• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fault diagnosis of chemical processes based on partitioning PCA and variable reasoning strategy☆

    2016-05-30 12:54:02GuozhuWangJianchangLiuYuanLiChengZhang

    Guozhu Wang *,Jianchang Liu Yuan Li,Cheng Zhang

    1 College of Information Science and Engineering,Northeastern University,Shenyang 110819,China

    2 State Key Laboratory of Synthetical Automation for Process Industries,Northeastern University,Shenyang 110819,China

    3 Information Engineering School,Shenyang University of Chemical Technology,Shenyang 110142,China

    1.Introduction

    Detection and identification of abnormal operating condition are very important for safety and efficient operations in chemical processes.With the fast development of chemical process control and computer application technology,large amount of process data can be obtained online using sensors[1],making data-driven methods available for process monitoring and fault variable recognition.As a key technique,data-based process fault detection and identification methods have attracted lots of attentions in the past years.Some fault detection and isolation methods have been developed and become popular,such as principal component analysis(PCA),partial least squares(PLS),and their extensions[2–17].Various ideas have been proposed and studied[18–25],which may be classified into three categories in general[26–29]:based on quantitative model,qualitative model,and hybrid model.Quantitative model-based methods usually need precise mathematical model,which is difficult to build for complex chemical process.Qualitative model-based methods employ cause–effect reasoning to describe system behavior such as fault trees and signed digraph analysis methods,but these methods are restricted to systems with relatively small number of variables or states because the creation of knowledge base is timeconsuming[30].Hybrid model method is a comprehensive fault monitoring and identification method,which has some achievements with data and experience of process,but it is difficult to obtain experiences and knowledge of process in a short term.

    With the accuracy requirement in the process monitoring,several methods based on data driven were studied such as hierarchical and multi-block statistical[21,31,32].MacGregor et al.proposed monitoring and diagnosis charts for sub-blocks and a global monitoring chart for performance enhancement[18].Westerhuis et al.provided a comprehensive analysis for several multi-blocks and hierarchical PCA and PLS algorithms in a unified notation[19].The multi-block,hierarchical PCA and PLS algorithms were also analyzed,Qin et al.defined block and variable contributions to make monitoring process decentralized[20].Smilde et al.proposed a sequential multi-block componentmethod and reviewed several sequential multi-block methods[21].Ge et al.proposed a two-step multi-block monitoring method[33]improving the monitoring performance and fault interpretation effectively.Recently,some popular methods were studied,which are different from the traditional methods and more reliable for fault diagnosis[34–36].However,some process knowledge of block and hierarchy division is needed for almost all of these methods,which isa key step and affectsmodeling accuracy.Actually itis very difficultto obtain usefulprocess knowledge in complex chemical environment,so pure block division methods based on data are needed.

    After a fault is detected,it is desirable to identify its roots from possible fault variables or locate fault sensors.Contribution plot[37]can find the fault variable with high contribution.Kourti and MacGregor applied contribution plots for quality and process variables to find fault variables of a high-pressure low-density polyethylene reactor[38].They pointed out that the contribution plots may not reveal the assignable causes of abnormal events.One reconstructionbased approach was designed for isolating fault variables from the subspaces of faults[39].This method was applied to reconstruct data of fault variables before a prediction for a soft sensor model[40].Yue and Qin developed a combined index of Q and T2to isolate fault variables[34],and obtained a more feasible solution from reconstruction-based approach[39].The reconstruction based contribution(RBC)approach was derived[41],which may not suffer the smearing effect as the contribution plots of PCA.In reality,the smearing effect of RBC could be observed when implementing the confidence intervals of RBC plots,since the control limits were derived based on normal operating data,which cannot guarantee that the magnitude of fault variables smearing over the non-faulty ones would be under the control limits[42].However,it is well known that the smearing out of contributions leads to misdiagnose fault variables.Wang et al.proposed a fault diagnosis method using kNN reconstruction on MRI variables and improved the fault recognition effect[43],but they rarely considered the correlation between variables.Qin gave a brief survey on the methods for data-driven industrial process monitoring and diagnosis[44].Recently,Xu et al.proposed a new weighted reconstruction-based contribution for improved fault diagnosis,which could reduce fault coefficient smearing and improve diagnosis accuracy adaptively[45].

