• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Parameterization of the Canonical Bases of Affine Modified Quantized Enveloping Algebras?

    2016-06-07 08:05:18JieXIAOMinghuiZHAO
    關鍵詞:云浮老實師父

    Jie XIAO Minghui ZHAO

    1 Introduction

    Let U+be the positive part of the quantized enveloping algebra U associated with a Cartan datum.In the case of finite type,Lusztig gave two approaches to construct the canonical basis B of U+(see[11]).The first one is an elementary algebraic construction.By using the Ringel-Hall algebra realization of U+,the isomorphism classes of representations of the corresponding Dynkin quiver form a PBW-type basis of U+and there is an order on this basis.Under this order,the transition matrix between this basis and a monomial basis is a unipotent lower triangular matrix.By a standard linear algebra method one can get a bar-invariant basis,which is the canonical basis B.The second one is a geometric construction.Lusztig constructed the canonical basis B by using perverse sheaves and intersection cohomology.The geometric construction of B was generalized to the cases of all types in[12].In the case of affine type,Lin,Xiao and Zhang in[10]provided a process to construct a PBW-type basis of U+and the canonical basis B by using the Ringel-Hall algebra approach.

    Letbe the modified quantized enveloping algebra obtained from U by modifying the Cartan partwherePis the weight lattice.can be considered as the limit of tensor products of the highest weight modules and the lowest weight modules.Lusztig introduced the canonical bases of the tensor products and then the canonical basis[13–14]).Kashiwara also studied the algebraand its canonical basis(see[9]).

    Happel studied the bounded derived categoryDb(Λ)of a finite dimensional algebra Λ in[6–7].In the case that Λ is hereditary and representation- finite,he proved that there is a bijection between the isomorphism classes of indecomposable objects inR=Db(Λ)/T2and all the roots of the corresponding Lie algebra,whereTis the translation functor in the triangulated categoryDb(Λ).HenceRis called a root category.It was proved in[15]thatRis still a triangulated category.In[15–16],Peng and Xiao gave a realization of all symmetrizable Kac-Moody Lie algebras via the root categories of finite-dimensional hereditary algebras.

    Note that the construction of the canonical basisis abstract and depends on the construction of the canonical basis B of U+.Inspired by the method of Peng and Xiao,we want to study the relations between the canonical basisand the corresponding root categoryR.In this paper, first we associate a settoR.In[10],Lin,Xiao and Zhang associated a setMto a hereditary category and the definition ofis based on that ofM.However,is independent of the embedding of the hereditary category toR.Fixing an embedding of the hereditary category toR,we can get a bijection betweenand the canonical basisfor everyλ∈P.Hence we say that the setprovides a parameterization of the canonical basis.

    Since[21],it has been an open problem:How to realize the whole quantized enveloping algebras by using Hall algebras from derived categories or root categories.A lot of efforts have been paid on the progress(see[3,8,20,22])and the most recent progress is given by Bridgeland in[1].We hope that the main result in the present paper can provide a strong evidence for the connection between canonical bases and root categories.

    In Section 2,we first give some notations of quantized enveloping algebras and modified quantized enveloping algebras.Then we review the definitions of Ringel-Hall algebras and root categories.In Section 3,we study the case of finite type,which is simpler and can reflect the idea clearly.In Section 4,we study the case of affine type.We first review the construction of the PBW-type basis of U+in[10].Then we define a setdepending on the corresponding root categoryRand a PBW-type basis ofwithas an index.By a standard linear algebra method,we get a bar-invariant basis and prove that each element in it is the leading term of an element inAt last,we prove that there is a bijection between

    2 Preliminaries

    2.1 Quantized enveloping algebras

    Let Q be the field of rational numbers and Z be the ring of integers.LetIbe a finiteindex set withbe a generalized Cartan matrix.Denote byr(A)the rank ofA.LetP∨be a free Abelian group of rank 2n?r(A)with a Z-basisandbe the Q-linear space spanned byWe callthe dual weight lattice and h the Cartan subalgebra.We also define the weight lattice to be

    Setand choose a linearly independent subsetsatisfyingor 1 for alli,j∈I,s=1,···,n?rankA.The elements of Π are called simple roots,and the elements of Π∨are called simple coroots.The quintuple(A,Π,Π∨,P,P∨)is called a Cartan datum associated with the generalized Cartan matrixA.

    We shall review the definition of quantized enveloping algebras(see[14]).From now on,assume that the generalized Cartan matrixA=(aij)i,j∈Iis symmetric.

    Fix an indeterminatev.For anyn∈Z,set

    2.2 Modified quantized enveloping algebras

    Let us review the definition of the modified form˙U of U(see[13–14]).

    For any

    Here,the setIis viewed as a subset ofPandiis identified withαifor eachi∈I.The images of summands U(β)underform the weight space decomposition

    Note thatunless

    There is a natural associative Q(v)-algebra structure oninherited from that of U.It is defined as follows:For anysuch thatand any

    2.3 Ringel-Hall algebras

    In this subsection,we shall review the definition of Ringel-Hall algebras(see[5,10,18]).

    A quiverQ=(I,H,s,t)consists of a vertex setI,an arrow setH,and two mapss,t:H→Isuch that an arrowρ∈Hstarts ats(ρ)and terminates att(ρ).

    Letkbe a field and Λ =kQbe the path algebra ofQoverk.Denote by mod-Λ the category of finite dimensional left Λ-modules and rep-Qthe category of finite dimensional representations ofQoverk.It is well-known that mod-Λ is equivalent to rep-Q.We shall identify Λ-modules with representations ofQunder this equivalence.

