有著密切關(guān)系[22-26],而植物內(nèi)源激素對(duì)氣孔導(dǎo)度具有一定的調(diào)節(jié)作用。脅迫條件下植物內(nèi)源激素水平發(fā)生改變,進(jìn)而增強(qiáng)植物對(duì)脅迫條件的適應(yīng)性,其途徑之一就是調(diào)節(jié)氣孔的開度,如在鹽脅迫條件下脫落酸(ABA)增加使氣孔開度減小,減少水分的散失,從而增強(qiáng)植物的耐鹽性[27]。
本試驗(yàn)以白籽南瓜‘京欣砧3號(hào)’為砧木,薄皮甜瓜‘IVF09’為接穗,探索嫁接對(duì)銅脅迫下甜瓜幼苗激素水平和氣孔導(dǎo)度的影響,初步探討甜瓜幼苗在嫁接及銅脅迫下葉片內(nèi)源激素含量的變化,以期闡明內(nèi)源激素水平對(duì)銅脅迫的抗逆生理,為研究嫁接提高甜瓜幼苗對(duì)重金屬耐受性的可能機(jī)制提供理論依據(jù)。
1材料與方法
1.1試驗(yàn)材料
供試砧木為南瓜‘京欣砧3號(hào)’,供試接穗為薄皮甜瓜‘IVF09’。
1.2試驗(yàn)方法
試驗(yàn)于2013年下半年在中國農(nóng)業(yè)科學(xué)院蔬菜花卉研究所大棚進(jìn)行。選取飽滿、整齊一致的‘京欣砧3號(hào)’種子溫湯浸種20 min,室溫下再浸泡5 h,放于30 ℃培養(yǎng)箱黑暗催芽,待2/3種子露芽后,播于直徑20 cm、高20 cm的塑料營養(yǎng)缽中栽培(缽中基質(zhì)采用草炭與蛭石的復(fù)合基質(zhì)(體積比為2∶1),質(zhì)量一致),光源為自然光照,晝溫25~30 ℃,夜溫 15~18 ℃,相對(duì)濕度60%~70%。南瓜培養(yǎng)2 d后播種甜瓜,待甜瓜接穗子葉展平真葉顯露,南瓜砧木一葉一心時(shí)采用頂插接法嫁接。
嫁接后在嫁接苗塑料缽周圍土壤澆足水分,用透明塑料薄膜小拱棚覆蓋,并在薄膜上加蓋遮陽網(wǎng)庇蔭,相對(duì)濕度保持在80%~90%,3 d內(nèi)密封不換氣,3 d后逐漸增加透風(fēng)量與透風(fēng)時(shí)間,透風(fēng)時(shí)間長短以嫁接苗不萎蔫為宜,相對(duì)濕度保持在70%~80%,早晚除去覆蓋物,接受弱光、散光,1周后只在中午(10:00至14:00)遮陰,10 d后完全揭除遮蓋物,恢復(fù)正常苗期管理。在此期間,每天小心去除砧木新長出的生長點(diǎn)及側(cè)芽,切勿碰傷子葉及松動(dòng)接穗。
嫁接成活后的小苗緩苗5 d后,選取生長健壯一致的幼苗澆灌處理液,試驗(yàn)設(shè)6個(gè)處理,Cu2+濃度設(shè)置參考黃瓜銅脅迫研究方法[28-30]:U0:甜瓜自根苗對(duì)照,澆灌清水;G0:甜瓜嫁接苗對(duì)照,澆灌清水;U400:甜瓜自根苗澆灌400 μmol/L Cu2+溶液;G400:甜瓜嫁接苗澆灌400 μmol/L Cu2+溶液;U800:甜瓜自根苗澆灌800 μmol/L Cu2+溶液;G800:甜瓜嫁接苗澆灌800 μmol/L Cu2+溶液。Cu2+澆灌液用CuSO4·5H2O 配制,每隔2 d澆灌1次處理液。每個(gè)處理30株,重復(fù)3次。15 d后取生長點(diǎn)下第3片完全展開的功能葉與根系測(cè)各項(xiàng)生理指標(biāo)。
1.3測(cè)定指標(biāo)與方法
1.3.1生長指標(biāo)以莖基部至生長點(diǎn)記為株高,用直尺測(cè)量;以子葉下端1 cm處記為莖粗,用游標(biāo)卡尺測(cè)量;用葉面積/根系掃描儀(Epson Expression 1680)掃描葉片,葉面積由WinFOLIA軟件分析得出。分別取根、莖、葉,用去離子水沖洗干凈,吸水紙吸干水分,稱其鮮質(zhì)量;之后于105 ℃殺青15 min,放于75 ℃烘箱內(nèi)烘干72 h,稱其干質(zhì)量。
