• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Approximate Controllability of Neutral Functional Differential Systems with State-Dependent Delay?

    2016-06-07 08:05:32XianlongFUJialinZHANG

    Xianlong FU Jialin ZHANG

    1 Introduction

    In this paper,we consider the approximate controllability of systems represented in the following semilinear neutral functional differential systems with state-dependent delay:

    where the state variablex(·)takes values in a Hilbert spaceXand the control functionu(·)is given in the Banach spaceL2([0,T];U),whereUis also a Hilbert space.Bis a bounded linear operator fromUintoX.The(unbounded)linear operator?A:D(?A)→Xgenerates an analytic semigroupare appropriate functions to be specified later.is a phase space given in the next section.The notationxtrepresents the history function defined by,and belongs to some abstract phase spacedescribed axiomatically andis a continuous function.

    The controllability theory for abstract linear control systems in an in finite-dimensional space is well-developed,and the details can be found in various papers and monographs(see[4,16]and references therein).Several authors have extended the controllability concepts to in finitedimensional systems represented by nonlinear evolution equations(see[20–21,35]).Most of the controllability results for nonlinear in finite-dimensional control systems concern the socalled semilinear control system that consists of a linear part and a nonlinear part.Zhou[35]studied approximate controllability of an abstract semilinear control system by assuming certain inequality conditions that are dependent on the properties of the system components.Naito[20–21]studied the approximate controllability of the same system.He showed that under a range condition on the control action operator,the semilinear control system is approximately controllable.Jeong et al.[14]and Wang[30]have extended the result to retarded systems with finite delays.Yamamoto and Park[32]discussed the same problem for parabolic equations with a uniformly bounded nonlinear part.Do[6],Joshi and Sukavanam[15]discussed approximate controllability for a class of semilinear abstract equations,while Muthukumar and Rajivganthi[19]investigated the controllability problem for a stochastic nonlinear third-order dispersion equation.

    Bashirov and Mahmudov[2]showed that under an appropriate condition on resolvent operators,the approximate controllability of semilinear systems is implied by the approximate controllability of its linear part.This resolvent condition is convenient for application and it has been used in many papers to study the approximate controllability for nonlinear(functional)differential equations(see,for instance,[5,8,24–25]).In[5],by using the Schauder fixed point theorem and the resolvent condition,Dauer and Mahmudov studied the approximate controllability and complete controllability for the following semilinear abstract control system with finite delay:

    In[9,18,24–27,33–34],the authors investigated the approximate controllability for semilinear impulsive systems and fractional order(stochastic)differential systems with(state-department)delay also by using the resolvent condition.

    On the other hand,neutral partial functional differential systems appear in a great many practical mathematical models,such as some structured population models and systems of lossless transmission line networks(see[11,31]).In recent years,existence results,asymptotic properties and controllability on this type of systems have been investigated by many authors(see[3,7,12]).We are going to discuss the approximate controllability for neutral partial functional differential systems with state-dependent delay.State-dependent delay differential equations can be met in various practical models.Some recent applications can be found in[1,17].In particular,the approximate controllability of fractional functionals and integrodifferential equations with state-dependent delay has been studied in[24,26,33–34].

    A motivation of the present paper is the approximate controllability problem of the following neutral partial differential control systems:

    System(1.3)arises as a model for nonlinear heat fl ow in materials with fading memory.Herez(t,x)represents the temperature of a conduct of the pointxand timet.Evidently,this system can be treated as the abstract equation(1.1),however,the results established in[5,24–25]become invalid for this situation,since the functionsf,gin(1.3)involve spatial derivatives.In fact,as one will see in Section 4,if we takethen the third variables offandgare defined onand so the solutions can not be discussed onXlike in[24–25].

    In this paper,inspired by the work in[7,28–29],we shall discuss this problem by using the fractional power operators theory andα-norm techniques,that is,we shall restrict this equation in a Banach spaceXα(?X)induced by fractional power operators.We first present the induced phase spacefor in finite delay,through which we investigate the existence of mild solutions and then we obtain the approximate controllability for(1.1)in spaceX.In this manner we overcome the above mentioned difficulty successfully and the achieved controllability results can be applied to the systems involving spatial derivatives(see the system(4.1)in Section 4).Hence our obtained results are more general in applications than those of[5,24–25].In addition,it can be seen that our techniques can also be adopted to study the approximate controllability of other kinds of control systems(such as fractional order and stochastic systems with in finite delay)to improve the existing results in,for instance,[9,26,33–34].We would also like to point out here that the resolvent condition(H0)employed in this paper is verifi ed readily as shown in the example in Section 4,which is more advantageous than the range condition used in[14,30],since it seems difficult to be verifi ed for in finitely delayed control systems.

    The whole article is organized as follows:We initially present some preliminaries about analytic semigroups and phase spaces for in finite delay in Section 2.Particularly,to make them still valid in our situation,we introduce the axioms of phase spaces on the spaceXα.In Section 3,we first discuss the existence of mild solutions for System(1.1)by applying the fixed point theorem,and then we study the approximate controllability of(1.1)using limit arguments.Finally,in Section 4,an example is provided to show the applications of the obtained results.