    LetPbe the set of isomorphism classes of finite dimensional nilpotent Λ-modules and ind(P)be the set of isomorphism classes of indecomposable finite dimensional nilpotent Λ-modules.For anyα∈P, fi x a Λ-moduleM(α)in the isomorphism classα.

    The set of isomorphism classes of nilpotent simple Λ-modules is indexed by the setIand the Grothendieck groupG(Λ)of mod-Λ is the free Abelian group ZI.For any Λ-moduleM,the dimension vectoris an element inG(Λ)=ZI.

    The Euler formis defined by

    whereFor any Λ-modulesMandN,one has

    The symmetric Euler form is defined byThis gives rise to a symmetric generalized Cartan matrixThe generalized Cartan matrixAdepends only on the underlying graph of quiverQ.

    From now on,letkbe a finite field withqelements.Given three modulesL,MandNin mod-Λ,letbe the number of Λ-submodulesWofLsuch thatW?NandL/W?Min mod-Λ.LetBy definition,the Ringel-Hall algebraHq(Λ)of Λ is the Q(v)-vector space with basis{u[M]|[M]∈P}whose multiplication is given by

    It is easily seen thatis an associative Q(v)-algebra with unitu[0],where 0 denotes the zero module.Note that,the Ringel-Hall algebrais an NI-graded algebra by dimension vectors of modules.

    The twisted Ringel-Hall algebrais defined as follows.Setvector space and define the multiplication by

    LetSibe the nilpotent simple module corresponding toi∈Iand defineThe composition algebrais a subalgebra ofgenerated byuifor alli∈I.For any Λ-moduleM,denote

    Note thatbasis of

    LetQbe a finite quiver.Then consider the generic Ringel-Hall algebra associated withQ.Letkbe a finite field and Λk=kQ.Denote bythe corresponding twisted Ringel-Hall algebra.LetKbe a set of some finite fieldsksuch that the setis an in finite set.LetRbe an integral domain containing Q andvqk,wherefor anyk∈K.For eachk∈K,the composition algebrais theR-subalgebra ofgenerated by the elementsui(k)for alli∈I.Consider the direct product

    and the elementsandwe denote the subalgebra ofgenerated byv,andWe may regard it as anA-algebra generated byui,wherevis viewed as an indeterminate.Finally,definewhich is called the generic composition algebra ofQ.

    Then we have the following well-known result of Green and Ringel(see[5,18]).

    這個問題,青辰覺得在當前面對的所有問題中,似乎是最不打緊的一個。眼前有著更多關乎云浮命運的大事需要去解決。但師父有此發(fā)問,他只得老實作答。

    Theorem 2.1Let Q be a connected quiver,A be the corresponding generalized Cartan matrix,andfbe the Lusztig’s algebra of type A.Then there is an isomorphism of algebras:

    Hence,we always identifyC?(Q)with f.

    2.4 Root categories

    A triangulated category(C,T)is called 2-periodic if the translation functorTsatisfiesT2?id.

    Letkbe a field.Given a finite dimensional hereditaryk-algebra Λ,denote byDb(Λ)the bounded derived category of the Abelian category mod-Λ andTthe translation functor in this triangulated category.Consider the orbit categoryR(Λ)=Db(Λ)/T2ofDb(Λ)under the equivalent functorT2.LetF:Db(Λ)→R(Λ)be the canonical functor.The translation functorTofDb(Λ)induces an equivalent functor inR(Λ)of order 2,which is still denoted byT.By[15],(R(Λ),T)is also a triangulated category and the functorF:Db(Λ)→R(Λ)sends each triangle inDb(Λ)to a triangle inR(Λ).It is clear that the root categoryR=R(Λ)is a 2-periodic triangulated category.

    LetQbe a connected quiver andR(Q)=Db(kQ)/T2.Denote by?Pthe set of isomorphism classes of objects inR(Q)and ind(?P)the set of isomorphism classes of indecomposable objects inR(Q).Note that mod-kQcan be embeded intoR(Q)as a full subcategory and ind(?P)=ind(P)˙∪ind(T(P)),where˙∪means disjoint union.

    3 The Finite Type

    3.1 The PBW-type basis of U+

    In this section,letQbe a connected Dynkin quiver,kbe a finite field and Λ=kQ.Denote by Φ+(resp. Φ?)the set of positive(resp.negative)roots of the Dynkin quiver Q.Note that Φ+and Φ?can be viewed as subsets of ZI.By Gabriel’s theorem,the map dim induces a bijection between ind(P)and Φ+.Given a positive rootα,the corresponding isomorphism class is also denoted byα.

    SinceQis representation-directed,we can define a total order on the set

    By[19],we have the following proposition.

    Proposition 3.1The set

    3.2 PBW-type basis of

    LetR(Q)be the root category corresponding to a connected Dynkin quiverQover some finite fieldk.Remember thatis the set of isomorphism classes of indecomposable objects inR(Q).LetThen Φ is the root system of the corresponding Lie algebra and there is a bijection betweenand Φ by Gabriel’s theorem.Note thatFor any elementα ∈Φ,we also denote byM(α)the corresponding object inR(Q).

    3.3 A bar-invariant basis of

    As before,letQbe a connected Dynkin quiver andR(Q)be the corresponding root category.Remember that the set of positive rootsFor any a,b:define b?a if and only if there exists somesuch thatandFor anyif and only if

    For anythere exists a monomialw?(c)on Chevalley generatorsuisatisfying

    LetThe matrixis again a unipotent lower triangular matrix andThere exists a unique unipotent lower triangular matrixwith off-diagonal entries insuch thatThen we get a bar-invariant basis of

    3.4 A parameterization of the canonical basis of

    Letbe the modified quantized enveloping algebra corresponding to the quiverQandbe the canonical basis of

    Proof The first bijection fromcomes from our construction ofand the second bijection fromcomes from(2.1).By Theorem 3.1,Hence,is a bijection.