    In this paper,a partitioning PCA(PPCA)method is developed to partition blocks and detect fault.First,the PCA methodology is applied to initial data and transforms the high dimensional input space into lower dimensional subspaces while retaining the salient characteristics of measured variables.Uncorrelated principal components can be obtained because different principal component directions are orthogonal with each other.Second,industrial processes are divided into several local models according to these uncorrelated directions.The subset of variables is selected according to their contributions to principal component directions in each local subset.Then the PPCA models are built in different local models,in which variables may overlap.This method has an advantage compared with PCA and global modeling ideas:it intends to examine the process change in different monitoring directions,so that the fault can be detected readily.

    A variable reasoning strategy is introduced under the PPCA framework to locate a few fault variables simultaneously and eliminate some normal variables.This method can also give some initiatory judgment for ambiguous variables.

    2.Process Monitoring Based on PPCA Method

    We propose a novel fault detection method,PPCA.It includes two parts.(1)Selection of relevant variables in each sub-partitioning:divide original data set into several subsets,each principal component direction of PCA represents one subset,and residual subspace is seen as a whole.Then find representative variables in each sub-partitioning according to theircontributionsto corresponding principalcomponentdirection.(2)Process monitoring:build PPCA models using traditional PCA method for fault detection.

    2.1.Selection of relevant variables

    For a data set X∈Rn×m,n is the number of training samples and m is the numberofvariables orsensors.The PCAdecomposition[3]iscarried out on X first.

    whereandrepresentthe principalpart and residualpart,andare score matrix and loading matrix of principal part,respectively,andbelong to residual part.

    The original space is divided into two subspaces:principal component subspace(PCS)and residual subspace(RS).Therefore,the loading matrix contains PPCSand PRS,representing differentprincipaldirections,where PPCS=[p1,p2,…,pA]and PRS=[pA+1,pA+2,…,pm].

    As an essential parameter,the number of principal components A is selected by employing cumulative percent variance(CPV)method[46,47].Because all of the principal components are orthogonal with each other,when we select the most relevant variables in each principal component direction,the multiple partitioning is acquired.The selection method of relevant variables is described as follows.

    For PCS,itis easy to obtain the contribution of each variable in different directions

    whereis the contribution of variable i to principal component direction j.

    For RS,an independent local partitioning can be established when we consider it as a whole,in which the contributions of relevant variables are:

    whereis a vector,and each elementrepresents the mean value ofthe contribution of each variable to RS.

    After determiningand,A+1 partitionings can be obtained through dividing original data,and the contribution of all variables in each local direction is

    The contribution value of each variable can be sorted in descending order for the corresponding direction,and those variables with high contribution values should be retained.In addition,to ensure that no variable is missing,variable set of different directions should include all variables in the system.A variable selection rule can be described as

    where Si(V)is the selected variable set in the i th partitioning and S(V)contains all variables in industrial process.

    2.2.Fault detection based on PPCA method

    Variables can be retained according to Eqs.(7)and(8)for each partitioning,all variables are divided into A+1 parts,and each part contains higher contribution variables in its direction.However,some same variables can be assigned to differentparts when they have higher contribution in different directions.For example,for a system containing eightvariables and 2 principalcomponents,three localpartitionings can be constructed:(1)X1={v2,v3,v5,v7},containing variables 2,3,5 and 7;(2)X2={v3,v4,v6,v8};and(3)X3={v1,v2,v4,v5}.Xiretains those variables with high contribution values in the corresponding direction.Because variable 2 has higher contribution in two partitionings,it is retained in partitionings 1 and 3.

    Individual PPCA model can be developed as follows.According to Section 2.1,it is possible to decompose original data set Xn×minto multiple local subsets X1,X2,…,XA,XA+1.Then PCA is applied in each partitioning.

    where Xirepresents the i th partitioning data set.

    In order to judge if the SPE and T2values are larger than normal threshold,the control limit(SPELim,iand T2Lim,iof each partitioning model are necessary,which are calculated similar to the traditional PCA method[3,17]as follows.

    SPE confidence limit:

    where i is the label of local partitioning,Aiis the number of principal component in the i th partitioning PCA model and is calculated by employing CPV method,(λj)iis the j th eigenvalue of covariance matrixand miis the dimension of Xi.