    2 Preliminaries

    Throughout this paper,Xis a Hilbert space with normin finitesimal generator of a compact analytic semigroupof uniformly bounded linear operators.Let 0∈ ρ(A).Then it is possible to define the fractional power,for 0<α ≤1,as a closed linear operator on its domain.Furthermore,the subspaceD(Aα)is dense inXand the expression

    defines a norm onHereafter we denote bythe Banach spacenormed withThen for eachα>0,Xαis a Banach space,and the imbedding is compact whenever the resolvent operator ofAis compact.

    For the analytic semigroup,the following properties will be used(see[22]):There exist constantssuch that,fort∈[0,T],

    To study the system(1.1),we assume that the historiesbelong to some abstract phase spacewhich is defined axiomatically.In this article,we employ an axiomatic definition of the phase spaceintroduced by Hale and Kato[10]and follow the terminology used in[13].Thus,will be a linear space of functions mapping(?∞,0]intoXendowed with a seminormWe assume thatsatisfies the following axioms:

    (A)Ifis continuous onthen for everyt∈[σ,σ+a)the followings hold:

    (i)

    (ii)

    (iii)

    HereH≥0 is a constant,is continuous andM(·)is locally bounded,andH,K(·),M(·)are independent ofx(t).

    (A1)For the functionx(·)in(A),xtis acontinuous function on[σ,σ+a].

    (B)The spaceis complete.

    We denote bythe set of all the elements inthat takes values in spaceXα,that is,

    Thenbecomes a subspace ofendowed with the seminormwhich is induced bythroughMore precisely,for anythe seminormis defined byinstead ofFor example,let the phase spacer≥0,1≤p<∞(see[13]),which consists of all classes of functionssuch thatφis continuous on[?r,0],Lebesgue-measurable,andis Lebesgue integrable onis a positive Lebesgue integrable function.The seminorm inis defined by

    See also the spacepresented in Section 4.Hence,sinceXαis still a Hilbert space,we will assume that the subspacealso satisfies the following conditions:

    Ifis continuous on[σ,σ+a)(inα-norm)andthen for everyt∈[σ,σ+a)the followings hold:

    (i)xtis in

    (ii)

    (iii)HereH,K(·)andM(·)are as in(A)(iii)above.

    For the functionx(·)in(continuous function on[σ,σ+a].

    The spaceis complete.

    For anythe notationrepresents the functionThen,if the functionx(·)in axiomwe may extend the mappingt→xtto the whole interval(?∞,T]by settingxt=φtast≤0.On the other hand,for the functionρ:[0,T]×Bα→(?∞,T],we introduce the set

    Then we have the following lemma,which plays an important role in our proofs in the next section.

    The mild solution to(1.1)expressed by the semigroup is defined as the following definition.

    We shall study the approximate controllability for(1.1)by applying the results established in[2].For this purpose,we need to introduce the following relevant operator:

    From Theorem 2 of[2],the hypothesis(H0)is equivalent to the fact that the following linear control system

    is approximately controllable on[0,T].

    We now end this section by stating some well-known theorems which will be used in the next section.

    Theorem 2.1(Lebesgue′s Dominated Convergence Theorem)Letbe a sequence in space L1(Ω,X).Suppose that the sequence converges almost everywhere to a function f and is dominated by some function g∈L1(Ω,X)in the sense thatfor all n∈Nand almost all points x∈Ω.Then f∈L1(Ω,X)and

    (iii)for any t∈[a,b],the set{f(t):f∈F}is relatively compact in X.

    Then F is relatively compact in space C([a,b];X).

    Theorem 2.3(see[23])Let P be a condensing operator on a Banach space X,i.e.,P is continuous and takes bounded sets into bounded sets,and α(P(B))≤α(B)for every bounded set B of X with α(B)>0.If P(H)?H for a convex,closed and bounded set H of X,then P has a fixed point in H(where α(·)denotes Kuratowski’s measure of non-compactness).

    3 Approximate Controllability

    In this section we discuss the approximate controllability for(1.1).We firstly show that,for anyxT∈X,by choosing proper controluλ(for any givenλ∈(0,1)),there is a mild solutionto(1.1),and then we prove thatxλ(T)→xTinX.

    To guarantee the existence of mild solutions,we impose the following restrictions on(1.1).Assumeα∈(0,1).

    (H1)B∈L(U,X),i.e.,Bis a bounded linear operator fromUtoX.Let‖B‖=N.

    (H2)The functionF:[0,T]×Bα→D(Aα+β)is a continuous function for someβ∈(0,1)withα+β ≤1,and there existsL>0 such that the functionAβFsatisfies

    for any 0≤s1,s2≤T,φ1,φ2∈Bα.Moreover,there existL1>0 andγ1∈(0,1)such that the inequality

    At first we prove the following theorem.

    Theorem 3.1Let φ∈Bα.Suppose that assumptions(H0)–(H3)are satisfied.Then for each0<λ<1,the equation(1.1)admits one mild solution on(?∞,T]provided that

    Then,the assertion that(1.1)admits a mild solution is equivalent to the fact that the operatorQλhas a fixed point.Obviously,the fact that the operatorQλhas a fixed point is equivalent to thathas a fixed point.Next we prove thatPλhas a fixed point by using Theorem 2.1.For this purpose,we will show thatPλmapsB(r)into itself,andverifies a contraction condition whileis a completely continuous operator.