    4 The Affine Type

    4.1 The PBW-type basis of U+

    We first review the construction of the PBW-type basis in[2,4,10,23].

    4.1.1 The integral basis arising from the Kronecker quiver

    LetQbe the Kronecker quiver withI={1,2}andH={ρ1,ρ2}:

    Letkbe a finite field withqelements,be the path algebra ofQ.

    The set of dimension vectors of indecomposable Λ-modules is

    The dimension vectors(l+1,l)and(n,n+1)correspond to preprojective and preinjective indecomposable Λ-modules respectively.

    Remember thatPis the set of isomorphism classes of finite dimensional Λ-modules.Denote bythe Ringel-Hall(resp.twisted Ringel-Hall)algebra of Λ.

    De fi ne

    whereM(n+1,n)(resp.M(n,n+1))is the corresponding Λ-module of the dimension vector(n+1,n)(resp.(n,n+1))for anyn∈N.Letδ=(1,1).For anyn≥1,define

    4.1.2 The integral basis arising from a tube

    Let Δ = Δ(n)be the cyclic quiver whose vertex set isand whose arrow set is

    Letkbe a finite field withqelements,be the category of finite dimensional nilpotent representations of Δ(n)overk.For anyi∈Δ0,denote bySithe corresponding simple object inT.For anyi∈Δ0andl∈N,denote bySi[l]the indecomposable object inTwith topSiand lengthl.Note thatSi[l]is independent of the choice of finite fields.LetPbe the set of isomorphism classes of objects inT.Denote byH(resp.H?)the corresponding Ringel-Hall algebra(resp.the twisted Ringel-Hall algebra).Since the Hall polynomials always exist in this case,they are regarded as generic forms.Denote byC?the twisted composition subalgebra ofH?.

    Let Π be the set ofn-tuples of partitionsis a partition of some non-negative integer.For eachπ∈Π,define an object inT

    In this way,we obtain a bijection between Π andP.

    Ann-tuplepartitions in Π is called aperiodic,if for eachl≥1 there exists somei=i(l)∈Δ0such thatDenote by Πathe set of aperiodicn-tuples of partitions.An objectMinTis called aperiodic ifM?M(π)for someπ∈Πa.For any dimension vectordefineand

    For any objectsMandNinT,there exists a unique(up to isomorphism)extensionLofMbyNwith the minimal dimEnd(L).The extensionLis called the generic extension ofMbyN,which is denoted by

    Let Ω be the set of all words on the alphabet Δ0.For eachset.Then there is a unique p(w)=π∈Π such thatIt has been proved in[17]thatπ=p(w)∈Πaand p induces a surjection p:

    Proposition 4.2(see[4,10])be a section of distinguished words.Then bothAnd the transition matrix between these two bases is a unipotent lower triangular matrix with off-diagonal entries in A.

    It has been proved in[4]that the basisis independent of the choice of the sections of distinguished words.

    4.1.3 The integral bases arising from preprojective and preinjective components

    Letkbe a finite field withqelements andLetQbe a connected tame quiver without oriented cycles and Λ=kQbe the corresponding path algebra.Denote by Prep and Prei the sets of isomorphism classes of indecomposable preprojective and preinjective Λ-modules respectively,which are independent of the choice of finite fields.Letthe Ringel-Hall(resp.twisted Ringel-Hall)algebra of Λ.

    Since Prei is representation-directed,we can define a total order on the set

    4.1.4 The integral basis for the generic composition algebra

    Letkalso be a finite field withqelements andLetQbe a connected tame quiver without oriented cycles and Λ=kQbe the corresponding path algebra.

    First consider the embedding of the category of representations of the Kronecker quiver into that ofQ.

    Letebe an extending vertex ofQandP=P(e)be the projective cover of a simple moduleSe.Letandδbe the minimal imaginary root vector.Note thatand there exists a unique indecomposable preprojective moduleLsuch thatMoreover,HomΛ(L,P)=0 and ExtΛ(L,P)=0.Let C(P,L)be the smallest full subcategory of mod-Λ which containsPandLand is closed under taking extensions,kernels of epimorphisms and cokernels of monomorphisms.The categoryis equivalent to the module category of the Kronecker quiverKoverk.Thus we have an exact embeddingF:mod-kKmod-Λ.Note that the embeddingFis independent of the choice of finite fields.Hence,this gives rise to a monomorphism of algebrasF:we have definedfor anym∈N.De fine

    List all non-homogeneous tubesin mod-Λ (in facts≤3).For eachbe the period ofbe the corresponding generic composition algebra andbe its integral form as we did in Section 4.1.2.For eachTi,denote bythe set of aperiodicri-tuples of partitions.We have constructed in Section 4.1.2 the elementsand the

    LetMbe the set of

    where〉are defined in Section 4.1.3,Eπicis defined in Section 4.1.2 andis defined in Section 4.1.1.

    Note that the setis contained inWe have the following proposition.

    Proposition 4.4(see[10])

    From this basis we can get a bar-invariant basis.But it is not the one considered by Lusztig.Hence in[10],another PBW-type basis is constructed.Let us review its definition.

