李國強+楊濤春+陸勇+陳素文
摘 要:建立鋼框架連續(xù)倒塌單自由度(SDOF)分析模型,研究鋼柱破壞時間及其殘余承載力對鋼框架連續(xù)倒塌的影響規(guī)律,發(fā)現鋼柱破壞時間越長、殘余承載力越大,結構位移響應越小.以SDOF模型響應的理論解為基礎,得出在鋼框架倒塌計算中是否考慮鋼柱破壞時間的界限標準:當鋼柱破壞時間與連續(xù)倒塌的SDOF模型周期比τ<0.2時,可忽略破壞時間的影響;當τ>3.0時,可采用靜力方法計算結構響應;當0.2<τ<3.0時,需考慮破壞時間對結構連續(xù)倒塌的影響.通過對鋼柱等效SDOF模型的理論分析,當其抗力模型分別為理想彈塑性和剛塑性條件時,求得柱子破壞時間的近似計算方法,并以爆炸作用后柱子變形為初始狀態(tài),結合數值方法給出鋼柱殘余承載力計算過程.通過對鋼柱的破壞時間和殘余承載力對結構倒塌影響的算例分析,表明鋼柱的破壞時間(越長)和殘余承載力(越大)對結構抗倒塌起有利作用,在結構抗倒塌計算時不可忽略.
關鍵詞:鋼框架; 連續(xù)倒塌; 破壞時間; 殘余承載力; 單自由度模型
中圖分類號:TU312.3 文獻標識碼:A
文章編號:1674-2974(2016)05-0001-08
Abstract:The influence law of failure time and residual bearing capacity of the steel columns on progressive collapse of steel frames was studied by using a single degree of freedom (SDOF) model. The displacement of the steel frames decreases as the failure time and residual bearing capacity of the steel columns increase. On the basis of the theoretical solution of the SDOF model, boundary condition of the model was determined to consider the failure time effect. τ was defined as the ratio of the failure time to natural period of the SDOF model. For τ<0.2, the failure time can be ignored. For τ>3.0, a static method can be used to estimate the structure behavior. However, for 0.2<τ<3.0, the failure time should be considered in the progressive collapse analysis. When the resistance model is ideal elastic-plastic and rigid-plastic, the equivalent SDOF model of the steel columns can be theoretically analyzed to determine the calculation method of the failure time. Considering the deformation of the steel columns after explosion as the initial state, the calculation process for the residual bearing capacity of the steel columns is gained by combining with numerical calculations. The results show that the failure time and residual bearing capacity significantly influence on the progressive collapse of the steel frames, and those effects should be considered in the progressive collapse analysis.
Key words:steel frame; progressive collapse; failure time; residual bearing capabicity; single degree of freedom model
在爆炸作用下,構件破壞雖然持續(xù)時間很短,但并非均可簡化為瞬間發(fā)生,同時,破壞構件或具有一定殘余承載力.事實上破壞時間及殘余承載力的存在將直接影響個別構件破壞后整體結構的響應形式.由于拆除構件法假定構件在瞬間被移除[[1-3],忽略了破壞時間和殘余承載力的影響,從而影響到構件破壞后整體結構響應計算結果的準確度[4-5].為提高評估鋼柱損傷后鋼框架抗連續(xù)性倒塌能力的準確性和可靠性,需要考慮鋼柱破壞時間和殘余承載力的影響.
鋼柱的破壞時間是爆炸作用后柱軸力快速下降的反應時間,它主要影響結構的動力效應,破壞時間越短動力效應將越大.柱殘余承載力指柱受爆炸破壞后殘余的軸向承載力,在爆炸作用后,有關柱子殘余承載力的研究相對較少,僅國外對混凝土柱有少量研究.Wu[[6-7],Bao[[8]等對爆炸作用后混凝土柱的殘余承載力進行了數值研究,并試驗驗證了結果的合理性,同時,通過參數化分析擬合出了RC柱的殘余承載力計算公式.
通過建立框架結構連續(xù)倒塌的單自由度分析模型,研究柱子破壞時間和殘余承載力對結構連續(xù)倒塌的影響,給出是否考慮破壞時間的界限標準;通過對鋼柱的等效單自由度模型的理論分析, 根據其抗力模型分別為理想彈塑性和剛塑性條件,給出柱子破壞時間近似計算方法,并以爆炸作用后柱子變形為初始狀態(tài),給出鋼柱殘余承載力計算方法.