• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Parameterization of the Canonical Bases of Affine Modified Quantized Enveloping Algebras?

    2016-06-07 08:05:18JieXIAOMinghuiZHAO
    關鍵詞:云浮老實師父

    Jie XIAO Minghui ZHAO

    1 Introduction

    Let U+be the positive part of the quantized enveloping algebra U associated with a Cartan datum.In the case of finite type,Lusztig gave two approaches to construct the canonical basis B of U+(see[11]).The first one is an elementary algebraic construction.By using the Ringel-Hall algebra realization of U+,the isomorphism classes of representations of the corresponding Dynkin quiver form a PBW-type basis of U+and there is an order on this basis.Under this order,the transition matrix between this basis and a monomial basis is a unipotent lower triangular matrix.By a standard linear algebra method one can get a bar-invariant basis,which is the canonical basis B.The second one is a geometric construction.Lusztig constructed the canonical basis B by using perverse sheaves and intersection cohomology.The geometric construction of B was generalized to the cases of all types in[12].In the case of affine type,Lin,Xiao and Zhang in[10]provided a process to construct a PBW-type basis of U+and the canonical basis B by using the Ringel-Hall algebra approach.

    Letbe the modified quantized enveloping algebra obtained from U by modifying the Cartan partwherePis the weight lattice.can be considered as the limit of tensor products of the highest weight modules and the lowest weight modules.Lusztig introduced the canonical bases of the tensor products and then the canonical basis[13–14]).Kashiwara also studied the algebraand its canonical basis(see[9]).

    Happel studied the bounded derived categoryDb(Λ)of a finite dimensional algebra Λ in[6–7].In the case that Λ is hereditary and representation- finite,he proved that there is a bijection between the isomorphism classes of indecomposable objects inR=Db(Λ)/T2and all the roots of the corresponding Lie algebra,whereTis the translation functor in the triangulated categoryDb(Λ).HenceRis called a root category.It was proved in[15]thatRis still a triangulated category.In[15–16],Peng and Xiao gave a realization of all symmetrizable Kac-Moody Lie algebras via the root categories of finite-dimensional hereditary algebras.

    Note that the construction of the canonical basisis abstract and depends on the construction of the canonical basis B of U+.Inspired by the method of Peng and Xiao,we want to study the relations between the canonical basisand the corresponding root categoryR.In this paper, first we associate a settoR.In[10],Lin,Xiao and Zhang associated a setMto a hereditary category and the definition ofis based on that ofM.However,is independent of the embedding of the hereditary category toR.Fixing an embedding of the hereditary category toR,we can get a bijection betweenand the canonical basisfor everyλ∈P.Hence we say that the setprovides a parameterization of the canonical basis.

    Since[21],it has been an open problem:How to realize the whole quantized enveloping algebras by using Hall algebras from derived categories or root categories.A lot of efforts have been paid on the progress(see[3,8,20,22])and the most recent progress is given by Bridgeland in[1].We hope that the main result in the present paper can provide a strong evidence for the connection between canonical bases and root categories.

    In Section 2,we first give some notations of quantized enveloping algebras and modified quantized enveloping algebras.Then we review the definitions of Ringel-Hall algebras and root categories.In Section 3,we study the case of finite type,which is simpler and can reflect the idea clearly.In Section 4,we study the case of affine type.We first review the construction of the PBW-type basis of U+in[10].Then we define a setdepending on the corresponding root categoryRand a PBW-type basis ofwithas an index.By a standard linear algebra method,we get a bar-invariant basis and prove that each element in it is the leading term of an element inAt last,we prove that there is a bijection between

    2 Preliminaries

    2.1 Quantized enveloping algebras

    Let Q be the field of rational numbers and Z be the ring of integers.LetIbe a finiteindex set withbe a generalized Cartan matrix.Denote byr(A)the rank ofA.LetP∨be a free Abelian group of rank 2n?r(A)with a Z-basisandbe the Q-linear space spanned byWe callthe dual weight lattice and h the Cartan subalgebra.We also define the weight lattice to be

    Setand choose a linearly independent subsetsatisfyingor 1 for alli,j∈I,s=1,···,n?rankA.The elements of Π are called simple roots,and the elements of Π∨are called simple coroots.The quintuple(A,Π,Π∨,P,P∨)is called a Cartan datum associated with the generalized Cartan matrixA.

    We shall review the definition of quantized enveloping algebras(see[14]).From now on,assume that the generalized Cartan matrixA=(aij)i,j∈Iis symmetric.

    Fix an indeterminatev.For anyn∈Z,set

    2.2 Modified quantized enveloping algebras

    Let us review the definition of the modified form˙U of U(see[13–14]).

    For any

    Here,the setIis viewed as a subset ofPandiis identified withαifor eachi∈I.The images of summands U(β)underform the weight space decomposition

    Note thatunless

    There is a natural associative Q(v)-algebra structure oninherited from that of U.It is defined as follows:For anysuch thatand any

    2.3 Ringel-Hall algebras

    In this subsection,we shall review the definition of Ringel-Hall algebras(see[5,10,18]).

    A quiverQ=(I,H,s,t)consists of a vertex setI,an arrow setH,and two mapss,t:H→Isuch that an arrowρ∈Hstarts ats(ρ)and terminates att(ρ).

    Letkbe a field and Λ =kQbe the path algebra ofQoverk.Denote by mod-Λ the category of finite dimensional left Λ-modules and rep-Qthe category of finite dimensional representations ofQoverk.It is well-known that mod-Λ is equivalent to rep-Q.We shall identify Λ-modules with representations ofQunder this equivalence.