    Step 1 For 0<λ<1,there exists anr(λ)>0,such thatIf this is not true,then,for everyr>0,there existz∈B(r)andt∈[0,T]such thatThen,noting that(by(2.1)–(2.2)andH2),

    whereK1,K2,K3>0 are constants independent ofr.Thus,

    However,the left side of(3.7)may go to+∞as long asr→+∞sinceγ1,γ2<1 by our assumption.This is an contradiction.Therefore,there is anr(λ)>0 such thatPλmapsB(r)into itself.

    Step 2 To prove thatsatisfies a contraction condition,we takez1,z2∈B(r),and then,for eacht∈[0,T],by axiom

    and so from(3.6)satisfies the contraction condition.

    Step 3 In order to prove that the operatoris completely continuous,we firstly show that it is continuous onB(r).

    Letbe a sequence inB(r)such thatand then,we have thatfor everyThen for all

    Step 4 We show that the operatormapsB(r)into a relatively compact subset ofC([0,T];Xα).Firstly,we prove that the setis relatively compact inXαfor everyt∈[0,T].Indeed,the case whent=0 is trivial.Now lett∈(0,T]be fixed,and then

    which implies thatis bounded inX.Hence we infer thatV(t)is relatively compact inXαby the compactness of operator(the imbeddingis compact).Hence for eacht∈[0,T],V(t)is relatively compact inXα.

    Next we prove that the family of functionsis equi-continuous on interval(0,T].Land then

    whereε>0 is sufficiently small.Sinceis strongly continuous,and the compactness ofS(t),t>0 implies the continuity in the uniform operator topology,it follows thattends to zero asand henceis equicontinuous.Accordingly,from Theorem 2.2,is a completely continuous operator on

    These arguments enable us to infer thatis a condense mapping onB(r),and by Theorem 2.3,we conclude that there exists a fixed pointLetand thenis a fixed point of the operatorwhich implies that equation(1.1)admits a mild solutionson(?∞,T].The proof is completed.

    Theorem 3.2Assume that the assumptions of Theorem3.1are satisfied with functions F(·,·)and G(·,·)uniformly bounded,and additionally suppose that the hypothesisholds.Then(1.1)is approximately controllable on[0,T].

    Proof Letxλ(·)be a fixed point ofQλonB(r),and then,as one can see above,is a mild solution to(1.1)on(?∞,T]under the control

    Thus by(3.8)we have that

    So there holdsinX,and consequently we obtain the approximate controllability of(1.1).The proof is completed.

    4 An Example

    In order to apply Theorem 3.1 and Theorem 3.2,we consider the following system:

    and the norm is defined by,for

    Then the system(4.1)is rewritten in the abstract form(1.1),and condition(i)implies thatR(F)?D(A),since

    Thus,the condition(i)ensures thatAF(·)satisfies the Lipschitz continuous onIn fact,one has

    which shows the claim.Observing thatFandGalso verify(3.2)and(3.3)due to the assumptions(i)and(ii),we see that hypotheses(H2)and(H3)are satisfied respectively.Consequently,Theorem 3.2 is now well applied and the system(4.1)is approximate controllable on[0,T]provided that(3.6)is satisfied.

    AcknowledgementThe authors are very grateful to the referees for their important comments and suggestions on this paper.

    [1]Arino,O.,Habid,M.and de la Parra,R.,A mathematical model of growth of population of fish in the larval stage:Density-dependence effects,Math.Biosc.,150,1998,1–20.

    [2]Bashirov,A.E.and Mahmudov,N.I.,On concepts of controllability for linear deterministic and stochastic systems,SIAM J.Control Optim.,37,1999,1808–1821.

    [3]Balasubramaniam,P.and Ntouyas,S.K.,Controllability for neutral stochastic functional differential inclusions with in finite delay in abstract space,J.Math.Anal.Appl.,324,2006,161–176.

    [4]Curtain,R.and Zwart,H.J.,An Introduction to In finite Dimensional Linear Systems Theory,Springer-Verlag,New York,1995.

    [5]Dauer,J.P.and Mahmudov,N.I.,Approximate controllability of semilinear functional equations in Hilbert spaces,J.Math.Anal.Appl.,273,2002,310–327.

    [6]Do,V.N.,A note on approximate controllability of semilinear systems,Syst.Contr.Lett.,12,1989,365–371.

    [7]Ezzinbi,K.,Fu,X.and Hilal,K.,Existence and regularity in theα-norm for some neutral partial differential equations with nonlocal conditions,Nonl.Anal.,67,2007,1613–1622.

    [8]Fu,X.and Mei,K.,Approximate controllability of semilinear partial functional differential systems,J.Dyn.Contr.Syst.,15,2009,425–443.

    [9]Guendouzi,T.and Bousmaha,L.,Approximate controllability of fractional neutral stochastic functional integro-differential inclusions with in finite delay,Qual.Theory Dyn.Syst.,13,2014,89–119.