    T2confidence limit:

    where n is the number ofsamples,FAi,n?Ai;αis an F distribution with degrees of freedom Aiand n ? Ai,and α is the confidence level[3,17].

    A new sample x is standardized and divided into A+1 parts:x1,x2,…,xA,xA+1;and then xiis projected into corresponding local model,

    where Λi=diag[(λ1)i,(λ2)i,…,(λAi)i].

    Under normal circumstances,SPEiand Ti2are smaller than SPELim,iand T2Lim,i,respectively.If the value of SPEior Ti2increases suddenly at some points,the system is out of order.Because this method intends to examine the process change in different monitoring directions,the fault can be detected more easily.

    3.Fault Identification Based on Variable Reasoning Strategy

    Once faults are detected,we must find the fault roots and exclude them as soon as possible.Traditional variable contribution plot[37,48]has some ability for fault identification by computing and comparing contribution indexes of process variables.Process variable with the highest contribution to the monitoring statistic index can be identified,and this variable may be the most possible reason of fault.Since the number of process variables is always very large in complex chemical processes,it is impossible that all fault variables are identified through contribution plot method.Moreover,this method may lead to misdiagnose fault variables[42,49].The variable reasoning strategy is a novel fault identification and location method based on partitioning PCA,giving initiatory judgment for all variables.

    In the PPCA monitoring system,when a fault is detected in several local partitioning models,we can divide A+1 independent local sets into two groups,fault set Fs and normal set Ns.

    where u and v are the sizes of two sets,and Fs includes all local partitioning models that are faulty.For normal variable set NV,doubtless faultvariable set FV,and uncertain faultvariable set UFV,the following reasoning is effective.

    where V(N(j))are all variables in the j th normal local partitioning model,V includes all variables in the system,and FV is the set of all faultvariables.There are two methods to determine FV.One is the traditional variable contribution plot.Contribution indexes of process variables in each fault local monitoring process are computed and compared,the variable with the highest contribution is retained,and these variables should be contained in FV.Another method is the exclusion of variables.When all normal variables are excluded,if only one variable is retained in F(i),it must belong to FV.

    4.Case Studies

    In this section,two cases are used to demonstrate the process monitoring and fault identification performance of the proposed method.First,a numerical example is adopted,and it aims at recognizing several faultvariables simultaneously.Then the method is applied in Tennessee Eastman chemical process and compared with PCA,KPCA,ICA and kNN methods.

    4.1.Numerical example

    A numerical example is redesigned for specific purpose in this work.The example contains five variables driven by two factors,s1:uniform(?10,?7)and s2:N(?15,1).The simulation data are generated from the following equations:

    Fig.1.Monitoring results of traditional PCA method.

    where e1–e5are zero-mean white noises with a standard deviation of 0.01.

    500 samples are simulated to constitute the normaltraining data set.To illustrate the fault detection and recognition performance,several faults are added to the process variables as follows:for variable v1,a fault is added,which is 30%of its variation range between 51 and 100 samples;for variable v2,added fault is 20%of its variation range between 301 and 350 samples;for variables v3and v4,added faults are 8%and 10%of their variation range between 301 and 350 and 51 and 100 samples,respectively.In modeling phase,the number of principal components is determined by the cumulative percentage of explained variance(85%).One principal component is selected for the PCAmodel,which can explain 96.7%of the process information in this system.

    Table 1 Relevant variables of each local model

    Fig.1 gives the traditional PCA monitoring results for comparison.Since the number of principal component is 1,two PPCA models can be constructed in this system.Each model contains three variables selected based on the contribution of each variable.The results of variable selection are given in Table 1.The numbers of principal components of the two models are A1=1 and A2=2.Process monitoring results based on PPCA are shown in Fig.2.The SPE fault detection results of two methods are consistent approximately,while T2of PPCA is better than that of PCA.The faults can be detected from 51 to 100 samples in model 1,while model 2 is effective for the fault from 301 to 350 samples.In short,PPCA method can detect the fault of all time effectively.

    Fig.2.Monitoring results of PPCA method.

    Fig.3.The contributions of variables at 51 and 301 samples.