    LetPbe the set of isomorphism classes of finite dimensional nilpotent Λ-modules and ind(P)be the set of isomorphism classes of indecomposable finite dimensional nilpotent Λ-modules.For anyα∈P, fi x a Λ-moduleM(α)in the isomorphism classα.

    The set of isomorphism classes of nilpotent simple Λ-modules is indexed by the setIand the Grothendieck groupG(Λ)of mod-Λ is the free Abelian group ZI.For any Λ-moduleM,the dimension vectoris an element inG(Λ)=ZI.

    The Euler formis defined by

    whereFor any Λ-modulesMandN,one has

    The symmetric Euler form is defined byThis gives rise to a symmetric generalized Cartan matrixThe generalized Cartan matrixAdepends only on the underlying graph of quiverQ.

    From now on,letkbe a finite field withqelements.Given three modulesL,MandNin mod-Λ,letbe the number of Λ-submodulesWofLsuch thatW?NandL/W?Min mod-Λ.LetBy definition,the Ringel-Hall algebraHq(Λ)of Λ is the Q(v)-vector space with basis{u[M]|[M]∈P}whose multiplication is given by

    It is easily seen thatis an associative Q(v)-algebra with unitu[0],where 0 denotes the zero module.Note that,the Ringel-Hall algebrais an NI-graded algebra by dimension vectors of modules.

    The twisted Ringel-Hall algebrais defined as follows.Setvector space and define the multiplication by

    LetSibe the nilpotent simple module corresponding toi∈Iand defineThe composition algebrais a subalgebra ofgenerated byuifor alli∈I.For any Λ-moduleM,denote

    Note thatbasis of

    LetQbe a finite quiver.Then consider the generic Ringel-Hall algebra associated withQ.Letkbe a finite field and Λk=kQ.Denote bythe corresponding twisted Ringel-Hall algebra.LetKbe a set of some finite fieldsksuch that the setis an in finite set.LetRbe an integral domain containing Q andvqk,wherefor anyk∈K.For eachk∈K,the composition algebrais theR-subalgebra ofgenerated by the elementsui(k)for alli∈I.Consider the direct product

    and the elementsandwe denote the subalgebra ofgenerated byv,andWe may regard it as anA-algebra generated byui,wherevis viewed as an indeterminate.Finally,definewhich is called the generic composition algebra ofQ.

    Then we have the following well-known result of Green and Ringel(see[5,18]).

    這個問題,青辰覺得在當前面對的所有問題中,似乎是最不打緊的一個。眼前有著更多關乎云浮命運的大事需要去解決。但師父有此發(fā)問,他只得老實作答。

    Theorem 2.1Let Q be a connected quiver,A be the corresponding generalized Cartan matrix,andfbe the Lusztig’s algebra of type A.Then there is an isomorphism of algebras:

    Hence,we always identifyC?(Q)with f.

    2.4 Root categories

    A triangulated category(C,T)is called 2-periodic if the translation functorTsatisfiesT2?id.

    Letkbe a field.Given a finite dimensional hereditaryk-algebra Λ,denote byDb(Λ)the bounded derived category of the Abelian category mod-Λ andTthe translation functor in this triangulated category.Consider the orbit categoryR(Λ)=Db(Λ)/T2ofDb(Λ)under the equivalent functorT2.LetF:Db(Λ)→R(Λ)be the canonical functor.The translation functorTofDb(Λ)induces an equivalent functor inR(Λ)of order 2,which is still denoted byT.By[15],(R(Λ),T)is also a triangulated category and the functorF:Db(Λ)→R(Λ)sends each triangle inDb(Λ)to a triangle inR(Λ).It is clear that the root categoryR=R(Λ)is a 2-periodic triangulated category.

    LetQbe a connected quiver andR(Q)=Db(kQ)/T2.Denote by?Pthe set of isomorphism classes of objects inR(Q)and ind(?P)the set of isomorphism classes of indecomposable objects inR(Q).Note that mod-kQcan be embeded intoR(Q)as a full subcategory and ind(?P)=ind(P)˙∪ind(T(P)),where˙∪means disjoint union.

    3 The Finite Type

    3.1 The PBW-type basis of U+

    In this section,letQbe a connected Dynkin quiver,kbe a finite field and Λ=kQ.Denote by Φ+(resp. Φ?)the set of positive(resp.negative)roots of the Dynkin quiver Q.Note that Φ+and Φ?can be viewed as subsets of ZI.By Gabriel’s theorem,the map dim induces a bijection between ind(P)and Φ+.Given a positive rootα,the corresponding isomorphism class is also denoted byα.

    SinceQis representation-directed,we can define a total order on the set

    By[19],we have the following proposition.

    Proposition 3.1The set

    3.2 PBW-type basis of

    LetR(Q)be the root category corresponding to a connected Dynkin quiverQover some finite fieldk.Remember thatis the set of isomorphism classes of indecomposable objects inR(Q).LetThen Φ is the root system of the corresponding Lie algebra and there is a bijection betweenand Φ by Gabriel’s theorem.Note thatFor any elementα ∈Φ,we also denote byM(α)the corresponding object inR(Q).

    3.3 A bar-invariant basis of

    As before,letQbe a connected Dynkin quiver andR(Q)be the corresponding root category.Remember that the set of positive rootsFor any a,b:define b?a if and only if there exists somesuch thatandFor anyif and only if

    For anythere exists a monomialw?(c)on Chevalley generatorsuisatisfying

    LetThe matrixis again a unipotent lower triangular matrix andThere exists a unique unipotent lower triangular matrixwith off-diagonal entries insuch thatThen we get a bar-invariant basis of

    3.4 A parameterization of the canonical basis of

    Letbe the modified quantized enveloping algebra corresponding to the quiverQandbe the canonical basis of

    Proof The first bijection fromcomes from our construction ofand the second bijection fromcomes from(2.1).By Theorem 3.1,Hence,is a bijection.