1.3.2激素含量取葉片0.5 g,加入3 mL預(yù)冷的體積分?jǐn)?shù)80%的甲醇溶液(內(nèi)含1 mmol/L二叔丁基對(duì)甲苯酚(BHT)),弱光冰浴研磨,勻漿轉(zhuǎn)入10 mL試管,搖勻后置于4 ℃下提取4 h,10 000g離心15 min,取上清液,過Sep-Pak C18柱純化2次,濾出液轉(zhuǎn)入5 mL離心管中,用氮?dú)獯蹈桑ヌ崛∫褐械募状?,用樣品稀釋?100 mL PBS中加0.1 mL Tween-20、0.1 g明膠)定容至1.5 mL。采用酶聯(lián)免疫吸附測(cè)定法(ELISA)測(cè)定樣品中生長素(IAA)、赤霉素3(GA3)、玉米素(ZR)與脫落酸(ABA)含量。
1.3.3氣孔導(dǎo)度(Gs)在光強(qiáng)1 000 μmol/(m2·s)、溫度25 ℃、相對(duì)濕度60%~70%下,選擇上午09:00至11:00,利用美國Li-cor公司的Li-6400便攜式光合儀直接測(cè)定功能葉片的氣孔導(dǎo)度。
1.4數(shù)據(jù)統(tǒng)計(jì)與分析
試驗(yàn)采用Microsoft Excel 2013進(jìn)行數(shù)據(jù)統(tǒng)計(jì)及繪圖,用SPSS軟件計(jì)算試驗(yàn)數(shù)據(jù)的平均值和標(biāo)準(zhǔn)差,并進(jìn)行相關(guān)性分析,采用最小顯著差異法(LSD)進(jìn)行差異顯著性檢驗(yàn)。
2結(jié)果與分析
2.1嫁接對(duì)銅脅迫下甜瓜幼苗生長的影響
嫁接對(duì)銅脅迫下甜瓜幼苗生長的影響見表1。
表 1 嫁接對(duì)銅脅迫下甜瓜幼苗生長的影響
注:同列數(shù)據(jù)后標(biāo)不同小寫字母表示處理間差異顯著(P<0.05)。
Note:Different lowercase letters mean significant difference among treatments atP<0.05 level.
從表1可以看出,在非脅迫條件下,甜瓜嫁接苗的株高、莖粗、葉面積、地上部與地下部的鮮干質(zhì)量均大于自根苗。在Cu2+脅迫條件下,隨著Cu2+濃度增大,嫁接苗與自根苗的生物量均下降。400 μmol/L Cu2+脅迫下,嫁接苗比自根苗株高、莖粗、葉面積分別增加了6.88%,89.05%和27.62%;800 μmol/L Cu2+脅迫下,嫁接苗比自根苗株高、莖粗、葉面積分別增加了17.65%,95.12%和43.32%。
在相同濃度Cu2+的脅迫條件下,嫁接幼苗的鮮、干質(zhì)量大于自根苗,其中以800 μmol/L Cu2+脅迫下差異最明顯,隨著Cu2+濃度增大,嫁接苗總干質(zhì)量增加比例比自根苗大,在800 μmol/L Cu2+脅迫下達(dá)11.11%,表明同一濃度Cu2+脅迫條件下,嫁接苗比自根苗受到的銅脅迫抑制作用弱,并隨著脅迫程度加深,這種差異表現(xiàn)更加明顯。
2.2嫁接對(duì)銅脅迫下甜瓜幼苗內(nèi)源激素水平的影響
2.2.1IAA與ABA含量由圖1可知,在對(duì)照條件下,甜瓜嫁接苗葉片的IAA含量顯著高于自根苗,ABA含量顯著低于自根苗。在Cu2+脅迫條件下,隨著Cu2+濃度的增大,嫁接苗和自根苗葉片的IAA、ABA含量均升高;嫁接苗葉片IAA含量均顯著高于自根苗,ABA含量均顯著低于自根苗,其中嫁接苗葉片IAA含量在800 μmol/L Cu2+脅迫下與自根苗的差異最大(為自根苗的1.30倍),而ABA含量在400 μmol/L Cu2+脅迫下與自根苗的差異最大(為自根苗的0.68倍)。