    Table 2 The results of fault diagnosis

    For the fault variable identification,traditional contribution plot method confirms that the largest contribution variable is faulty,but it is difficult to give judgment for other variables.As shown in Fig.3,variables 1 and 3 can be considered as the fault variables at 51 and 301 samples,respectively.Variable 4 has higher contribution at 51 and 301 samples,but we are not sure that it is the fault variable,which is the disadvantage of traditional contribution plot method.However,the PPCA method can give some initiatory judgment for all variables.In Fig.2,model 1 is effective from 51 to 100 samples,so the most likely fault variables are 1,4,and 5.Between 301 and 350 samples,the most likely fault variables are 2,3,and 5.Oppositely,variables 1,4,and 5 are normal between 301 and 350 samples,while variables 2,3,and 5 are normal between 51 and 100 samples,where variable 5 is superimposed in two models.Furthermore,the contribution indexes of process variables can be computed and compared in order to find the fault variables accurately.The result of diagnosis is shown in Table 2.

    4.2.TE chemical benchmark

    The well-known Tennessee Eastman process has been widely applied to evaluate the effectiveness of process monitoring techniques,which is a simulation of the practical chemical process[50–52].There are five major unit operations in the TE process:a reactor,a condenser,a compressor,a separator and a stripper.The control structure is shown in Fig.4.For process monitoring purposes,33 variables are selected,including 11 manipulated variables and 22 continuous process variables,as shown in Table 3.As training data,960 samples are generated for training PPCA model.21 fault data sets are generated for testing purpose.Each fault data set includes 960 samples,and all faults are introduced at sample 161.The descriptions of 21 faults are given in Table 4,where,faults 16–20 are unknown faults.To build PPCA monitoring model,an initial PCA decomposition is carried out.Depending on the CPV rule,the number of principal components is 14,which can explain 88.2%ofthe process information.Hence,a totalof15 models can be constructed in this system,and 5 variables are selected in each local model to ensure that models contain all process variables.The result is expressed in Table 5.

    Fig.4.Process flow diagram of the Tennessee Eastman chemical process.

    Table 3 Monitoring variables in the TE process

    Table 4 Fault description of TE process

    Table 5 Relevant variables of each local model

    For comparison,the PCA,KPCA,ICA and kNN monitoring results for fault 5 are given in Fig.5.The fault cannot be discovered in time,and the fault cannot be detected accurately all the time from the correlation between variables.However,the proposed method can detect the fault once a local model finds.Several monitoring results for fault 5 based on PPCA method are shown in Fig.6.Comparing the monitoring results in Figs.5 and 6,we can see that the performance of PPCA is improved greatly especially in local models 4,7,9,10 and 13.For example,the fault detection results of the traditional methods are not satisfactory after the four hundredth sample,and they can be detected hardly in T2model.With PPCA,the detection results of local models 4,7,and 9 are superior.The fault is hardly detected in model 6,and the corresponding responsible variables in this model include variables 15,30,12,29 and 17,which are stripper level,stripper liquid product flow valve,product separator level,separator pot liquid flow valve,and stripper under flow.These five variables should be included in NV.To find the most possible fault variables,we exclude normal variables from the fault models.Through above analysis,NV,FV and UFV of fault 5 can be obtained preliminary.

    To illustrate how to identify fault variables or how to find NV,FV and UFV,the T2monitoring results of fault 1 from 910 to 920 samples are used as example.Since the number ofprincipalcomponents is 14,there are 15 monitoring results in Fig.7.The fault can be detected using models 1,4,7,10,11,12 and 13 at sample 915,while the monitoring results of models 2,3,5,6,8,9,14 and 15 are fault-free.Therefore,responsible variables in fault-free models are normal and NV can be determined at sample 915.According to the previous theoretical analysis,the lighter parts of Table 5 represent fault models containing suspected fault variables at sample 915(these models can detect the faults),and the darker parts are normal models composed of normal variables NV(the process is normal in these models).We can eliminate NV from the suspected fault variables,and Table 6 gives the key fault variables.Hence,the diagnosis results of fault 1 become clearer,and further summary is shown in Table 7.The doubtless fault variables include variables 14(product separator under flow)and 26(total feed flow valve).Variables 1,13,16,25 and 29 are the suspected fault variables,and the restis normal variables.In Table 8,the SPE and T2fault detection rates(the ratio of the number of detected fault to that of actual fault)of PCA,KPCA,ICA,kNN and PPCA methods are also given for comparison.The proposed method may be recognized because of its superiority in fault detection rates,which is a little better than the other methods.