    4 The Affine Type

    4.1 The PBW-type basis of U+

    We first review the construction of the PBW-type basis in[2,4,10,23].

    4.1.1 The integral basis arising from the Kronecker quiver

    LetQbe the Kronecker quiver withI={1,2}andH={ρ1,ρ2}:

    Letkbe a finite field withqelements,be the path algebra ofQ.

    The set of dimension vectors of indecomposable Λ-modules is

    The dimension vectors(l+1,l)and(n,n+1)correspond to preprojective and preinjective indecomposable Λ-modules respectively.

    Remember thatPis the set of isomorphism classes of finite dimensional Λ-modules.Denote bythe Ringel-Hall(resp.twisted Ringel-Hall)algebra of Λ.

    De fi ne

    whereM(n+1,n)(resp.M(n,n+1))is the corresponding Λ-module of the dimension vector(n+1,n)(resp.(n,n+1))for anyn∈N.Letδ=(1,1).For anyn≥1,define

    4.1.2 The integral basis arising from a tube

    Let Δ = Δ(n)be the cyclic quiver whose vertex set isand whose arrow set is

    Letkbe a finite field withqelements,be the category of finite dimensional nilpotent representations of Δ(n)overk.For anyi∈Δ0,denote bySithe corresponding simple object inT.For anyi∈Δ0andl∈N,denote bySi[l]the indecomposable object inTwith topSiand lengthl.Note thatSi[l]is independent of the choice of finite fields.LetPbe the set of isomorphism classes of objects inT.Denote byH(resp.H?)the corresponding Ringel-Hall algebra(resp.the twisted Ringel-Hall algebra).Since the Hall polynomials always exist in this case,they are regarded as generic forms.Denote byC?the twisted composition subalgebra ofH?.

    Let Π be the set ofn-tuples of partitionsis a partition of some non-negative integer.For eachπ∈Π,define an object inT

    In this way,we obtain a bijection between Π andP.

    Ann-tuplepartitions in Π is called aperiodic,if for eachl≥1 there exists somei=i(l)∈Δ0such thatDenote by Πathe set of aperiodicn-tuples of partitions.An objectMinTis called aperiodic ifM?M(π)for someπ∈Πa.For any dimension vectordefineand

    For any objectsMandNinT,there exists a unique(up to isomorphism)extensionLofMbyNwith the minimal dimEnd(L).The extensionLis called the generic extension ofMbyN,which is denoted by

    Let Ω be the set of all words on the alphabet Δ0.For eachset.Then there is a unique p(w)=π∈Π such thatIt has been proved in[17]thatπ=p(w)∈Πaand p induces a surjection p:

    Proposition 4.2(see[4,10])be a section of distinguished words.Then bothAnd the transition matrix between these two bases is a unipotent lower triangular matrix with off-diagonal entries in A.

    It has been proved in[4]that the basisis independent of the choice of the sections of distinguished words.

    4.1.3 The integral bases arising from preprojective and preinjective components

    Letkbe a finite field withqelements andLetQbe a connected tame quiver without oriented cycles and Λ=kQbe the corresponding path algebra.Denote by Prep and Prei the sets of isomorphism classes of indecomposable preprojective and preinjective Λ-modules respectively,which are independent of the choice of finite fields.Letthe Ringel-Hall(resp.twisted Ringel-Hall)algebra of Λ.

    Since Prei is representation-directed,we can define a total order on the set

    4.1.4 The integral basis for the generic composition algebra

    Letkalso be a finite field withqelements andLetQbe a connected tame quiver without oriented cycles and Λ=kQbe the corresponding path algebra.

    First consider the embedding of the category of representations of the Kronecker quiver into that ofQ.

    Letebe an extending vertex ofQandP=P(e)be the projective cover of a simple moduleSe.Letandδbe the minimal imaginary root vector.Note thatand there exists a unique indecomposable preprojective moduleLsuch thatMoreover,HomΛ(L,P)=0 and ExtΛ(L,P)=0.Let C(P,L)be the smallest full subcategory of mod-Λ which containsPandLand is closed under taking extensions,kernels of epimorphisms and cokernels of monomorphisms.The categoryis equivalent to the module category of the Kronecker quiverKoverk.Thus we have an exact embeddingF:mod-kKmod-Λ.Note that the embeddingFis independent of the choice of finite fields.Hence,this gives rise to a monomorphism of algebrasF:we have definedfor anym∈N.De fine

    List all non-homogeneous tubesin mod-Λ (in facts≤3).For eachbe the period ofbe the corresponding generic composition algebra andbe its integral form as we did in Section 4.1.2.For eachTi,denote bythe set of aperiodicri-tuples of partitions.We have constructed in Section 4.1.2 the elementsand the

    LetMbe the set of

    where〉are defined in Section 4.1.3,Eπicis defined in Section 4.1.2 andis defined in Section 4.1.1.

    Note that the setis contained inWe have the following proposition.

    Proposition 4.4(see[10])

    From this basis we can get a bar-invariant basis.But it is not the one considered by Lusztig.Hence in[10],another PBW-type basis is constructed.Let us review its definition.