    [10]Hale,J.and Kato,J.,Phase space for retarded equations with in finite delay,Funk.ekvac.,21,1978,11–41.

    [11]Hale,J.and Verduyn-Lunel,S.,Introduction to Functional Differential Equations,Springer-Verlag,New York,1993.

    [12]Hern′andez,E.and Henr′iquez,H.R.,Existence results for partial neutral functional differential equations with unbounded delay,J.Math.Anal.Appl.,221,1998,452–475.

    [13]Hino,Y.,Murakami,S.and Naito,T.,Functional differential equations with in finite delay,Lecture Notes in Math.,Springer-Verlag,Berlin,1991.

    [14]Jeong,J.,Kwun,Y.and Park,J.,Approximate controllability for semilinear retarded functional differential equations,J.Dyn.Contr.Syst.,5,1999,329–346.

    [15]Joshi,M.C.and Sukavanam,N.,Approximate solvability of semilinear operator equations,Nonlinearity,3,1990,519–525.

    [16]Li,X.and Yong,J.,Optimal Control Theory for In finite Dimensional Systems,Birkhanser,Berlin,1995.

    [17]Mahaffy,J.,Belair,J.and Mackey,M.,Hematopoietic model with moving boundary condition and state dependent delay:Applications in Erythropoiesis,J.Theo.Biol.,190,1998,135–146.

    [18]Mahmudov,N.I.and Zorlu,S.,On the approximate controllability of fractional evolution equations with compact analytic semigroup,J.Comput.Appl.Math.Ser.A,259,2014,194–204.

    [19]Muthukumar,P.and Rajivganthi,C.,Approximate controllability of stochastic nonlinear third-order dispersion equation,Internat.J.Robust Nonl.Control,24,2014,585–594.

    [20]Naito,K.,Controllability of semilinear control systems dominated by the linear part,SIAM J.Control Optim.,25,1987,715–722.

    [21]Naito,K.,Approximate controllability for trajectories of semilinear control systems,J.Optim.Theory Appl.,60,1989,57–65.

    [22]Pazy,A.,Semigroups of Linear Operators and Applications to Partial Differential Equations,Springer-Verlag,New York,1983.

    [23]Sadovskii,B.N.,On a fixed point principle,Funct.Anal.Appl.,1,1967,74–76.

    [24]Sakthivel,R.and Ananndhi,E.R.,Approximate controllability of impulsive differential equations with state-dependent delay,Inter.J.Control.,83,2010,387–393.

    [25]Sakthivel,R.,Mahmudov,N.I.and Kim,J.H.,Approximate controllability of nonlinear impulsive differential systems,Reports Math.Phys.,60,2007,85–96.

    [26]Sakthivel,R.and Ren,Y.,Approximate controllability of fractional differential equations with statedependent delay,Results Math.,63,2013,949–963.

    [27]Sakthivel,R.,Ren,Y.and Mahmudov,N.I.,On the approximate controllability of semilinear fractional differential systems,Comp.Math.Appl.,62,2011,1451–1459.

    [28]Travis,C.C.and Webb,G.F.,Partial differential equations with deviating arguments in the time variable,J.Math.Anal.Appl.,56,1976,397–409.

    [29]Travis,C.C.and Webb,G.F.,Existence,stability and compactness in theα-norm for partial functional differential equations,Trans.Amer.Math.Soc.,240,1978,129–143.

    [30]Naito,K.,Approximate controllability for integrodifferential equationswith multiple delays,J.Optim.Theory Appl.,143,2009,185–206.

    [31]Wu,J.,Theory and Applications of Partial Functional Differential Equations,Springer-Verlag,Berlin,1996.

    [32]Yamamoto,M.and Park,J.Y.,Controllability for parabolic equations with uniformly bounded nonlinear terms,J.Optim.Theory Appl.,66,1990,515–532.

    [33]Yan,Z.,Approximate controllability of partial neutral functional differential systems of fractional order with state-dependent delay,Int.J.Contr.,85,2012,1051–1062.

    [34]Yan,Z.,Approximate controllability of fractional neutral integro-differential inclusions with statedependent delay in Hilbert spaces,IMA J.Math.Control Inform.,30,2013,443–462.

    [35]Zhou,H.X.,Approximate controllability for a class of semilinear abstract equations,SIAM J.Control Optim.,21,1983,551–565.