    5.Conclusions and Prospects

    In this paper,a novel process monitoring and fault variable identification methods are proposed.This method can extract local information effectively through dividing observation data into several local models.For the process monitoring,the proposed method intends to monitor the process change in different directions,and it is earlier and more accurate than the traditional methods.For the fault identification,the variable reasoning strategy is different from the contribution plot.It not only locates the fault variables effectively,but also finds NV,FV and UFV of complex chemical processes conveniently.

    This paper mainly focuses on process modeling,fault monitoring and identification,and it is effective for online and of fline systems.Some interesting issues will be multi-way PPCA for batch process monitoring,supervised learning-based PPCA for process fault identification and online fault monitoring and identification methods.Furthermore,it will be more useful when this method combines with additional fault diagnosis methods such as expert knowledge.

    Fig.5.Monitoring results of fault 5.(a)PCA;(b)KPCA;(c)ICA;(d)kNN.

    Fig.6.Monitoring results of fault 5 on models 2,3,4,6,7,9,10 and 13.

    Fig.6(continued).

    Fig.7.T2 monitoring results of fault 1 based on partitioning PCA method.

    Table 6 Fault models and suspected fault variables at 915 sample

    Table 7 The variable reasoning result based on PPCA at sample 915 for fault 1

    Table 8 Monitoring results of 21 faults on TE process

    [1]D.C.Montgomery,Introduction to statistical quality control,Wiley,New York,1991.

    [2]J.Yu,J.Yu,Nonlinear bioprocess monitoring using multiway kernel localized fisher discriminant analysis,Ind.Eng.Chem.Res.50(6)(2011)3390–3402.

    [3]J.Kresta,J.F.MacGregor,T.E.Marlin,Multivariate statistical monitoring of process operating performance,Can.J.Chem.Eng.69(1)(1991)35–47.

    [4]P.Nomikos,J.F.MacGregor,Monitoring batch processes using multiway principal component analysis,AICHE J.40(8)(1994)1361–1375.

    [5]T.Kourti,J.F.MacGregor,Process analysis,monitoring and diagnosis,using multivariate projection methods,Chemom.Intell.Lab.Syst.28(95)(1995)3–21.

    [6]Y.W.Zhang,C.Ma,Fault diagnosis of nonlinear processes using multiscale KPCA and multiscale KPLS,Chem.Eng.Sci.66(1)(2010)64–72.

    [7]G.Z.Wang,J.C.Liu,Y.W.Zhang,Y.Li,A novel multi-mode data processing method and its application in industrial process monitoring,J.Chemom.29(2)(2015)126–138.

    [8]Y.Yao,T.Chen,F.Gao,Multivariate statistical monitoring of two-dimensional dynamic batch processes utilizing non-Gaussian information,J.Process Control 20(10)(2011)1188–1197.

    [9]J.Wang,Q.P.He,Multivariate statistical process monitoring based on statistics pattern analysis,Ind.Eng.Chem.Res.49(17)(2010)7858–7869.

    [10]Z.Q.Ge,C.J.Yang,Z.H.Song,Improved kernel PCA-based monitoring approach for nonlinear processes,Chem.Eng.Sci.64(9)(2009)2245–2255.

    [11]J.Y.Guo,H.B.Chen,Y.Li,MPCA fault detection method based on multiblock statistics for uneven-length batch processes,J.Comput.Inf.Syst.9(18)(2013)7181–7190.

    [12]X.Wang,U.Kruger,G.W.Irwin,G.McCullough,N.McDowell,Nonlinear PCA with the local approach for diesel engine fault detection and diagnosis,IEEE Trans.Control Syst.Technol.16(1)(2008)122–129.

    [13]Y.H.Lee,H.D.Jin,C.H.Han,On-line process state classification for adaptive monitoring,Ind.Eng.Chem.Res.45(9)(2006)3095–3107.

    [14]X.Z.Wang,S.Medasani,F.Marhoon,H.Albazzaz,Multidimensional visualization of principal component scores for process historical data analysis,Ind.Eng.Chem.Res.43(22)(2004)7036–7048.

    [15]M.Kano,K.Nagao,H.Hasebe,T.Hashimoto,H.Ohno,R.Strauss,B.R.Bakshi,Comparison of multivariate statistical process monitoring methods with applications to the Eastman challenge problem,Comput.Chem.Eng.26(1)(2002)161–174.