    There is a bilinear form(?,?)ondefined in[5].It is also well-defined onwhich coincides with the one defined by Lusztig in[14].Consider the Q(v)-basis

    Letbe thewith the basiswhereis a partition.R(C?(Q))is a subalgebra of

    Letbe the subalgebra ofwith the basisFor anyα,β∈NI,defineα≤βifβ?α∈NI.If.Define

    In[10],it is proved that

    4.2 The PBW-type basis of

    LetQbe a connected tame quiver without oriented cycles andbe the corresponding root category over some finite fieldk.Remember thatis the set of isomorphism classes of objects inR(Q)andis the set of isomorphism classes of indecomposable objects incan be divided into four parts as follows:

    Fix an embedding of mod-kQintoand T is the set of isomorphism classes of all indecomposable regular representations ofQ.T consists of isomorphism classes of indecomposable representations in homogeneous tubes and non-homogeneous tubesappearing in mod-kQ.

    Note that the categoryR(Q),so the setdepends only on the underlying graph of Q.IfQ′is another quiver such thatthey give the same set

    Given any symmetric generalized Cartan matrixA=(aij)n×nof the affine type,consider a quiverQ,the quantum enveloping algebra U and the modified quantized enveloping algebra U˙ corresponding toA.

    Remember that mod-kQcan be embedded intoR(Q)as a full subcategory and

    Lemma 4.2The transition matrix from under the order<defined above is an invertible lower triangular matrix,whose diagonal entries are powers of v and off-diagonal entries belong to A.

    Proof For anyx,y∈f homogeneous,write

    From the definition of the order?onM,

    4.3 A bar-invariant basis of˙U1λ

    As before,letQbe a connected tame quiver without oriented cycles andbe the corresponding root category.There is an order?on the setMin[10].For anydefineif and only ifwhere

    For any c∈M,there exists a monomial mcon Chevalley generatorsuisatisfying

    whereacc′∈A(see[10]).Note that the transition matrixsatisfies thatThat is,ais a unipotent lower triangular matrix.

    Letwe have

    LetThe matrixhis again a unipotent lower triangular matrix andSimilar to the case of finite type,there exists a unique unipotent lower triangular matrixwith off-diagonal entries insuch thatThen the canonical basis of f is

    As before,the transition matrixsatisfies thatunlessThat is,is a unipotent lower triangular matrix with off-diagonal entries inA.

    Letwe have

    LetThe matrixis again a unipotent lower triangular matrix andThere exists a unique unipotent lower triangular matrixwith off-diagonal entries inThen we get a bar-invariant basis of

    withWe denote this basis by

    Theorem 4.1

    Proof We use the above notations.

    First,by the definition of?a,we have

    The proof is finished.

    Remark 4.1 Although we use the embedding of mod-kQintoR(Q)to construct the basisthis theorem shows that this basis is independent of the choice of the orientation ofQin fact.

    4.4 A parameterization of the canonical basis of˙U1λ

    Letbe the modified quantized enveloping algebra corresponding to the quiver

    Qandbe the canonical basis of

    Theorem 4.2We have a bijection

    Proof The first bijection fromcomes from our construction ofand the second bijection fromcomes from(2.1).By Theorem 4.1,Hence,is a bijection.

    Note that the setdepends only on the root categoryR(Q),instead of on the embedding of mod-kQintoR(Q).Then all elements ingive a parameterization of the canonical basis of the modified quantized enveloping algebra by Theorem 4.2.

    [1]Bridgeland,T.,Quantum groups via Hall algebras of complexes,Ann.of Math.,177(2),2013,739–759.

    [2]Chen,X.,Root vectors of the composition algebra of the Kronecker algebra,Algebra Discrete Math.,1,2004,37–56.

    [3]Cramer,T.,Double Hall algebras and derived equivalences,Adv.Math.,224(3),2010,1097–1120.

    [4]Deng,B.,Du,J.and Xiao,J.,Generic extensions and canonical bases for cyclic quivers,Canad.J.Math.,59(5),2007,1260–1283.

    [5]Green,J.A.,Hall algebras,hereditary algebras and quantum groups,Invent.Math.,120(2),1995,361–377.

    [6]Happel,D.,On the derived category of a finite-dimensional algebra,Comment.Math.Helv.,62(3),1987,339–389.

    [7]Happel,D.,Triangulated Categories in the Representation Theory of Finite-Dimensional Algebras,Cambridge University Press,Cambridge,1988.

    [8]Kapranov,M.,Heisenberg doubles and derived categories,J.Algebra,202(2),1998,712–744.

    [9]Kashiwara,M.,Crystal bases of modified quantized enveloping algebra,Duke Math.J.,73(2),1994,383–413.

    [10]Lin,Z.,Xiao,J.and Zhang,G.,Representations of tame quivers and affine canonical bases,Publ.Res.Inst.Math.Sci.,47(4),2011,825–885.

    [11]Lusztig,G.,Canonical bases arising from quantized enveloping algebras,J.Amer.Math.Soc.,3(2),1990,447–498.

    [12]Lusztig,G.,Quivers,perverse sheaves,and quantized enveloping algebras,J.Amer.Math.Soc.,4(2),1991,365–421.

    [13]Lusztig,G.,Canonical bases in tensor products,Proc.Natl.Acad.Sci.USA,89(17),1992,8177–8179.

    [14]Lusztig,G.,Introduction to Quantum Groups,Birkh¨auser,Boston,1993.

    [15]Peng,L.and Xiao,J.,Root categories and simple Lie algebras,J.Algebra,198(1),1997,19–56.

    [16]Peng,L.and Xiao,J.,Triangulated categories and Kac-Moody algebras,Invent.Math.,140(3),2000,563–603.

    [17]Reineke,M.,The monoid of families of quiver representations,Proc.Lond.Math.Soc.,84(3),2002,663–685.

    [18]Ringel,C.M.,Hall algebras and quantum groups,Invent.Math.,101(3),1990,583–591.