    国产av一区在线观看免费| 又爽又黄无遮挡网站| 日韩有码中文字幕| 日本撒尿小便嘘嘘汇集6| 成人鲁丝片一二三区免费| 久久精品国产99精品国产亚洲性色| 欧美极品一区二区三区四区| 午夜成年电影在线免费观看| 国产av一区在线观看免费| 校园春色视频在线观看| 精品国产三级普通话版| 精品人妻1区二区| 色在线成人网| 国产一区二区在线观看日韩 | 国产伦精品一区二区三区四那| 成人欧美大片| 久久精品亚洲精品国产色婷小说| 亚洲欧美精品综合一区二区三区| 一个人看的www免费观看视频| 村上凉子中文字幕在线| 亚洲av第一区精品v没综合| av片东京热男人的天堂| 又黄又粗又硬又大视频| 久久人人精品亚洲av| 欧美日韩中文字幕国产精品一区二区三区| 精品熟女少妇八av免费久了| 亚洲av成人一区二区三| 波多野结衣高清无吗| 麻豆国产97在线/欧美| 午夜精品在线福利| 一级毛片精品| 日本五十路高清| 久久精品综合一区二区三区| 在线免费观看不下载黄p国产 | 国产精品av久久久久免费| 国产精品美女特级片免费视频播放器 | 午夜福利高清视频| 亚洲av日韩精品久久久久久密| 最近在线观看免费完整版| 亚洲av成人精品一区久久| 午夜两性在线视频| 十八禁网站免费在线| 亚洲五月婷婷丁香| 91老司机精品| 麻豆久久精品国产亚洲av| 岛国视频午夜一区免费看| 99riav亚洲国产免费| 黄色丝袜av网址大全| 黄色日韩在线| 五月玫瑰六月丁香| 狂野欧美白嫩少妇大欣赏| 日日摸夜夜添夜夜添小说| 99久久久亚洲精品蜜臀av| 日本精品一区二区三区蜜桃| 欧美日韩福利视频一区二区| 91九色精品人成在线观看| 99国产极品粉嫩在线观看| or卡值多少钱| 欧美黄色淫秽网站| h日本视频在线播放| 国产精品av视频在线免费观看| 欧美zozozo另类| 一卡2卡三卡四卡精品乱码亚洲| 亚洲自偷自拍图片 自拍| 在线视频色国产色| 69av精品久久久久久| 亚洲avbb在线观看| 亚洲专区国产一区二区| 国产精品一区二区三区四区久久| 欧美日韩一级在线毛片| 欧美乱色亚洲激情| 国产精品久久久久久精品电影| 亚洲精华国产精华精| 日本在线视频免费播放| 悠悠久久av| 19禁男女啪啪无遮挡网站| 国产成人aa在线观看| 成人一区二区视频在线观看| 大型黄色视频在线免费观看| 亚洲七黄色美女视频| 成人三级做爰电影| 亚洲欧美精品综合一区二区三区| АⅤ资源中文在线天堂| 国产亚洲欧美98| 国产伦一二天堂av在线观看| 精品国产三级普通话版| 1024手机看黄色片| 一本综合久久免费| 久久这里只有精品中国| 亚洲欧美日韩高清专用| 一级毛片高清免费大全| 欧美av亚洲av综合av国产av| 国模一区二区三区四区视频 | 国产一区二区激情短视频| 国产精品美女特级片免费视频播放器 | 黄色女人牲交| 成人av在线播放网站| 免费一级毛片在线播放高清视频| www日本黄色视频网| 欧美zozozo另类| 国内久久婷婷六月综合欲色啪| 精品不卡国产一区二区三区| 日韩欧美三级三区| 国内精品久久久久久久电影| 老熟妇乱子伦视频在线观看| 亚洲18禁久久av| 国产精品美女特级片免费视频播放器 | 在线免费观看的www视频| 亚洲成av人片免费观看| 亚洲无线观看免费| 色综合亚洲欧美另类图片| 高清毛片免费观看视频网站| 久久久久久久久中文| 久久久国产欧美日韩av| 国产成人影院久久av| 淫妇啪啪啪对白视频| 757午夜福利合集在线观看| 中文字幕高清在线视频| 久久性视频一级片| 美女 人体艺术 gogo| www.精华液| 亚洲国产日韩欧美精品在线观看 | 国产精品99久久久久久久久| 欧美一区二区精品小视频在线| 欧美午夜高清在线| 欧美成人性av电影在线观看| 精品一区二区三区四区五区乱码| 91老司机精品| 99视频精品全部免费 在线 | 一卡2卡三卡四卡精品乱码亚洲| 亚洲无线观看免费| 日本免费一区二区三区高清不卡| 免费电影在线观看免费观看| 国产成人精品无人区| 欧美丝袜亚洲另类 | 婷婷六月久久综合丁香| 亚洲av美国av| 亚洲欧美一区二区三区黑人| 中文字幕精品亚洲无线码一区| 99热这里只有是精品50| 国产精品1区2区在线观看.| 天天躁狠狠躁夜夜躁狠狠躁| 久久久久久久午夜电影| 这个男人来自地球电影免费观看| 亚洲av电影不卡..