2.2.2GA3與ZR含量由圖2可知,在對(duì)照條件下,嫁接苗葉片的GA3含量顯著低于自根苗,ZR含量顯著高于自根苗。在Cu2+脅迫條件下,隨著Cu2+濃度的增大,嫁接苗與自根苗葉片中GA3含量均下降,其中在800 μmol/L Cu2+脅迫時(shí)下降明顯;嫁接苗葉片中ZR含量下降,自根苗葉片中ZR含量上升。在Cu2+脅迫條件下,嫁接苗葉片GA3與ZR含量均顯著低于自根苗。在400 μmol/L Cu2+脅迫下,嫁接苗葉片GA3含量與自根苗的差異最大,為自根苗的0.92倍;而在800 μmol/L Cu2+脅迫下,嫁接苗葉片ZR含量與自根苗的差異最大,為自根苗的0.77倍。
圖 1 嫁接對(duì)銅脅迫下甜瓜幼苗葉片IAA與ABA含量的影響
圖 2嫁接對(duì)銅脅迫下甜瓜幼苗葉片GA3與ZR含量的影響
Fig.2Effects of grafting on GA3and ZR contents in leaves of melon seedlings under copper stress
2.2.3內(nèi)源激素平衡嫁接對(duì)銅脅迫下甜瓜幼苗葉片內(nèi)源激素平衡的影響見圖3。
圖 3嫁接對(duì)銅脅迫下甜瓜幼苗葉片內(nèi)源激素平衡的影響
Fig.3Effects of grafting on endogenous hormone balance in leaves of melon seedlings under copper stress
由圖3可知,在對(duì)照條件下,嫁接苗葉片的ABA/IAA、ABA/GA3、ABA/ZR值均小于自根苗。在Cu2+脅迫條件下,隨著Cu2+濃度的增大,嫁接苗與自根苗葉片中ABA/IAA值變化不明顯,ABA/GA3值逐漸升高,且嫁接苗葉片中ABA/GA3值變化幅度小于自根苗;嫁接苗葉片中ABA/ZR值上升,自根苗葉片中ABA/ZR值變化不大。結(jié)果說明,嫁接在一定程度上有維持甜瓜幼苗葉片內(nèi)源激素平衡的作用。
2.3嫁接對(duì)銅脅迫下Gs與ABA含量及ABA/ZR關(guān)系的影響
ABA和細(xì)胞分裂素均可調(diào)節(jié)氣孔的開閉,ABA可促進(jìn)氣孔關(guān)閉,而細(xì)胞分裂素可促進(jìn)氣孔開放。由圖4可知,隨著Cu2+濃度的增大,甜瓜嫁接苗和自根苗葉片ABA含量增加,Gs則隨之降低。說明ABA和Gs之間呈負(fù)相關(guān)關(guān)系,即ABA可誘導(dǎo)Gs減小,甚至氣孔關(guān)閉。同一濃度Cu2+脅迫條件下,與自根苗相比,嫁接苗具有較低的ABA和較高的Gs,說明嫁接后ABA和Gs之間的調(diào)控關(guān)系未發(fā)生改變。
由圖5可見,隨著Cu2+濃度的增大,甜瓜嫁接苗和自根苗Gs降低,自根苗ABA/ZR值持平,嫁接苗葉片ABA/ZR值逐漸增大,Cu2+濃度達(dá)到800 μmol/L時(shí)兩者ABA/ZR值差異不顯著。相關(guān)分析表明,嫁接苗Gs與ABA/ZR值呈極顯著負(fù)相關(guān):y=-31.897x+18.091,r=0.999 8;自根苗Gs與ABA/ZR值相關(guān)性不密切:y=0.110 3x+13.331,r=0.063。式中:y為Gs,x為ABA/ZR值??芍藿痈纳屏藘?nèi)源激素的平衡,ABA和ZR共同調(diào)節(jié)氣孔對(duì)銅脅迫的響應(yīng)。
圖 4嫁接對(duì)銅脅迫下甜瓜幼苗葉片氣孔導(dǎo)度(Gs)與ABA含量關(guān)系的影響
Fig.4Relation betweenGsand ABA content under copper stress
圖 5嫁接對(duì)銅脅迫下甜瓜幼苗葉片氣孔導(dǎo)度(Gs)與ABA/ZR值關(guān)系的影響
Fig.5Relation betweenGsand ABA/ZR under copper stress
3討論
3.1嫁接對(duì)銅脅迫下甜瓜幼苗生長的影響