    [19]Ringel,C.M.,The Hall algebra approach to quantum groups,Aportaciones Mat.Comun.,15,1995,85–114.

    [20]To¨en,B.,Derived Hall algebras,Duke Math.J.,135(3),2006,587–615.

    [21]Xiao,J.,Hall algebra in a root category,Preprint 95-070,Univ.of Bielefeld,1995.

    [22]Xiao,J.and Xu,F.,Hall algebras associated to triangulated categories,Duke Math.J.,143(2),2008,357–373.

    [23]Zhang,P.,PBW-basis for the composition algebra of the Kronecker algebra,J.Reine Angew.Math.,527,2000,97–116.

    猜你喜歡
    云浮老實師父
    風 寄
    奇思妙想繪家鄉(xiāng)
    不老實的蝙蝠
    不老實的蝙蝠
    第十七屆云浮國際石材科技展覽會暨第十一屆云浮石文化節(jié)18日云上開幕
    石材(2020年11期)2020-12-31 22:00:14
    父親節(jié)憶父
    云浮中云石海全球石材集中采購中心開工
    石材(2020年2期)2020-03-16 13:12:40
    通感:一扇讓詩人不老實的門(外一則)
    中華詩詞(2018年2期)2018-06-26 08:47:32
    師父穿越啦
    倒霉的師父
    日日摸夜夜添夜夜添av毛片 | 麻豆国产av国片精品| 在线免费观看不下载黄p国产 | 国产91精品成人一区二区三区| 亚洲精品国产成人久久av| 岛国在线免费视频观看| 一本久久中文字幕| 中文字幕人妻熟人妻熟丝袜美| 国产精品野战在线观看| 国产亚洲精品久久久久久毛片| 一区二区三区高清视频在线| 色哟哟·www| 久久国内精品自在自线图片| 久久久久久久久久久丰满 | 少妇被粗大猛烈的视频| 男女之事视频高清在线观看| aaaaa片日本免费| 成人美女网站在线观看视频| 国产乱人伦免费视频| 亚洲专区国产一区二区| 97人妻精品一区二区三区麻豆| 国产私拍福利视频在线观看| 性插视频无遮挡在线免费观看| 亚洲成a人片在线一区二区| 中文字幕久久专区| 国内少妇人妻偷人精品xxx网站| 高清日韩中文字幕在线| 禁无遮挡网站| 最近最新中文字幕大全电影3| 亚洲欧美日韩东京热| 午夜福利18| 久久久精品欧美日韩精品| bbb黄色大片| 亚洲在线观看片| 亚洲人成网站在线播放欧美日韩| 国产91精品成人一区二区三区| 丝袜美腿在线中文| 精品久久久久久久久久久久久| 亚洲va日本ⅴa欧美va伊人久久| 欧美一区二区精品小视频在线| 国产私拍福利视频在线观看| 国产精华一区二区三区| 精品一区二区三区av网在线观看| 午夜福利在线观看免费完整高清在 | 高清在线国产一区| .国产精品久久| 国产高清激情床上av| 日本a在线网址| 亚洲欧美激情综合另类| 国产伦在线观看视频一区| 日本欧美国产在线视频| 国产在线精品亚洲第一网站| 亚洲国产高清在线一区二区三| 国产主播在线观看一区二区| 最近最新免费中文字幕在线| 尤物成人国产欧美一区二区三区| 女同久久另类99精品国产91| www.色视频.com| 久久天躁狠狠躁夜夜2o2o| 999久久久精品免费观看国产| av在线观看视频网站免费| 噜噜噜噜噜久久久久久91| 一级黄片播放器| 色综合婷婷激情| 99久久久亚洲精品蜜臀av| 国产成年人精品一区二区| 国内精品宾馆在线| 国产伦精品一区二区三区四那| 身体一侧抽搐| 成年女人永久免费观看视频| 欧美3d第一页| 亚洲经典国产精华液单| 亚洲熟妇中文字幕五十中出| 久久久国产成人免费| 国产在线精品亚洲第一网站| 国产精品综合久久久久久久免费| 亚洲精品粉嫩美女一区| 欧美色视频一区免费| 九色国产91popny在线| 亚洲中文字幕日韩| 长腿黑丝高跟| 一进一出抽搐动态| 午夜免费男女啪啪视频观看 | 天堂动漫精品| 国产真实乱freesex| 99久久精品一区二区三区| 一进一出抽搐gif免费好疼| 波多野结衣高清作品| 国产欧美日韩一区二区精品| 亚洲av中文字字幕乱码综合| 国产男靠女视频免费网站| 噜噜噜噜噜久久久久久91| 欧美丝袜亚洲另类 | 91久久精品国产一区二区成人| 又爽又黄无遮挡网站| 色5月婷婷丁香| 无遮挡黄片免费观看| 校园人妻丝袜中文字幕| 中文在线观看免费www的网站| 又紧又爽又黄一区二区| 久久久久久久久久黄片| 99热6这里只有精品| 