    There is a bilinear form(?,?)ondefined in[5].It is also well-defined onwhich coincides with the one defined by Lusztig in[14].Consider the Q(v)-basis

    Letbe thewith the basiswhereis a partition.R(C?(Q))is a subalgebra of

    Letbe the subalgebra ofwith the basisFor anyα,β∈NI,defineα≤βifβ?α∈NI.If.Define

    In[10],it is proved that

    4.2 The PBW-type basis of

    LetQbe a connected tame quiver without oriented cycles andbe the corresponding root category over some finite fieldk.Remember thatis the set of isomorphism classes of objects inR(Q)andis the set of isomorphism classes of indecomposable objects incan be divided into four parts as follows:

    Fix an embedding of mod-kQintoand T is the set of isomorphism classes of all indecomposable regular representations ofQ.T consists of isomorphism classes of indecomposable representations in homogeneous tubes and non-homogeneous tubesappearing in mod-kQ.

    Note that the categoryR(Q),so the setdepends only on the underlying graph of Q.IfQ′is another quiver such thatthey give the same set

    Given any symmetric generalized Cartan matrixA=(aij)n×nof the affine type,consider a quiverQ,the quantum enveloping algebra U and the modified quantized enveloping algebra U˙ corresponding toA.

    Remember that mod-kQcan be embedded intoR(Q)as a full subcategory and

    Lemma 4.2The transition matrix from under the order<defined above is an invertible lower triangular matrix,whose diagonal entries are powers of v and off-diagonal entries belong to A.

    Proof For anyx,y∈f homogeneous,write

    From the definition of the order?onM,

    4.3 A bar-invariant basis of˙U1λ

    As before,letQbe a connected tame quiver without oriented cycles andbe the corresponding root category.There is an order?on the setMin[10].For anydefineif and only ifwhere

    For any c∈M,there exists a monomial mcon Chevalley generatorsuisatisfying

    whereacc′∈A(see[10]).Note that the transition matrixsatisfies thatThat is,ais a unipotent lower triangular matrix.

    Letwe have

    LetThe matrixhis again a unipotent lower triangular matrix andSimilar to the case of finite type,there exists a unique unipotent lower triangular matrixwith off-diagonal entries insuch thatThen the canonical basis of f is

    As before,the transition matrixsatisfies thatunlessThat is,is a unipotent lower triangular matrix with off-diagonal entries inA.

    Letwe have

    LetThe matrixis again a unipotent lower triangular matrix andThere exists a unique unipotent lower triangular matrixwith off-diagonal entries inThen we get a bar-invariant basis of

    withWe denote this basis by

    Theorem 4.1

    Proof We use the above notations.

    First,by the definition of?a,we have

    The proof is finished.

    Remark 4.1 Although we use the embedding of mod-kQintoR(Q)to construct the basisthis theorem shows that this basis is independent of the choice of the orientation ofQin fact.

    4.4 A parameterization of the canonical basis of˙U1λ

    Letbe the modified quantized enveloping algebra corresponding to the quiver

    Qandbe the canonical basis of

    Theorem 4.2We have a bijection

    Proof The first bijection fromcomes from our construction ofand the second bijection fromcomes from(2.1).By Theorem 4.1,Hence,is a bijection.

    Note that the setdepends only on the root categoryR(Q),instead of on the embedding of mod-kQintoR(Q).Then all elements ingive a parameterization of the canonical basis of the modified quantized enveloping algebra by Theorem 4.2.

    [1]Bridgeland,T.,Quantum groups via Hall algebras of complexes,Ann.of Math.,177(2),2013,739–759.

    [2]Chen,X.,Root vectors of the composition algebra of the Kronecker algebra,Algebra Discrete Math.,1,2004,37–56.

    [3]Cramer,T.,Double Hall algebras and derived equivalences,Adv.Math.,224(3),2010,1097–1120.

    [4]Deng,B.,Du,J.and Xiao,J.,Generic extensions and canonical bases for cyclic quivers,Canad.J.Math.,59(5),2007,1260–1283.

    [5]Green,J.A.,Hall algebras,hereditary algebras and quantum groups,Invent.Math.,120(2),1995,361–377.

    [6]Happel,D.,On the derived category of a finite-dimensional algebra,Comment.Math.Helv.,62(3),1987,339–389.

    [7]Happel,D.,Triangulated Categories in the Representation Theory of Finite-Dimensional Algebras,Cambridge University Press,Cambridge,1988.

    [8]Kapranov,M.,Heisenberg doubles and derived categories,J.Algebra,202(2),1998,712–744.

    [9]Kashiwara,M.,Crystal bases of modified quantized enveloping algebra,Duke Math.J.,73(2),1994,383–413.

    [10]Lin,Z.,Xiao,J.and Zhang,G.,Representations of tame quivers and affine canonical bases,Publ.Res.Inst.Math.Sci.,47(4),2011,825–885.

    [11]Lusztig,G.,Canonical bases arising from quantized enveloping algebras,J.Amer.Math.Soc.,3(2),1990,447–498.

    [12]Lusztig,G.,Quivers,perverse sheaves,and quantized enveloping algebras,J.Amer.Math.Soc.,4(2),1991,365–421.

    [13]Lusztig,G.,Canonical bases in tensor products,Proc.Natl.Acad.Sci.USA,89(17),1992,8177–8179.

    [14]Lusztig,G.,Introduction to Quantum Groups,Birkh¨auser,Boston,1993.

    [15]Peng,L.and Xiao,J.,Root categories and simple Lie algebras,J.Algebra,198(1),1997,19–56.

    [16]Peng,L.and Xiao,J.,Triangulated categories and Kac-Moody algebras,Invent.Math.,140(3),2000,563–603.

    [17]Reineke,M.,The monoid of families of quiver representations,Proc.Lond.Math.Soc.,84(3),2002,663–685.