植物生物量反映了植物的生長能力,直接表現(xiàn)在植物的株高、莖粗、葉面積、干鮮質(zhì)量上。已有報(bào)道,銅脅迫對(duì)黃瓜[16,28-29]、小麥[30]、青蒿[31]、玉米[32]的生長均有抑制作用。本試驗(yàn)中,接穗與砧木嫁接后,由于砧木對(duì)接穗生長和生理特性有所影響,從而減弱了銅脅迫對(duì)甜瓜幼苗生長的抑制作用,故在相同濃度Cu2+脅迫下,甜瓜嫁接苗株高、莖粗、葉面積、生物量均大于自根苗。
3.2嫁接對(duì)銅脅迫下甜瓜幼苗內(nèi)源激素水平的影響
植物內(nèi)源激素參與調(diào)控植物對(duì)逆境脅迫的適應(yīng)性,并增強(qiáng)植物的抗逆性。已有研究發(fā)現(xiàn),銅脅迫會(huì)改變植物的內(nèi)源激素含量以適應(yīng)脅迫毒害[18-20]。張敏等[34]研究發(fā)現(xiàn),用50 μmol/L Cu2+處理水培的番茄幼苗,可顯著提高根部和葉片中ABA、IAA含量,并降低根部和葉片中GA3和ZR含量。本試驗(yàn)中,隨著Cu2+濃度的增大,甜瓜嫁接苗與自根苗葉片中IAA、ABA含量增大,GA3含量減小,這與前人的研究結(jié)果一致[30-31]。ABA含量增加可能是因?yàn)殂~脅迫促使大量ABA誘導(dǎo)基因表達(dá),IAA含量增加是因?yàn)镚A3抑制吲哚乙酸氧化酶和過氧化物酶活性,促進(jìn)IAA的合成,并抑制其降解。但本試驗(yàn)中甜瓜嫁接苗葉片中ZR含量隨著Cu2+濃度的增大而減小,而自根苗ZR含量則增大,這與前人報(bào)道不一致[30-31],可能是物種基因型、處理?xiàng)l件、外界條件存在差異所致。有研究表明,在鹽脅迫下加適量外源IAA可促進(jìn)植物生長;植物內(nèi)源ABA也可作為植物感受鹽迫的信號(hào)因子,在鹽脅迫后上調(diào)表達(dá)量,誘導(dǎo)相關(guān)基因表達(dá),減緩代謝以增強(qiáng)植物對(duì)鹽脅迫耐受性[32]。本試驗(yàn)中,甜瓜嫁接苗葉片中的IAA含量高于自根苗,ABA含量低于自根苗,說明在銅脅迫下,甜瓜嫁接苗葉片維持較高IAA水平以適應(yīng)銅脅迫環(huán)境。此外,Cu2+脅迫下甜瓜嫁接苗葉片中的GA3與ZR含量均低于自根苗,這可能是由于激素之間的相互作用所致,具體作用機(jī)理需研究。
內(nèi)源激素對(duì)植物正常生長發(fā)育與代謝生理的作用機(jī)理不是單一激素的作用效應(yīng),而是通過彼此之間相互作用而共同參與植物生命活動(dòng)的調(diào)節(jié)。內(nèi)源激素的平衡有利于植物自身的生理代謝及對(duì)外界環(huán)境的適應(yīng),但在銅脅迫時(shí),由于各內(nèi)源激素含量變化,導(dǎo)致整個(gè)內(nèi)源激素水平破壞。本試驗(yàn)中,在銅脅迫條件下,甜瓜嫁接苗與自根苗葉片中ABA/IAA、ABA/GA3、ABA/ZR值均發(fā)生變化,其中甜瓜嫁接苗葉片的ABA/IAA和ABA/GA3值變化幅度均小于自根苗,說明嫁接在一定程度上可有效維持甜瓜幼苗內(nèi)源激素激素的平衡,促進(jìn)其正常生長。
3.3嫁接對(duì)銅脅迫下甜瓜幼苗內(nèi)源激素與氣孔調(diào)節(jié)關(guān)系的影響
Mulholland等[34]用外源ABA處理番茄,證實(shí)了ABA含量增加與番茄葉片Gs呈負(fù)相關(guān)。本試驗(yàn)中,同一濃度Cu2+脅迫條件下,甜瓜嫁接苗的ABA含量較自根苗低,而Gs卻較自根苗大,這一結(jié)果說明嫁接苗氣孔開度的調(diào)節(jié)受到了ABA調(diào)控,嫁接只所以能提高甜瓜對(duì)銅脅迫的耐受性是通過降低ABA含量而增大氣孔開度來實(shí)現(xiàn)的。