在线观看| 欧美日韩国产亚洲二区| 色哟哟哟哟哟哟| 天天躁狠狠躁夜夜躁狠狠躁| 欧美黑人巨大hd| 观看免费一级毛片| 亚洲自拍偷在线| 欧美xxxx黑人xx丫x性爽| 久久久精品大字幕| 国产一区二区在线观看日韩 | 精品一区二区三区视频在线 | 成年免费大片在线观看| 国产三级黄色录像| 国产精品精品国产色婷婷| 热99re8久久精品国产| 波多野结衣巨乳人妻| 国内少妇人妻偷人精品xxx网站 | 欧美国产日韩亚洲一区| 婷婷精品国产亚洲av| 99re在线观看精品视频| 91在线精品国自产拍蜜月 | 成熟少妇高潮喷水视频| 一本综合久久免费| 国产不卡一卡二| 99精品欧美一区二区三区四区| 国产欧美日韩一区二区精品| 淫妇啪啪啪对白视频| 午夜福利在线观看免费完整高清在 | 国产亚洲欧美在线一区二区| 丝袜人妻中文字幕| 内地一区二区视频在线| 搞女人的毛片| 婷婷色麻豆天堂久久 | 成人欧美大片| 人妻夜夜爽99麻豆av| 亚洲av男天堂| 国产免费视频播放在线视频 | 亚洲图色成人| 日本熟妇午夜| 国产三级在线视频| 狂野欧美激情性xxxx在线观看| 男人和女人高潮做爰伦理| 久久久a久久爽久久v久久| 国产高清不卡午夜福利| 亚洲欧洲国产日韩| 六月丁香七月| 亚洲在线观看片| 久久热精品热| 天堂√8在线中文| 国产黄色视频一区二区在线观看 | 床上黄色一级片| 日韩一区二区三区影片| 亚洲性久久影院| 国产 一区精品| 午夜亚洲福利在线播放| 日韩一区二区三区影片| 在线播放无遮挡| 亚洲成av人片在线播放无| 1000部很黄的大片| 国产精品一及| av国产久精品久网站免费入址| 国产91av在线免费观看| 日韩,欧美,国产一区二区三区 | 亚洲国产成人一精品久久久| 欧美+日韩+精品| 亚洲成人精品中文字幕电影| av在线天堂中文字幕| 国产精品国产三级国产专区5o | or卡值多少钱| 人妻系列 视频| 18+在线观看网站| 欧美日本亚洲视频在线播放| 一级毛片久久久久久久久女| 别揉我奶头 嗯啊视频| 久久久久久九九精品二区国产| 亚洲av熟女| 国产精品电影一区二区三区| 婷婷六月久久综合丁香| 国产亚洲一区二区精品| ponron亚洲| 嫩草影院精品99| 久热久热在线精品观看| 可以在线观看毛片的网站| 大香蕉97超碰在线| 国产久久久一区二区三区| 91狼人影院| 黄片无遮挡物在线观看| 免费看美女性在线毛片视频| 午夜福利成人在线免费观看| 欧美三级亚洲精品| a级毛片免费高清观看在线播放| 亚洲人与动物交配视频| 欧美高清成人免费视频www| 中文字幕av成人在线电影| 久久久精品欧美日韩精品| 桃色一区二区三区在线观看| 特级一级黄色大片| eeuss影院久久| 国产精品久久视频播放| 国产在视频线在精品| 国产成人午夜福利电影在线观看| 又爽又黄a免费视频| 国产精品一区二区三区四区免费观看| 91av网一区二区| 一区二区三区四区激情视频| 亚洲美女搞黄在线观看| 在线观看66精品国产| 亚洲精品色激情综合| 日韩三级伦理在线观看| 国产片特级美女逼逼视频| 赤兔流量卡办理| 亚洲精品,欧美精品| 丝袜美腿在线中文| 午夜久久久久精精品| 亚洲中文字幕日韩| 亚洲18禁久久av| 午夜免费激情av| av在线天堂中文字幕| 精品无人区乱码1区二区| 欧美激情国产日韩精品一区| 精品久久久久久久久亚洲| 最近视频中文字幕2019在线8| 免费在线观看成人毛片| 不卡视频在线观看欧美| 国产精品一及| 在线免费十八禁| 国产精品99久久久久久久久| 国产精品久久久久久精品电影| 99久国产av精品国产电影| 99热精品在线国产| 久久欧美精品欧美久久欧美| 精品免费久久久久久久清纯| 国产精品久久电影中文字幕| 人妻夜夜爽99麻豆av| 欧美一区二区亚洲| 中文字幕亚洲精品专区| 日本黄色视频三级网站网址| 亚洲av成人av| 亚洲欧美中文字幕日韩二区| 免费av观看视频| 久久国产乱子免费精品| 成人午夜高清在线视频| 成人美女网站在线观看视频| 午夜福利在线在线| 精品免费久久久久久久清纯| 免费黄网站久久成人精品| 最近中文字幕2019免费版| 丰满乱子伦码专区| 国产精品嫩草影院av在线观看| 欧美97在线视频| 日韩一本色道免费dvd| 成人漫画全彩无遮挡| 99热这里只有精品一区| 人妻制服诱惑在线中文字幕| 国产成人91sexporn| 一区二区三区乱码不卡18| 联通29元200g的流量卡| 亚洲欧美精品专区久久| 免费搜索国产男女视频| 久久人妻av系列| 神马国产精品三级电影在线观看| 