    [18]Ringel,C.M.,Hall algebras and quantum groups,Invent.Math.,101(3),1990,583–591.

    [19]Ringel,C.M.,The Hall algebra approach to quantum groups,Aportaciones Mat.Comun.,15,1995,85–114.

    [20]To¨en,B.,Derived Hall algebras,Duke Math.J.,135(3),2006,587–615.

    [21]Xiao,J.,Hall algebra in a root category,Preprint 95-070,Univ.of Bielefeld,1995.

    [22]Xiao,J.and Xu,F.,Hall algebras associated to triangulated categories,Duke Math.J.,143(2),2008,357–373.

    [23]Zhang,P.,PBW-basis for the composition algebra of the Kronecker algebra,J.Reine Angew.Math.,527,2000,97–116.

    猜你喜歡
    云浮老實師父
    風 寄
    奇思妙想繪家鄉(xiāng)
    不老實的蝙蝠
    不老實的蝙蝠
    第十七屆云浮國際石材科技展覽會暨第十一屆云浮石文化節(jié)18日云上開幕
    石材(2020年11期)2020-12-31 22:00:14
    父親節(jié)憶父
    云浮中云石海全球石材集中采購中心開工
    石材(2020年2期)2020-03-16 13:12:40
    通感:一扇讓詩人不老實的門(外一則)
    中華詩詞(2018年2期)2018-06-26 08:47:32
    師父穿越啦
    倒霉的師父
    观看美女的网站| 午夜免费观看性视频| 亚洲性久久影院| 国产永久视频网站| 菩萨蛮人人尽说江南好唐韦庄| 色婷婷av一区二区三区视频| 国产一区二区在线观看日韩| 亚洲伊人久久精品综合| 99久久中文字幕三级久久日本| 国产一区二区在线观看av| 丝袜人妻中文字幕| 国产男女超爽视频在线观看| 久热久热在线精品观看| 欧美精品国产亚洲| 一区二区av电影网| 亚洲精品日韩在线中文字幕| 中文欧美无线码| 国产亚洲欧美精品永久| av不卡在线播放| 乱码一卡2卡4卡精品| 欧美激情极品国产一区二区三区 | 国产亚洲精品久久久com| 久久久久久久国产电影| 岛国毛片在线播放| 亚洲欧美成人综合另类久久久| 观看美女的网站| 国产69精品久久久久777片| 免费看不卡的av| 欧美精品一区二区大全| 中文字幕最新亚洲高清| 日韩一区二区三区影片| 亚洲久久久国产精品| 久久久久久久久久久久大奶| 精品久久国产蜜桃| 青春草国产在线视频| 精品人妻在线不人妻| 亚洲一码二码三码区别大吗| 又粗又硬又长又爽又黄的视频| 国产在视频线精品| 精品视频人人做人人爽| 欧美精品人与动牲交sv欧美| 有码 亚洲区| 亚洲精品日本国产第一区| 久久久a久久爽久久v久久| 免费av不卡在线播放| 精品一区二区三区四区五区乱码 | 蜜桃在线观看..| 国产黄色免费在线视频| 精品第一国产精品| 性色av一级| 国产精品不卡视频一区二区| 制服诱惑二区| 高清不卡的av网站| 成年av动漫网址| 看免费成人av毛片| 女人精品久久久久毛片| 高清欧美精品videossex| 久久精品国产鲁丝片午夜精品| 成人免费观看视频高清| 日韩三级伦理在线观看| 欧美xxxx性猛交bbbb| 久久毛片免费看一区二区三区| 欧美精品人与动牲交sv欧美| 综合色丁香网| 亚洲精品国产av蜜桃| 日韩,欧美,国产一区二区三区| 街头女战士在线观看网站| 亚洲av电影在线观看一区二区三区| 建设人人有责人人尽责人人享有的| 免费在线观看完整版高清| 日本av免费视频播放| 日本爱情动作片www.在线观看| 久久久久久人人人人人| 黄色配什么色好看| 亚洲av男天堂| 最近2019中文字幕mv第一页| 色5月婷婷丁香| av播播在线观看一区| 精品第一国产精品| 亚洲图色成人| 波多野结衣一区麻豆| 伦理电影免费视频| 国产精品久久久久久久久免| 欧美+日韩+精品| av免费观看日本| 国产1区2区3区精品| 天天躁夜夜躁狠狠躁躁| 九九在线视频观看精品| 国产激情久久老熟女| 国产精品99久久99久久久不卡 | 午夜影院在线不卡| a级毛片在线看网站| 夫妻午夜视频| 美女视频免费永久观看网站| 一级毛片黄色毛片免费观看视频| 免费久久久久久久精品成人欧美视频 | 黄网站色视频无遮挡免费观看| 久久久久久久久久成人| 精品国产一区二区久久| 王馨瑶露胸无遮挡在线观看| 亚洲国产看品久久| 国产精品成人在线| 美女内射精品一级片tv| 久久久久久久亚洲中文字幕| freevideosex欧美| av国产精品久久久久影院| 丝瓜视频免费看黄片| 国产av码专区亚洲av| 中文精品一卡2卡3卡4更新| 久久久久网色| 亚洲精品美女久久久久99蜜臀 | 又黄又爽又刺激的免费视频.