欧美日本视频| 九九久久精品国产亚洲av麻豆| 欧美在线一区亚洲| 天堂影院成人在线观看| 22中文网久久字幕| 两个人视频免费观看高清| 国产精品久久电影中文字幕| 日韩中文字幕欧美一区二区| 久久久久久久久久黄片| 成年免费大片在线观看| 黄色配什么色好看| 亚洲自偷自拍三级| 很黄的视频免费| 18+在线观看网站| 国产 一区精品| 亚洲国产精品成人综合色| 国内久久婷婷六月综合欲色啪| 亚洲av二区三区四区| 亚洲av.av天堂| 国产亚洲精品久久久com| 欧美最黄视频在线播放免费| 久久国产乱子免费精品| 春色校园在线视频观看| 日韩一区二区视频免费看| 最好的美女福利视频网| 春色校园在线视频观看| 99精品在免费线老司机午夜| 日日啪夜夜撸| 亚洲av第一区精品v没综合| 99久国产av精品| 又紧又爽又黄一区二区| 久久精品影院6| 国产日本99.免费观看| 黄色配什么色好看| 天堂动漫精品| 亚洲欧美激情综合另类| 国产精品一区二区三区四区免费观看 | 久久精品夜夜夜夜夜久久蜜豆| 国产精品久久久久久av不卡| 午夜免费男女啪啪视频观看 | 俄罗斯特黄特色一大片| 日韩欧美在线二视频| 亚洲中文字幕日韩| 九九热线精品视视频播放| 久久精品国产99精品国产亚洲性色| 亚洲无线观看免费| 黄片wwwwww| 午夜老司机福利剧场| 啦啦啦观看免费观看视频高清| 91久久精品电影网| 欧美在线一区亚洲| 国产精品野战在线观看| 久久久成人免费电影| 精品欧美国产一区二区三| 免费av观看视频| 成人国产麻豆网| 禁无遮挡网站| 亚洲无线观看免费| 88av欧美| 麻豆av噜噜一区二区三区| 少妇熟女aⅴ在线视频| 国产精品久久久久久精品电影| 国产成人影院久久av| 欧美一级a爱片免费观看看| 欧美+亚洲+日韩+国产| 国产精品日韩av在线免费观看| 日本 欧美在线| 日韩大尺度精品在线看网址| 日韩中字成人| 亚洲最大成人手机在线| 在线国产一区二区在线| 在线观看一区二区三区| 18禁黄网站禁片午夜丰满| 可以在线观看毛片的网站| 人人妻人人澡欧美一区二区| 日本欧美国产在线视频| 国产精品一区二区三区四区免费观看 | 色吧在线观看| 久久精品国产99精品国产亚洲性色| 国产黄片美女视频| 中文字幕熟女人妻在线| 日本三级黄在线观看| 国产高潮美女av| 观看美女的网站| 免费在线观看成人毛片| 九九在线视频观看精品| 天美传媒精品一区二区| 欧美高清性xxxxhd video| 不卡一级毛片| 一级毛片久久久久久久久女| 国产aⅴ精品一区二区三区波| 我的老师免费观看完整版| 乱人视频在线观看| 精品久久久久久久久久免费视频| 日日啪夜夜撸| 日韩高清综合在线| 不卡视频在线观看欧美| a级毛片免费高清观看在线播放| 国产麻豆成人av免费视频| 国产精品一区二区三区四区免费观看 | 男人舔女人下体高潮全视频| 午夜激情福利司机影院| 熟女电影av网| av视频在线观看入口| 人妻丰满熟妇av一区二区三区| 精品人妻1区二区| 一级毛片久久久久久久久女| 精品久久久久久久久久免费视频| 一级a爱片免费观看的视频| 国模一区二区三区四区视频| 中国美白少妇内射xxxbb| 男女做爰动态图高潮gif福利片| 国产精华一区二区三区| 日韩欧美在线乱码| 免费高清视频大片| 日本在线视频免费播放| 美女大奶头视频| 国产亚洲av嫩草精品影院| 亚洲无线观看免费| 国产精品日韩av在线免费观看| 国产亚洲欧美98| 麻豆成人av在线观看| 男女边吃奶边做爰视频| 日本三级黄在线观看| 久久欧美精品欧美久久欧美| 日韩亚洲欧美综合| 女同久久另类99精品国产91| 国产一区二区三区在线臀色熟女| av在线老鸭窝| 午夜a级毛片| 非洲黑人性xxxx精品又粗又长| 成年版毛片免费区| 91久久精品国产一区二区三区| 色av中文字幕| av在线观看视频网站免费| 一本久久中文字幕| 婷婷精品国产亚洲av| 丰满乱子伦码专区| 尤物成人国产欧美一区二区三区| 日韩欧美精品v在线| 久久国内精品自在自线图片| 国产精品98久久久久久宅男小说| 舔av片在线| 真实男女啪啪啪动态图| 久久精品久久久久久噜噜老黄 | 日本-黄色视频高清免费观看| 国产精品日韩av在线免费观看| 精品午夜福利视频在线观看一区| 欧美+亚洲+日韩+国产| 久久6这里有精品| 国产色婷婷99| 九九久久精品国产亚洲av麻豆| 亚洲人与动物交配视频| 成年女人看的毛片在线观看| 亚洲黑人精品在线| netflix在线观看网站| 亚州av有码| 如何舔出高潮| 欧美+亚洲+日韩+国产| 久久亚洲真实| 看黄色毛片网站| 国产主播在线观看一区二区| 最新在线观看一区二区三区| 国产免费一级a男人的天堂| 听说在线观看完整版免费高清| 蜜桃久久精品国产亚洲av| 97碰自拍视频| 简卡轻食公司| 午夜福利在线观看免费完整高清在 | 成年女人看的毛片在线观看| 久久久久国内视频| 在线观看舔阴道视频| 