欧美激情在线99| 亚洲在线自拍视频| 日产精品乱码卡一卡2卡三| 一个人观看的视频www高清免费观看| 一级爰片在线观看| 亚洲真实伦在线观看| videossex国产| 精品国内亚洲2022精品成人| 国产亚洲5aaaaa淫片| 一区二区三区免费毛片| 国产激情偷乱视频一区二区| 黄片无遮挡物在线观看| 久久精品久久精品一区二区三区| 精品久久久久久成人av| 亚洲国产高清在线一区二区三| 精品久久国产蜜桃| 又爽又黄无遮挡网站| 美女脱内裤让男人舔精品视频| 亚洲自偷自拍三级| 亚洲成人久久爱视频| 熟妇人妻久久中文字幕3abv| 亚洲怡红院男人天堂| 一本一本综合久久| 97超碰精品成人国产| 国产精品av视频在线免费观看| 一级毛片我不卡| 久久久久久久久中文| 搡女人真爽免费视频火全软件| 国产真实乱freesex| 看免费成人av毛片| av又黄又爽大尺度在线免费看 | 成年av动漫网址| av在线蜜桃| 两个人视频免费观看高清| 成人欧美大片| a级毛片免费高清观看在线播放| 免费人成在线观看视频色| 国产一区亚洲一区在线观看| 久久久精品大字幕| 久久久久久久久久黄片| 亚洲在线观看片| 国产欧美另类精品又又久久亚洲欧美| 午夜精品一区二区三区免费看| 国产成人免费观看mmmm| 十八禁国产超污无遮挡网站| 亚洲国产欧美在线一区| 精品国内亚洲2022精品成人| 国国产精品蜜臀av免费| 日韩在线高清观看一区二区三区| 国产精品女同一区二区软件| 欧美激情国产日韩精品一区| av视频在线观看入口| 国产成人freesex在线| 在线观看美女被高潮喷水网站| 日韩在线高清观看一区二区三区| 深爱激情五月婷婷| 两性午夜刺激爽爽歪歪视频在线观看| 免费观看性生交大片5| 伊人久久精品亚洲午夜| 在线观看美女被高潮喷水网站| 国产成人一区二区在线| 91在线精品国自产拍蜜月| 不卡视频在线观看欧美| 卡戴珊不雅视频在线播放| 久久久久国产网址| 亚洲精品影视一区二区三区av| 国产成人freesex在线| 一夜夜www| 亚洲在久久综合| 亚洲av一区综合| 欧美一级a爱片免费观看看| 久久亚洲精品不卡| 1024手机看黄色片| 人妻制服诱惑在线中文字幕| 亚洲国产欧洲综合997久久,| 国产亚洲一区二区精品| 亚洲中文字幕一区二区三区有码在线看| 国产黄色小视频在线观看| 国产成人a区在线观看| 3wmmmm亚洲av在线观看| 熟女人妻精品中文字幕| 亚洲av二区三区四区| 激情 狠狠 欧美| 天堂网av新在线| 欧美精品国产亚洲| 成人美女网站在线观看视频| 国产精品日韩av在线免费观看| 国产在线男女| 亚洲av一区综合| 亚洲最大成人中文| 六月丁香七月| 天堂中文最新版在线下载 | 国产精品一及| 国产日韩欧美在线精品| 亚洲国产欧美人成| 久久亚洲国产成人精品v| av在线天堂中文字幕| 亚洲,欧美,日韩| 国产高清有码在线观看视频| 国产高清不卡午夜福利| 天美传媒精品一区二区| 久久精品熟女亚洲av麻豆精品 | 欧美潮喷喷水| 黄片无遮挡物在线观看| 91精品伊人久久大香线蕉| 亚洲图色成人| 国产乱人视频| 我要搜黄色片| 中文字幕人妻熟人妻熟丝袜美| 村上凉子中文字幕在线| 日韩欧美精品免费久久| 久久久久免费精品人妻一区二区| 亚洲av.av天堂| 狂野欧美白嫩少妇大欣赏| 国内精品一区二区在线观看| 日韩三级伦理在线观看| 久久精品夜色国产| 久久久久久久久久久免费av| 国产精品一区二区三区四区久久| 大又大粗又爽又黄少妇毛片口| 精品久久国产蜜桃| 亚洲丝袜综合中文字幕| 成人漫画全彩无遮挡| 日本熟妇午夜| 亚洲高清免费不卡视频| 三级国产精品欧美在线观看| 久久人人爽人人片av| 成人三级黄色视频| 级片在线观看| 国产国拍精品亚洲av在线观看| 美女被艹到高潮喷水动态| 激情 狠狠 欧美| 亚洲最大成人中文| 亚洲综合精品二区| 久久久亚洲精品成人影院| 日本黄色片子视频| 草草在线视频免费看| 国产色爽女视频免费观看| 高清av免费在线| 日韩成人伦理影院| 免费搜索国产男女视频| 国产亚洲一区二区精品| 亚洲精品日韩av片在线观看| 亚洲天堂国产精品一区在线| 亚洲国产欧美人成| 日本熟妇午夜| 亚洲精品国产av成人精品| 日韩欧美 国产精品| 人妻系列 视频| 日韩中字成人| 国产精品麻豆人妻色哟哟久久 | 一区二区三区乱码不卡18| 国产免费一级a男人的天堂| 一级黄片播放器| eeuss影院久久| 乱码一卡2卡4卡精品| 