| 性高湖久久久久久久久免费观看| 日韩大片免费观看网站| 曰老女人黄片| 捣出白浆h1v1| 亚洲成国产人片在线观看| 黄色视频在线播放观看不卡| 国产又色又爽无遮挡免| 观看av在线不卡| 久久97久久精品| 99久久人妻综合| 全区人妻精品视频| 大码成人一级视频| 热re99久久精品国产66热6| 中国美白少妇内射xxxbb| 欧美亚洲 丝袜 人妻 在线| 美女xxoo啪啪120秒动态图| 女人被躁到高潮嗷嗷叫费观| 欧美xxⅹ黑人| 国产精品女同一区二区软件| 国产在线一区二区三区精| 九九在线视频观看精品| 国产精品欧美亚洲77777| 超碰97精品在线观看| 人妻一区二区av| 日韩精品有码人妻一区| 婷婷色综合www| 精品一品国产午夜福利视频| 免费人妻精品一区二区三区视频| 日韩免费高清中文字幕av| 一级爰片在线观看| 亚洲激情五月婷婷啪啪| 久久久久久久精品精品| 日本91视频免费播放| 久久人妻熟女aⅴ| 国产精品欧美亚洲77777| 欧美3d第一页| 国产一区二区三区综合在线观看 | 丝瓜视频免费看黄片| 制服丝袜香蕉在线| 亚洲国产精品专区欧美| 高清av免费在线| 最近中文字幕高清免费大全6| 国产亚洲一区二区精品| 国产探花极品一区二区| 啦啦啦在线观看免费高清www| 欧美成人午夜精品| 九九在线视频观看精品| 人人澡人人妻人| 久久久久久人人人人人| 亚洲国产精品一区二区三区在线| 中文字幕最新亚洲高清| 新久久久久国产一级毛片| 母亲3免费完整高清在线观看 | 国产精品久久久久久av不卡| 久久精品熟女亚洲av麻豆精品| 久久99精品国语久久久| 天美传媒精品一区二区| 在线观看人妻少妇| 国产极品天堂在线| 日韩免费高清中文字幕av| 热99久久久久精品小说推荐| 中国三级夫妇交换| 婷婷色av中文字幕| 国产成人精品无人区| 青春草亚洲视频在线观看| 亚洲av在线观看美女高潮| 满18在线观看网站| 日本av手机在线免费观看| 午夜福利视频在线观看免费| 久久99一区二区三区| 亚洲国产精品一区三区| 精品亚洲成国产av| av播播在线观看一区| 亚洲国产最新在线播放| 亚洲精品久久成人aⅴ小说| 婷婷色综合大香蕉| 中文字幕精品免费在线观看视频 | 欧美性感艳星| 91成人精品电影| 国产精品国产三级专区第一集| 亚洲成人手机| 日本欧美视频一区| 18在线观看网站| 精品久久国产蜜桃| 激情视频va一区二区三区| 精品酒店卫生间| 亚洲av男天堂| 欧美成人精品欧美一级黄| 亚洲欧美精品自产自拍| 国产精品久久久久久av不卡| 国产成人一区二区在线| 最近最新中文字幕免费大全7| 97精品久久久久久久久久精品| 国产探花极品一区二区| 亚洲成国产人片在线观看| 黄网站色视频无遮挡免费观看| 欧美日韩综合久久久久久| 中文字幕最新亚洲高清| 日日啪夜夜爽| 18在线观看网站| 一级毛片我不卡| 亚洲,欧美精品.| 一级毛片 在线播放| 亚洲精品第二区| 成人免费观看视频高清| 国产视频首页在线观看| 国产高清三级在线| 国产 一区精品| 高清欧美精品videossex| 欧美+日韩+精品| 国产一区亚洲一区在线观看| 久久久久久人妻| 亚洲精品乱码久久久久久按摩| 午夜福利视频精品| 少妇被粗大的猛进出69影院 | 毛片一级片免费看久久久久| 久久久久久人妻| 99re6热这里在线精品视频| 一级,二级,三级黄色视频| 大码成人一级视频| 亚洲av综合色区一区| 中文字幕另类日韩欧美亚洲嫩草| 一二三四中文在线观看免费高清| 日韩在线高清观看一区二区三区| 国产男女内射视频| 免费黄频网站在线观看国产| 最黄视频免费看| 亚洲国产色片| 免费女性裸体啪啪无遮挡网站| 天美传媒精品一区二区| 美女中出高潮动态图| 国产国语露脸激情在线看| 少妇 在线观看| 国产熟女欧美一区二区| 免费观看性生交大片5| 久久精品aⅴ一区二区三区四区 | 丰满迷人的少妇在线观看| 涩涩av久久男人的天堂| 成人黄色视频免费在线看| 久久久久精品性色| 久久精品人人爽人人爽视色| 久久青草综合色| 免费人成在线观看视频色| 久久这里只有精品19| 久久久精品区二区三区| 亚洲精品日韩在线中文字幕| 欧美 亚洲 国产 日韩一| 欧美激情极品国产一区二区三区 | videosex国产| 欧美精品av麻豆av| 涩涩av久久男人的天堂| 亚洲国产av新网站| 香蕉精品网在线| 亚洲精品aⅴ在线观看| 在线观看免费高清a一片| 亚洲人成网站在线观看播放| 九色成人免费人妻av| 亚洲精品一区蜜桃| 免费观看a级毛片全部| 