細(xì)胞分裂素與ABA的作用相反,可促進(jìn)氣孔開放,ZR是細(xì)胞分裂素類物質(zhì)。有研究認(rèn)為,外源ABA可導(dǎo)致植物Gs減小,而外源ZR卻可逆轉(zhuǎn)這一結(jié)果[35-37]。本試驗(yàn)中,甜瓜嫁接苗Gs與ABA/ZR值呈極顯著負(fù)相關(guān),Cu2+濃度小于800 μmol/L時(shí),嫁接苗ABA/ZR值雖呈現(xiàn)上升趨勢(shì),但仍較自根苗低;而自根苗Gs與ABA/ZR值相關(guān)性不密切。因此,嫁接改變了ABA/ZR平衡,使甜瓜嫁接苗葉片維持較大的氣孔導(dǎo)度,進(jìn)而使其保持較高的蒸騰速率和CO2同化速率,保證銅脅迫下的光合作用和水分代謝,有利于嫁接苗的生長和對(duì)銅脅迫耐受性的提高。
[參考文獻(xiàn)]
[1]Jung M C.Heavy metal contamination of soils and waters in and around the Imcheon Au-Ag mine,Korea [J].Applied Geochemistry,2001,16(11):1369-1375.
[2]Santana L.Copper balances in cocoa agrarian ecosystems:Effe-cts of differential use of cupric fungicides [J].Agriculture,Ecosystems & Environment,1994,48(1):19-25.
[3]俞珊,付新梅,李云飛,等.污泥土地利用中重金屬銅污染地下水的潛在風(fēng)險(xiǎn)研究 [J].四川環(huán)境,2010,29(4):35-37.
Yu S,Fu X M,Li Y F,et al.Study on potential risk of groundwater pollution by Cu from sewage sludge applied for land [J].Sichuan Environment,2010,29(4):35-37.(in Chinese)
[4]張樹清,張夫道,劉秀梅,等.規(guī)?;B(yǎng)殖畜禽糞主要有害成分測(cè)定分析研究 [J].植物營養(yǎng)與肥料學(xué)報(bào),2005,11(6):116-123.
Zhang S Q,Zhang F D,Liu X M,et al.Determination and analysis on main harmful composition in excrement of scale livestock and poultry feedlots [J].Plant Nutrition and Fertilizer Science,2005,11(6):116-123.(in Chinese)
[5]姚麗賢,李國良,黨志.集約化養(yǎng)殖禽畜糞中主要化學(xué)物質(zhì)調(diào)查 [J].應(yīng)用生態(tài)學(xué)報(bào),2006,17(10):1989-1992.
Yao L X,Li G L,Dang Z.Major chemical components of poultry and livestock manures under intensive breeding [J].Chinese Journal of Applied Ecology,2006,17(10):1989-1992.(in Chinese)
[6]Roy D N,Mandal S,Sen G,et al.Superoxide anion mediated mitochondrial dysfunction leads to hepatocyte apoptosis preferentially in the periportal region during copper toxicity in rats [J].Chemico-Biological Interactions,2009,182(2):136-147.