变态另类丝袜制服| 特级一级黄色大片| 性色avwww在线观看| ponron亚洲| 又爽又黄无遮挡网站| 婷婷六月久久综合丁香| 成人一区二区视频在线观看| 天美传媒精品一区二区| 国产精品久久久久久久电影| 午夜激情欧美在线| 久久精品夜夜夜夜夜久久蜜豆| 国产精品麻豆人妻色哟哟久久 | 国产乱来视频区| 在线观看一区二区三区| 国产色婷婷99| 免费观看人在逋| 一级黄色大片毛片| 简卡轻食公司| 黄片无遮挡物在线观看| 99久久成人亚洲精品观看| 日本猛色少妇xxxxx猛交久久| 国产午夜精品论理片| 嫩草影院入口| 成人毛片a级毛片在线播放| 桃色一区二区三区在线观看| 国产成人91sexporn| 久久这里有精品视频免费| 国产高清国产精品国产三级 | 夜夜看夜夜爽夜夜摸| 一区二区三区四区激情视频| 中文字幕av在线有码专区| 五月玫瑰六月丁香| 久久久a久久爽久久v久久| www.色视频.com| 亚洲在线自拍视频| 超碰av人人做人人爽久久| 小说图片视频综合网站| 在线免费观看不下载黄p国产| 欧美bdsm另类| 免费人成在线观看视频色| 日韩成人av中文字幕在线观看| 夫妻性生交免费视频一级片| 国产精品美女特级片免费视频播放器| 欧美bdsm另类| 亚洲丝袜综合中文字幕| 欧美激情在线99| 麻豆久久精品国产亚洲av| 女人被狂操c到高潮| 日日撸夜夜添| 久久亚洲国产成人精品v| 国产精品久久视频播放| 男人舔奶头视频| 日本三级黄在线观看| АⅤ资源中文在线天堂| 人妻制服诱惑在线中文字幕| 国产老妇伦熟女老妇高清| 亚洲精品日韩av片在线观看| 亚洲在线观看片| 我要搜黄色片| 久久精品91蜜桃| 日韩一区二区三区影片| 久久久久久久久大av| 国产伦精品一区二区三区四那| 成人午夜高清在线视频| 亚洲中文字幕一区二区三区有码在线看| 欧美丝袜亚洲另类| 免费av毛片视频| 中文字幕av在线有码专区| 欧美成人a在线观看| 久久久亚洲精品成人影院| 国产精品久久电影中文字幕| 国国产精品蜜臀av免费| 亚洲成av人片在线播放无| 深爱激情五月婷婷| 丝袜美腿在线中文| 久久久久免费精品人妻一区二区| 国产亚洲最大av| 一级毛片aaaaaa免费看小| 一边亲一边摸免费视频| 成人美女网站在线观看视频| 国产男人的电影天堂91| 亚洲丝袜综合中文字幕| 国产精品三级大全| 小蜜桃在线观看免费完整版高清| 国产一区二区亚洲精品在线观看| 欧美变态另类bdsm刘玥| 最近视频中文字幕2019在线8| 亚洲国产日韩欧美精品在线观看| 免费观看人在逋| .国产精品久久| 免费在线观看成人毛片| 最近最新中文字幕免费大全7| 欧美日韩国产亚洲二区| 亚洲av免费高清在线观看| 亚洲成人中文字幕在线播放| 99热精品在线国产| 91精品伊人久久大香线蕉| 国产精品综合久久久久久久免费| 九九爱精品视频在线观看| 亚洲内射少妇av| 91狼人影院| 日本一二三区视频观看| 亚洲精品成人久久久久久| 欧美一级a爱片免费观看看| 一区二区三区四区激情视频| 精品人妻偷拍中文字幕| 国产乱人偷精品视频| 99九九线精品视频在线观看视频| 精品不卡国产一区二区三区| 午夜精品在线福利| 亚洲精品乱码久久久久久按摩| 男人的好看免费观看在线视频| 直男gayav资源| 搡女人真爽免费视频火全软件| 精品久久久久久久久久久久久| 99久久中文字幕三级久久日本| 中文在线观看免费www的网站| 国产私拍福利视频在线观看| 午夜精品一区二区三区免费看| 国国产精品蜜臀av免费| 国产成人一区二区在线| 欧美zozozo另类| 国产老妇女一区| 毛片女人毛片| 日本午夜av视频| 成人午夜精彩视频在线观看| 性色avwww在线观看| 亚洲精品日韩av片在线观看| 国产伦精品一区二区三区四那| 一边摸一边抽搐一进一小说| 深夜a级毛片| 国产精品野战在线观看| 性色avwww在线观看| 哪个播放器可以免费观看大片| 联通29元200g的流量卡| 亚洲婷婷狠狠爱综合网| 黄片无遮挡物在线观看| 欧美潮喷喷水| 一级毛片我不卡| 婷婷色综合大香蕉| 国产在线男女| 国产亚洲av嫩草精品影院| 日本与韩国留学比较| 国产精品电影一区二区三区| 丰满少妇做爰视频| 五月伊人婷婷丁香| 欧美高清成人免费视频www| 午夜精品在线福利| 久久这里只有精品中国| 亚洲,欧美,日韩| 国产精品美女特级片免费视频播放器| 七月丁香在线播放| 亚洲国产精品合色在线| 人妻系列 视频|