一二三四在线观看免费中文在 | 国产1区2区3区精品| 97超碰精品成人国产| 欧美精品国产亚洲| 国产精品久久久av美女十八| 日韩大片免费观看网站| av在线app专区| 日韩中字成人| 麻豆精品久久久久久蜜桃| 亚洲一码二码三码区别大吗| 亚洲四区av| 纵有疾风起免费观看全集完整版| 99久久综合免费| 尾随美女入室| 久久午夜综合久久蜜桃| 秋霞伦理黄片| 亚洲一级一片aⅴ在线观看| 亚洲国产成人一精品久久久| 波多野结衣一区麻豆| 亚洲五月色婷婷综合| 亚洲av日韩在线播放| av卡一久久| 亚洲精品美女久久久久99蜜臀 | 看十八女毛片水多多多| 免费观看性生交大片5| 国产精品人妻久久久久久| 国产成人精品婷婷| 91成人精品电影| 免费播放大片免费观看视频在线观看| 久久久久久久大尺度免费视频| 蜜臀久久99精品久久宅男| 久久久久精品性色| 狠狠婷婷综合久久久久久88av| 国产av国产精品国产| 亚洲,欧美精品.| 国国产精品蜜臀av免费| 两个人免费观看高清视频| xxx大片免费视频| 内地一区二区视频在线| 国产国语露脸激情在线看| 超碰97精品在线观看| 最新的欧美精品一区二区| 亚洲四区av| 最近中文字幕2019免费版| 亚洲 欧美一区二区三区| 亚洲国产精品999| 有码 亚洲区| 国产成人精品一,二区| 日日撸夜夜添| 免费黄频网站在线观看国产| 18禁裸乳无遮挡动漫免费视频| 亚洲图色成人| 亚洲综合色惰| 国产亚洲av片在线观看秒播厂| 99热国产这里只有精品6| 天堂俺去俺来也www色官网| 美女大奶头黄色视频| 中文字幕精品免费在线观看视频 | 亚洲欧美一区二区三区国产| 天天操日日干夜夜撸| av不卡在线播放| 人体艺术视频欧美日本| 成人无遮挡网站| 国产成人精品福利久久| 91精品伊人久久大香线蕉| 99国产精品免费福利视频| 亚洲欧洲精品一区二区精品久久久 | 多毛熟女@视频| 美女中出高潮动态图| av又黄又爽大尺度在线免费看| 涩涩av久久男人的天堂| 一本色道久久久久久精品综合| 97在线人人人人妻| 国产成人免费观看mmmm| 男女午夜视频在线观看 | 考比视频在线观看| 亚洲欧洲日产国产| 国产精品国产av在线观看| 男女边吃奶边做爰视频| 国产精品国产av在线观看| 黑人猛操日本美女一级片| 精品一品国产午夜福利视频| 国国产精品蜜臀av免费| 亚洲精华国产精华液的使用体验| 狂野欧美激情性xxxx在线观看| 久久久精品免费免费高清| 有码 亚洲区| 免费人成在线观看视频色| 啦啦啦在线观看免费高清www| 午夜影院在线不卡| xxx大片免费视频| 天天影视国产精品| 国产男女内射视频| 少妇的逼水好多| 久久久精品94久久精品| 久久亚洲国产成人精品v| 制服人妻中文乱码| 亚洲精品美女久久久久99蜜臀 | 免费观看av网站的网址| 女性被躁到高潮视频| 高清黄色对白视频在线免费看| 五月天丁香电影| 免费女性裸体啪啪无遮挡网站| 亚洲欧美清纯卡通| 纵有疾风起免费观看全集完整版| 51国产日韩欧美| 久久久久久久久久久久大奶| 秋霞在线观看毛片| 国产 一区精品| 欧美亚洲日本最大视频资源| 国产国语露脸激情在线看| 自线自在国产av| 日本wwww免费看| av黄色大香蕉| 免费不卡的大黄色大毛片视频在线观看| 丝袜喷水一区| 成人国产av品久久久| a 毛片基地| 国产精品 国内视频| 狂野欧美激情性bbbbbb| 蜜臀久久99精品久久宅男| 韩国高清视频一区二区三区| 制服诱惑二区| 自线自在国产av| 亚洲国产av新网站| 在线观看一区二区三区激情| 在线观看三级黄色| 另类亚洲欧美激情| 黄色怎么调成土黄色| 成年人免费黄色播放视频| 91精品国产国语对白视频| 亚洲av电影在线进入| 一本久久精品| 欧美精品人与动牲交sv欧美| 青春草国产在线视频| 国产一区二区三区av在线| 欧美日韩亚洲高清精品| 亚洲美女视频黄频| 国产亚洲精品第一综合不卡 | 色5月婷婷丁香| 日韩成人av中文字幕在线观看| 捣出白浆h1v1| 日韩欧美精品免费久久| 国产女主播在线喷水免费视频网站| 中文乱码字字幕精品一区二区三区| 中文天堂在线官网| 久久精品久久久久久久性| 五月伊人婷婷丁香| 老熟女久久久| 777米奇影视久久| 日韩一区二区视频免费看| 亚洲精品国产色婷婷电影| 亚洲性久久影院| 日日摸夜夜添夜夜爱| videosex国产| 国内精品宾馆在线| 亚洲精品久久久久久婷婷小说| 国产69精品久久久久777片| 99香蕉大伊视频| 精品亚洲乱码少妇综合久久| 午夜激情久久久久久久| 国产精品国产av在线观看| 天堂8中文在线网| 国产成人精品福利久久| 我要看黄色一级片免费的| 成人毛片a级毛片在线播放| 少妇熟女欧美另类| 国产欧美日韩综合在线一区二区| 丝袜喷水一区| 国产片内射在线| 亚洲精品美女久久久久99蜜臀 | a级毛片在线看网站| 国产精品一二三区在线看| 