[7]龍健,黃昌勇,騰應(yīng),等.我國南方紅壤礦山復(fù)墾土壤的微生物特征研究 [J].水土保持學(xué)報(bào),2002,16(2):126-128.
Long J,Huang C Y,Teng Y,et al.Characteristics of soil microbes of reclaimed minesoil in red soil area,Southern China [J].Journal of Soil and Water Conservation,2002,16(2):126-128.(in Chinese)
[8]Ellis R J,Neish B,Trett M W,et al.Comparison of microbial and meiofaunal community analyses for determining impact of heavy metal contamination [J].Journal of Microbiological Methods,2001,45(3):171-185.
[9]張文韜,黃保健,郭世榮,等.銅對(duì)空心菜光合作用及保護(hù)酶活性的影響 [J].江蘇農(nóng)業(yè)學(xué)報(bào),2010,26(2):303-307.
Zhang W T,Huang B J,Guo S R,et al.Effects of copper on photosynthesis and protective enzyme activities of ipomoea aquatica forsk [J].Jiangsu Journal of Agricultural Sciences,2010,26(2):303-307.(in Chinese)
[10]Lee J.Cultivation of grafted vegetables:Ⅰ.Current status,grafting methods,and benefits [J].Hort Science,1994,29(4):235-239.
[11]于賢昌,邢禹賢,馬紅,等.黃瓜嫁接苗抗冷特性研究 [J].園藝學(xué)報(bào),1997(4):37-41.
Yu X C,Xing Y X,Ma H,et al.Study on chilling tolerance in grafted cucumber seedlings [J].Acta Horticulturae Sinica,1997(4):37-41.(in Chinese)
[12]范雙喜,王紹輝.高溫逆境下嫁接番茄耐熱特性研究 [J].農(nóng)業(yè)工程學(xué)報(bào),2005,21(S2):60-63.
Fan S X,Wang S H.Endurance to high temperature stress of grafted tomato [J].Transactions of the Chinese Society of Agricultural Engineering,2005,21(S2):60-63.(in Chinese)
[13]Yetisir H,Caliskan M E,Soylu S,et al.Some physiological and growth responses of watermelon [Citrulluslanatus(Thunb.) Matsum and Nakai] grafted onto Lagenaria siceraria to flooding [J].Environmental and Experimental Botany,2006,58(1):1-8.
[14]Rouphael Y,Cardarelli M,Rea E,et al.Grafting of cucumber as a means to minimize copper toxicity [J].Environmental and Experimental Botany,2008,63(1):49-58.
[15]張媛媛.重金屬鎘對(duì)黃瓜幼苗生理特性的影響及嫁接緩解鎘毒害的生理機(jī)制研究 [D].武漢:華中農(nóng)業(yè)大學(xué),2009.
Zhang Y Y.Effect of cadmium on physiological characteristics of cucumber seedings and physiological mechanisms of grafting to alleviate to cadmium toxicity [D].Wuhan:Huazhong Agricultural University,2009.(in Chinese)
[16]Zhang Z,Li H,Zhang Y,et al.Grafting enhances copper tolerance of cucumber through regulating nutrient uptake and antioxidative system [J].Agricultural Sciences in China,2010,9(12):1758-1770.
[17]李小紅.不同砧木嫁接‘矢富羅莎’葡萄生長特性及對(duì)Cd脅迫響應(yīng)的差異 [D].南京:南京農(nóng)業(yè)大學(xué),2010.
Li X H.Difference in growth characteristics and responses to Cd stress of ‘yatiomi rosa’ grapevine grafted onto different rootstocks [D].Nanjing:Nanjing Agricultural University,2010.(in Chinese)
[18]Bessonova V P.Effect of environmental pollution with heavy metals on hormonal and trophic factors in buds of shrub plants [J].Russian Journal of Ecology,1993,24(2):91-95.
[19]Motyka V,Faiss M,Strand M,et al.Changes in cytokinin content and cytokinin oxidase activity in response to derepression ofiptgene transcription in transgenic tobacco calli and plants [J].Plant Physiology,1996,112(3):1035-1043.
[20]Murch S J,Saxena P K.Modulation of mineral and free fatty acid profiles during thidiated somatic embryogenesis in peanut (ArachishypogeaeL.) [J].Journal of Plant Physiology,1997,151(3):358-361.