    [16]B.R.Bakshi,Multiscale PCA with applications to multivariate statistical process monitoring,AICHE J.44(7)(1998)1596–1610.

    [17]J.E.Jackson,A user's guide to principal components,Wiley,New York,1991.

    [18]J.F.MacGregor,C.Jaeckle,C.Kiparissides,M.Kourtoudi,Process monitoring and diagnosis by multiblock PLS methods,AICHE J.40(5)(1994)826–838.

    [19]J.A.Westerhuis,T.Kourti,J.F.MacGregor,Analysis of multiblock and hierarchical PCA and PLS models,J.Chemom.12(5)(1998)301–321.

    [20]S.J.Qin,S.Valle,M.J.Piovoso,On unifying multiblock analysis with application to decentralized process monitoring,J.Chemom.15(9)(2001)715–742.

    [21]A.K.Smilde,J.A.Westerhuis,S.DeJong,A framework for sequential multiblock component methods,J.Chemom.17(6)(2003)323–337.

    [22]G.Z.Wang,J.C.Liu,Y.Li,L.L.Shang,Fault detection based on diffusion maps and k nearest neighbor diffusion distance of feature space,J.Chem.Eng.Jpn.48(9)(2015)756–765.

    [23]M.A.Hussain,C.R.Che Hassan,K.S.Loh,K.W.Mah,Application of artificial intelligence technique in process fault diagnosis,J.Eng.Sci.Technol.2(3)(2007)260–270.

    [24]H.Guo,H.G.Li,On-line batch process monitoring with improved multi-way independent component analysis,Chin.J.Chem.Eng.21(3)(2013)263–270.

    [25]X.Deng,X.Tian,Multimode process fault detection using local neighborhood similarity analysis,Chin.J.Chem.Eng.22(11)(2014)1260–1267.

    [26]V.Venkatasubramanian,R.Rengaswamy,K.Yin,S.N.Kavuri,A review of process fault detection and diagnosis:Part I:Quantitative model-based methods,Comput.Chem.Eng.27(3)(2003)293–311.

    [27]V.Venkatasubramanian,R.Rengaswamy,S.N.Kavuri,A review of process fault detection and diagnosis:Part II:Qualitative models and search strategies,Comput.Chem.Eng.27(3)(2003)313–326.

    [28]V.Venkatasubramanian,R.Rengaswamy,S.N.Kavuri,K.Yin,A review of process fault detection and diagnosis:Part III:Process history based methods,Comput.Chem.Eng.27(3)(2003)327–346.

    [29]F.Yang,P.Duan,S.L.Shah,T.Chen,Capturing connectivity and causality in complex industrial processes,Springer,2014.

    [30]C.K.Lau,K.Ghosh,M.A.Hussain,C.R.Hassan,Fault diagnosis of Tennessee Eastman process with multi-scale PCA and ANFIS,Chemom.Intell.Lab.Syst.120(2)(2013)1–14.

    [31]S.W.Choi,I.B.Lee,Multiblock PLS-based localized process diagnosis,J.Process Control 15(2005)295–306.

    [32]G.A.Cherry,S.J.Qin,Multiblock principal component analysis based on a combined index for semiconductor fault detection and diagnosis,IEEE Trans.Semicond.Manuf.19(2)(2006)159–172.

    [33]Z.Q.Ge,Z.H.Song,Two-level multiblock statistical monitoring for plant-wide processes,Korean J.Chem.Eng.26(6)(2009)1467–1475.

    [34]H.Yue,S.J.Qin,Reconstruction based fault identification using a combined index,Ind.Eng.Chem.Res.20(2001)4403–4414.

    [35]T.Chen,Y.Sun,Probabilistic contribution analysis for statistical process monitoring:A missing variable approach,Control.Eng.Pract.17(4)(2009)469–477.

    [36]V.Kariwala,P.E.Odiowei,Y.Cao,T.Chen,A branch and bound method for isolation of faulty variables through missing variable analysis,J.Process Control 20(10)(2010)1198–1206.

    [37]J.A.Westerhuis,S.P.Gurden,A.K.Smilde,Generalized contribution plots in multivariate statistical process monitoring,Chemom.Intell.Lab.Syst.51(2000)95–114.