日韩中字成人| 国产高清三级在线| 狂野欧美激情性xxxx在线观看| 亚洲精品美女久久久久99蜜臀 | 国产精品 国内视频| 韩国高清视频一区二区三区| 一区二区av电影网| 亚洲国产看品久久| 天堂8中文在线网| 久久精品人人爽人人爽视色| 女性被躁到高潮视频| 2022亚洲国产成人精品| 精品99又大又爽又粗少妇毛片| 色吧在线观看| 热99久久久久精品小说推荐| 啦啦啦视频在线资源免费观看| 插逼视频在线观看| 国产精品一区www在线观看| 国产精品成人在线| 97在线人人人人妻| 97在线视频观看| 不卡视频在线观看欧美| 日韩免费高清中文字幕av| 亚洲高清免费不卡视频| 免费大片黄手机在线观看| 国产免费一区二区三区四区乱码| 亚洲av欧美aⅴ国产| 国产69精品久久久久777片| 一区二区av电影网| 秋霞伦理黄片| av在线播放精品| 欧美日韩一区二区视频在线观看视频在线| 久久久久国产精品人妻一区二区| 一区在线观看完整版| videos熟女内射| 国产精品免费大片| 成年人免费黄色播放视频| 春色校园在线视频观看| 欧美亚洲 丝袜 人妻 在线| 久久久久久人妻| 中文精品一卡2卡3卡4更新| 日韩成人伦理影院| 91精品伊人久久大香线蕉| 男女免费视频国产| 婷婷成人精品国产| 国产成人免费观看mmmm| 蜜桃在线观看..| 美女福利国产在线| 欧美精品人与动牲交sv欧美| 欧美日韩亚洲高清精品| 亚洲av福利一区| 人人妻人人爽人人添夜夜欢视频| 性色avwww在线观看| 男女边摸边吃奶| 狠狠精品人妻久久久久久综合| av又黄又爽大尺度在线免费看| 欧美老熟妇乱子伦牲交| 精品国产国语对白av| 成人毛片60女人毛片免费| 国产精品久久久久久精品古装| 菩萨蛮人人尽说江南好唐韦庄| 日韩电影二区| 久久精品久久精品一区二区三区| 亚洲欧美一区二区三区黑人 | 99国产精品免费福利视频| 亚洲综合精品二区| 亚洲精品,欧美精品| 日日啪夜夜爽| 久久久久人妻精品一区果冻| 色网站视频免费| 秋霞在线观看毛片| 少妇人妻久久综合中文| 免费看不卡的av| 美女内射精品一级片tv| 亚洲av国产av综合av卡| 亚洲人成网站在线观看播放| 黄色毛片三级朝国网站| 人成视频在线观看免费观看| 在线亚洲精品国产二区图片欧美| 国产男女内射视频| 精品酒店卫生间| a 毛片基地| 久久精品久久久久久噜噜老黄| 免费人成在线观看视频色| 久久97久久精品| 边亲边吃奶的免费视频| 中文字幕亚洲精品专区| 啦啦啦在线观看免费高清www| 十八禁网站网址无遮挡| 国产片特级美女逼逼视频| 观看av在线不卡| 亚洲国产看品久久| 久久国产亚洲av麻豆专区| 在线看a的网站| 亚洲av综合色区一区| 日韩中文字幕视频在线看片| 十八禁网站网址无遮挡| 男人爽女人下面视频在线观看| 美女主播在线视频| 午夜福利乱码中文字幕| 美女内射精品一级片tv| 国产精品国产三级专区第一集| 男女午夜视频在线观看 | 久久国产精品大桥未久av| 一级黄片播放器| 国产成人免费观看mmmm| 欧美人与善性xxx| 免费日韩欧美在线观看| 久久精品国产自在天天线| 午夜免费观看性视频| 99久久综合免费| 日产精品乱码卡一卡2卡三| 国产亚洲av片在线观看秒播厂| 国产精品女同一区二区软件| 制服丝袜香蕉在线| 纯流量卡能插随身wifi吗| 多毛熟女@视频| 免费高清在线观看日韩| 国产亚洲一区二区精品| 国产男人的电影天堂91| 大香蕉久久网| 亚洲精品第二区| 成人国产av品久久久| 91成人精品电影| 在线观看美女被高潮喷水网站| 亚洲国产精品一区二区三区在线| 三上悠亚av全集在线观看| 一级毛片电影观看| 国产av码专区亚洲av| 国产一级毛片在线| 久久久国产一区二区| 大香蕉久久网| 一级黄片播放器| 亚洲成国产人片在线观看| 日韩,欧美,国产一区二区三区| 黄色视频在线播放观看不卡| www.色视频.com| 欧美老熟妇乱子伦牲交| 免费日韩欧美在线观看| 久久久久精品久久久久真实原创| 国产又色又爽无遮挡免| 久久国内精品自在自线图片| 精品国产乱码久久久久久小说| 另类亚洲欧美激情| 高清欧美精品videossex| 中文字幕人妻熟女乱码| 久久久欧美国产精品| 99久久精品国产国产毛片| 日韩伦理黄色片| 成人午夜精彩视频在线观看| 人妻人人澡人人爽人人| av免费观看日本| 考比视频在线观看| 高清欧美精品videossex| 久久精品国产自在天天线| 18+在线观看网站| 最近手机中文字幕大全| 日本色播在线视频| 亚洲精品久久成人aⅴ小说| 午夜老司机福利剧场| 国产熟女午夜一区二区三区| 亚洲精品久久成人aⅴ小说| 一级毛片我不卡| 欧美日韩精品成人综合77777| 久久毛片免费看一区二区三区| 国产亚洲精品久久久com| 人人妻人人澡人人看| 国产毛片在线视频| 午夜激情av网站| 一本—道久久a久久精品蜜桃钙片| 欧美激情极品国产一区二区三区 |