丰满人妻一区二区三区视频av| 国产视频内射| 久久精品人妻少妇| 久久久国产成人免费| 亚洲av五月六月丁香网| 日本免费a在线| 日韩大尺度精品在线看网址| 神马国产精品三级电影在线观看| 免费高清视频大片| 亚洲成人久久爱视频| 亚洲国产日韩欧美精品在线观看| 日韩中文字幕欧美一区二区| 久久精品夜夜夜夜夜久久蜜豆| 91久久精品国产一区二区三区| 一本久久中文字幕| 91精品国产九色| 国产精品乱码一区二三区的特点| 全区人妻精品视频| 国产精品久久久久久精品电影| 亚洲欧美日韩卡通动漫| 一本精品99久久精品77| 国产一区二区三区视频了| 久久久久久久久大av| 99国产精品一区二区蜜桃av| 99热这里只有是精品在线观看| 色5月婷婷丁香| 2021天堂中文幕一二区在线观| 有码 亚洲区| 国产精品一区www在线观看 | 黄色日韩在线| 亚洲成人精品中文字幕电影| 欧美一区二区国产精品久久精品| 99在线视频只有这里精品首页| 老女人水多毛片| 亚洲中文字幕一区二区三区有码在线看| 国产一区二区在线观看日韩| 欧美激情在线99| 亚洲第一电影网av| 999久久久精品免费观看国产| 日本与韩国留学比较| 18禁在线播放成人免费| 99热这里只有是精品在线观看| 人妻丰满熟妇av一区二区三区| 免费在线观看影片大全网站| 精品一区二区免费观看| 天天躁日日操中文字幕| 久久人妻av系列| 网址你懂的国产日韩在线| 亚洲精品成人久久久久久| 国产高清有码在线观看视频| 亚洲av不卡在线观看| 黄色配什么色好看| 99热只有精品国产| 给我免费播放毛片高清在线观看| 99热这里只有精品一区| 波野结衣二区三区在线| 五月玫瑰六月丁香| 噜噜噜噜噜久久久久久91| 午夜爱爱视频在线播放| 国产成人一区二区在线| 久久这里只有精品中国| 春色校园在线视频观看| 国产在线男女| 成人三级黄色视频| 国产高清有码在线观看视频| av黄色大香蕉| 亚洲第一区二区三区不卡| 成年女人永久免费观看视频| 亚洲成a人片在线一区二区| 国产成人a区在线观看| 亚洲真实伦在线观看| 精品一区二区三区视频在线| 我的老师免费观看完整版| 国产亚洲精品久久久com| 在线观看免费视频日本深夜| 日本a在线网址| 欧美高清成人免费视频www| 深夜精品福利| 啦啦啦观看免费观看视频高清| 高清日韩中文字幕在线| 国产精品一区二区免费欧美| 国产精品国产三级国产av玫瑰| 亚洲久久久久久中文字幕| 国产不卡一卡二| 免费看av在线观看网站| 日韩中字成人| 日本三级黄在线观看| 国产主播在线观看一区二区| 亚洲男人的天堂狠狠| 亚洲精品成人久久久久久| 成年女人毛片免费观看观看9| 亚洲精品在线观看二区| 很黄的视频免费| 22中文网久久字幕| 久久精品国产亚洲网站| 村上凉子中文字幕在线| 国产视频内射| 18禁黄网站禁片免费观看直播| 很黄的视频免费| 精品人妻偷拍中文字幕| 亚洲人成伊人成综合网2020| 99国产极品粉嫩在线观看| 国产精品美女特级片免费视频播放器| 国产爱豆传媒在线观看| 韩国av在线不卡| 日韩欧美国产一区二区入口| 少妇人妻精品综合一区二区 | 男人狂女人下面高潮的视频| 国产不卡一卡二| 中出人妻视频一区二区| 搡老岳熟女国产| 精品午夜福利视频在线观看一区| 日韩中字成人| 99久久成人亚洲精品观看| 一进一出好大好爽视频| 最近最新中文字幕大全电影3| www.色视频.com| 国产大屁股一区二区在线视频| 国产主播在线观看一区二区| 日本三级黄在线观看| 色噜噜av男人的天堂激情| 国产精品久久电影中文字幕| 久久久久久久久大av| 九色国产91popny在线| 天堂动漫精品| 亚洲三级黄色毛片| 丰满乱子伦码专区| 特级一级黄色大片| 亚洲黑人精品在线| 国产高清不卡午夜福利| 日韩亚洲欧美综合| 久久欧美精品欧美久久欧美| 老司机午夜福利在线观看视频| 国产精品无大码| 特大巨黑吊av在线直播| 色综合亚洲欧美另类图片| 老女人水多毛片| 国产高清视频在线观看网站| 中文字幕av在线有码专区| 欧美性猛交╳xxx乱大交人| 久久久久久久久久成人| 欧美成人a在线观看| 中文亚洲av片在线观看爽| 免费观看的影片在线观看| 国产精品一区二区性色av| 国产美女午夜福利| 亚洲欧美日韩无卡精品| 别揉我奶头 嗯啊视频| 黄色女人牲交| 观看免费一级毛片| 国国产精品蜜臀av免费| 伦精品一区二区三区| 欧美成人性av电影在线观看| 欧美区成人在线视频| 日韩亚洲欧美综合| 亚洲真实伦在线观看| 老司机午夜福利在线观看视频| 97人妻精品一区二区三区麻豆| 中出人妻视频一区二区| 亚洲美女视频黄频| 午夜精品一区二区三区免费看| 国产精品,欧美在线| 免费观看精品视频网站| 欧美性猛交黑人性爽| 欧美+日韩+精品| 91久久精品国产一区二区成人| 国产黄片美女视频| 国产精品嫩草影院av在线观看 | 亚洲精品影视一区二区三区av| 亚洲专区国产一区二区| 