[21]于強(qiáng).農(nóng)田生態(tài)過程與模型 [M].北京:科學(xué)出版社,2007:405.
Yu Q.The ecological process and model of farmland [M].Beijing:Science Press,2007:405.(in Chinese)
[22]Messinger S M,Buckley T N,Mott K A.Evidence for involvement of photosynthetic processes in the stomatal response to CO2[J].Plant Physiology,2006,140(2):771-778.
[23]Miyazawa S,Livingston N J,Turpin D H.Stomatal development in new leaves is related to the stomatal conductance of mature leaves in poplar (Populustrichocarpa×P.deltoides) [J].Journal of Experimental Botany,2006,57(2):373-380.
[24]Bernacchi C J,Kimball B A,Quarles D R,et al.Decreases in stomatal conductance of soybean under open-air elevation of [CO2] are closely coupled with decreases in ecosystem evapotranspiration [J].Plant Physiology,2007,143(1):134-144.
[25]Buckley T N.The role of stomatal acclimation in modelling tree adaptation to high CO2[J].Journal of Experimental Botany,2008,59(7):1951-1961.
[26]Warren C R.Soil water deficits decrease the internal conductance to CO2transfer but atmospheric water deficits do not [J].Journal of Experimental Botany,2008,59(2):327-334.
[27]Munns R,Cramer G R.Is coordination of leaf and root growth mediated by abscisic acid ? [J].Plant and Soil,1996,185(1):33-49.
[28]Rouphael Y,Cardarelli M,Reab E,et al.Grafting of cucumber as a means to minimize copper toxicity [J].Environmental and Experimental Botany,2008,63:49-58.
[29]張自坤,劉作新,張穎,等.銅脅迫對(duì)嫁接和自根黃瓜幼苗光合作用及營養(yǎng)元素吸收的影響 [J].中國生態(tài)農(nóng)業(yè)學(xué)報(bào), 2009,17(1):135-139.
Zhang Z K,Liu Z X,Zhang Y,et al.Effect of Cu stress on photosynthesis and nutrient absorption of grafted and ungrafted cucumber seedling [J].Chinese Journal of Eco-Agriculture,2009,17(1):135-139.(in Chinese)
[30]朱云集,王晨陽,馬元喜,等.銅脅迫對(duì)小麥根系生長發(fā)育及生理特性的影響 [J].麥類作物學(xué)報(bào),1997(5):51-53.
Zhu Y J,Wang C Y,Ma Y X,et al.Effects of copper stress on root growth and physiological characteristics of winter wheat seedlings [J].Journal of Triticeae Crops,1997(5):51-53.(in Chinese)
[31]李璇,韓小麗,郭蘭萍.土壤中的銅脅迫對(duì)青蒿生長及青蒿素的影響 [J].中國中藥雜志,2012,37(11):1553-1557.
Li X,Han X L,Guo L P.Effects of copper stress on growth ofArtemisiaannuaand artemisinin content [J].China Journal of Chinese Materia Medica,2012,37(11):1553-1557.(in Chinese)
[32]胡筑兵,陳亞華,王桂萍,等.銅脅迫對(duì)玉米幼苗生長、葉綠素?zé)晒鈪?shù)和抗氧化酶活性的影響 [J].植物學(xué)通報(bào),2006,23(2):129-137.
Hu Z B,Chen Y H,Wang G P,et al.Effects of copper stress on growth,chlorophyll fluorescence parameters and antioxidant enzyme activities ofZeamaysseedlings [J].Chinese Bulletin of Botany,2006,23(2):129-137.(in Chinese)
[33]張敏,姜春輝,崔秀敏.外源NO供體硝普鈉(SNP)對(duì)銅脅迫下番茄幼苗生理生化指標(biāo)的影響 [J].植物生理學(xué)報(bào),2013,49(2):144-152.
Zhang M,Jiang C H,Cui X M.Effects of exogenous nitric oxide donor SNP on physiological and biochemical indexes in tomato seedlings under copper stress [J].Plant Physiology Communications,2013,49(2):144-152.(in Chinese)
[34]Mulholland B J,Taylor I B,Jackson A C,et al.Can ABA mediate responses of salinity stressed tomato ? [J].Environmental and Experimental Botany,2003,50(1):17-28.
[35]閆志利,軒春香,??×x,等.干旱脅迫及復(fù)水對(duì)豌豆根系內(nèi)源激素含量的影響 [J].中國生態(tài)農(nóng)業(yè)學(xué)報(bào),2009,17(2):297-301.
Yan Z L,Xuan C X,Niu J Y,et al.Effect of drought stress and water recovery on endogenous hormone content in roots of pea [J].Chinese Journal of Eco-Agriculture,2009,17(2):297-301.(in Chinese)
[36]姚曼紅,劉琳,曾幼玲.五大類傳統(tǒng)植物激素對(duì)植物響應(yīng)鹽脅迫的調(diào)控 [J].生物技術(shù)通報(bào),2011(11):1-5.
Yao M H,Liu L,Zeng Y L.Several kinds of phytohormone in plants responses to salt-stress [J].Biotechnology Bulletin,2011(11):1-5.(in Chinese)
[37]Koltai H,Kapulnik Y.Arbuscular mycorrhizas:Physiology and function [M].Dordrecht:Kluwer Academic Publishers,2010.
Effects of grafting on growth and endogenous hormones of melon (CucumismeloL.) seedlings under copper stress
TAN Ming-ming1,TANG Jian1,HE Zhong-qun1,JU Li-ping2
(1CollegeofHorticulture,SichuanAgriculturalUniversity,Ya’an,Sichuan625014,China;2MultipeManagementStationofFengjieCounty,Fengjie,Chongqing404600,China)
Abstract:【Objective】 The effects of grafting on endogenous hormones of melon seedlings under copper stress were investigated in this study.【Method】 Using pumpkin ‘Jingxinzhen No.3’ as stock,melon ‘IVF09’ as cion,and un-grafted seedlings as control,biomass,hormone level and stomatal conductance of melon were measured under different Cu2+concentrations (0,400,and 800 μmol/L).【Result】 Under copper stress,the growth of melon seedlings was inhibited,and endogenous hormone levels in leaves were changed.Under same stress,the biomass of grafted seedlings was greater than that of un-grafted seedlings.IAA content in grafted seedlings was significantly higher than that of ungrafted one,but ABA,GA3,and ZR contents in leaves of grafted seedlings were significantly lower than that of un-grafted ones.Differences in IAA and ZR contents in leaves of grafted and ungrafted seedlings reached the peak under the 800 μmol/L Cu2+stress,which were 1.30 and 0.77 times of that of ungrafted seedlings.Differences in ABA and GA3 contents between grafted and ungrafted seedlings reached the peak under the 400 μmol/L Cu2+stress,which were 0.68 and 0.92 times of that of ungrafted seedlings.In addition,ABA/IAA,ABA/GA3,and ABA/ZR values of grafted leaves were lower than that of ungrafted ones,and ABA/IAA and ABA/GA3 values changed less in grafted seedlings.A significant negative relation between gs and ABA/ZR was detected under copper stress.Response of stoma to copper stress was jointly adjusted by ABA and ABA/ZR to make grafted seedlings keep higher Gs than ungrafted ones,which resulted in higher copper tolerance.【Conclusion】 Grafting changed endogenous hormone levels and enhanced resistance against copper stress and effectively maintained the balance of endogenous hormones in plant,which promoted normal growth of melon seedlings.
Key words:melon;grafting;copper stress;endogenous hormones
DOI:網(wǎng)絡(luò)出版時(shí)間:2016-01-0810:2210.13207/j.cnki.jnwafu.2016.02.016
[收稿日期]2014-06-04
[基金項(xiàng)目]四川省教育廳項(xiàng)目(10ZB044)
[作者簡介]譚明明(1989-),男,甘肅慶陽人,碩士,主要從事蔬菜栽培理論與技術(shù)研究。E-mail:tanmingm2013@163.com[通信作者]賀忠群(1971-),女,重慶開縣人,教授,博士,主要從事蔬菜育種及其生物改良研究。E-mail:hzqun328@163.com
[中圖分類號(hào)]S652.01
[文獻(xiàn)標(biāo)志碼]A
[文章編號(hào)]1671-9387(2016)02-0113-08