性色avwww在线观看| 国产免费一级a男人的天堂| 在线免费观看不下载黄p国产 | 久久精品国产亚洲av天美| av国产免费在线观看| 国产69精品久久久久777片| 日韩在线高清观看一区二区三区 | 成年免费大片在线观看| 久久亚洲精品不卡| 中出人妻视频一区二区| 欧美又色又爽又黄视频| 亚洲成人久久爱视频| 国产一级毛片七仙女欲春2| 99riav亚洲国产免费| 欧美激情久久久久久爽电影| 超碰av人人做人人爽久久| 成人一区二区视频在线观看| 热99在线观看视频| 老司机福利观看| 22中文网久久字幕| 一本一本综合久久| 国产精品亚洲一级av第二区| 露出奶头的视频| 国产精品一区二区免费欧美| 欧美日本亚洲视频在线播放| 麻豆国产av国片精品| 国产白丝娇喘喷水9色精品| 黄色视频,在线免费观看| 观看免费一级毛片| 少妇人妻一区二区三区视频| 日本黄色片子视频| 午夜福利高清视频| 久久久色成人| 老熟妇乱子伦视频在线观看| or卡值多少钱| 国产av麻豆久久久久久久| 免费不卡的大黄色大毛片视频在线观看 | 日韩国内少妇激情av| 欧美性猛交╳xxx乱大交人| 久久久久久久久中文| 十八禁网站免费在线| 欧美极品一区二区三区四区| 99国产极品粉嫩在线观看| 午夜免费激情av| 国产视频一区二区在线看| 99九九线精品视频在线观看视频| 成人亚洲精品av一区二区| 国产乱人视频| 18禁裸乳无遮挡免费网站照片| 亚洲性久久影院| 亚洲av日韩精品久久久久久密| av黄色大香蕉| 国产伦精品一区二区三区视频9| 最近在线观看免费完整版| 午夜福利在线观看免费完整高清在 | 搞女人的毛片| 噜噜噜噜噜久久久久久91| 亚洲在线观看片| 99久久精品热视频| 麻豆精品久久久久久蜜桃| 永久网站在线| 高清毛片免费观看视频网站| 欧美区成人在线视频| 嫁个100分男人电影在线观看| 免费看光身美女| 亚洲av一区综合| 尾随美女入室| 免费大片18禁| 欧美日本视频| 国产一区二区三区在线臀色熟女| 成人综合一区亚洲| 久久中文看片网| 97超级碰碰碰精品色视频在线观看| 日本黄大片高清| 日日干狠狠操夜夜爽| 美女被艹到高潮喷水动态| 国产精品国产三级国产av玫瑰| 欧美日韩亚洲国产一区二区在线观看| 婷婷精品国产亚洲av在线| 无人区码免费观看不卡| 又紧又爽又黄一区二区| 国产精品女同一区二区软件 | 国产精品久久久久久精品电影| 免费看av在线观看网站| 日韩欧美精品v在线| 久久草成人影院| 亚洲成人中文字幕在线播放| 人妻久久中文字幕网| 国产不卡一卡二| 婷婷丁香在线五月| 91av网一区二区| 欧美日韩亚洲国产一区二区在线观看| 日日啪夜夜撸| 久久精品国产99精品国产亚洲性色| 亚洲美女黄片视频| 国产亚洲欧美98| 亚洲真实伦在线观看| 欧美3d第一页| 一区福利在线观看| 国产精品永久免费网站| 村上凉子中文字幕在线| 久久99热6这里只有精品| 亚洲国产精品sss在线观看| 成人二区视频| 国产高清激情床上av| 久久精品国产亚洲av天美| 久久精品国产清高在天天线| 亚洲avbb在线观看| 97人妻精品一区二区三区麻豆| 很黄的视频免费| 国产一区二区三区视频了| 国产亚洲av嫩草精品影院| 国产免费一级a男人的天堂| 久久久色成人| 欧美日韩黄片免| 日韩高清综合在线| 国产精品久久久久久久电影| 亚洲欧美清纯卡通| 成年女人看的毛片在线观看| 简卡轻食公司| 又粗又爽又猛毛片免费看| 无人区码免费观看不卡| 日韩人妻高清精品专区| 一级黄片播放器| 国产一区二区三区av在线 | 人人妻,人人澡人人爽秒播| 美女高潮的动态| 久久精品国产亚洲av香蕉五月| 一本精品99久久精品77| 哪里可以看免费的av片| av在线亚洲专区| 久久久久久久精品吃奶| 欧美日韩综合久久久久久 | 亚洲av中文字字幕乱码综合| 国产精品女同一区二区软件 | 毛片一级片免费看久久久久 | 国产亚洲91精品色在线| 真人做人爱边吃奶动态| 琪琪午夜伦伦电影理论片6080| 可以在线观看毛片的网站| 床上黄色一级片| 99精品在免费线老司机午夜| 天堂动漫精品| 欧美一级a爱片免费观看看| 色哟哟·www| 久久久久免费精品人妻一区二区| 黄色视频,在线免费观看| 中文资源天堂在线| 日本a在线网址| 日本熟妇午夜| 中亚洲国语对白在线视频| 亚洲专区国产一区二区| 中国美女看黄片| 熟女电影av网| 好男人在线观看高清免费视频| 亚洲中文字幕一区二区三区有码在线看| 午夜老司机福利剧场| 我的老师免费观看完整版| x7x7x7水蜜桃| 嫩草影视91久久| 成年免费大片在线观看| 色噜噜av男人的天堂激情| 久久久久精品国产欧美久久久| 久久久成人免费电影| 成人美女网站在线观看视频| 欧美日韩中文字幕国产精品一区二区三区| 美女被艹到高潮喷水动态| 日韩欧美免费精品| 一个人看视频在线观看www免费| 国产成人福利小说| 91狼人影院|