    [38]T.Kourti,J.F.MacGregor,Multivariate SPC methods for process and product monitoring,J.Qual.Technol.28(1996)409–428.

    [39]R.Dunia,S.J.Qin,Subspace approach to multidimensional faultidentification and reconstruction,AICHE J.44(8)(1998)1813–1831.

    [40]S.J.Qin,H.H.Yue,R.Dunia,Self-validating inferential sensors with application to air emission monitoring,Ind.Eng.Chem.Res.36(5)(1997)1675–1685.

    [41]C.F.Alcala,S.J.Qin,Reconstruction-based contribution for process monitoring,Automatica 45(7)(2009)1593–1600.

    [42]J.L.Liu,Fault diagnosis using contribution plots without smearing effect on nonfaulty variables,J.Process Control 22(9)(2012)1609–1623.

    [43]G.Z.Wang,J.C.Liu,Y.Li,Fault diagnosis using kNN reconstruction on MRI variables,J.Chemom.29(7)(2015)399–410.

    [44]S.J.Qin,Survey on data-driven industrial process monitoring and diagnosis,Annu.Rev.Control.36(2)(2012)220–234.

    [45]H.Xu,F.Yang,H.Ye,W.Li,P.Xu,A.K.Usadi,Weighted reconstruction-based contribution for improved fault diagnosis,Ind.Eng.Chem.Res.52(29)(2013)9858–9870.

    [46]L.H.Chiang,E.Russell,R.D.Braatz,Fault detection and diagnosis in industrial systems,Springer Verlag,London,2001.

    [47]R.A.Johnson,D.W.Wichem,Applied multivariate statistical analysis,Prentice Hall,New Jersey,1992.

    [48]A.Alawi,S.W.Choi,E.Martin,J.Morris,Sensor fault identification using weighted combined contribution plots,Fault detection,supervision,and safety of technical processes 2007,pp.908–913.

    [49]J.L.Liu,D.S.Chen,Fault isolation using modified contribution plots,Comput.Chem.Eng.61(3)(2014)9–19.

    [50]J.M.Lee,C.K.Yoo,S.W.Choi,P.A.Vanrolleghem,I.B.Lee,Nonlinear process monitoring using kernel principal component analysis,Chem.Eng.Sci.59(2004)223–234.

    [51]J.Yu,S.J.Qin,Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models,AICHE J.54(7)(2008)1811–1829.

    [52]J.Lee,B.Kang,S.Kang,Integrating independentcomponentanalysis and localoutlier factorfor plant-wide process monitoring,J.Process Control21(7)(2011)1011–1021.

    成人国产一区最新在线观看| 国产精品 国内视频| 三级毛片av免费| 欧美久久黑人一区二区| 超碰97精品在线观看| 成年动漫av网址| 亚洲av日韩精品久久久久久密| 亚洲色图 男人天堂 中文字幕| 伦理电影免费视频| 日本黄色视频三级网站网址 | 一区二区三区精品91| 久久久久久亚洲精品国产蜜桃av| 一级毛片女人18水好多| 成人特级黄色片久久久久久久| 久热这里只有精品99| 国产精品九九99| 国产有黄有色有爽视频| 亚洲国产欧美一区二区综合| √禁漫天堂资源中文www| 欧美性长视频在线观看| 精品亚洲成a人片在线观看| 国产精品.久久久| 一区在线观看完整版| 9色porny在线观看| 丰满饥渴人妻一区二区三| 在线永久观看黄色视频| 最近最新免费中文字幕在线| 中文字幕最新亚洲高清| 国产亚洲一区二区精品| 日韩三级视频一区二区三区| 热99re8久久精品国产| 精品国内亚洲2022精品成人 | 亚洲黑人精品在线| 色尼玛亚洲综合影院| 下体分泌物呈黄色| 亚洲,欧美精品.| 国产黄色免费在线视频| 高潮久久久久久久久久久不卡| 亚洲熟女毛片儿| 日韩欧美一区二区三区在线观看 | 在线观看舔阴道视频| 欧美+亚洲+日韩+国产| 大香蕉久久网| 99热网站在线观看| 在线十欧美十亚洲十日本专区| 亚洲成人免费av在线播放| 国产一区二区三区在线臀色熟女 | 咕卡用的链子| 国产又爽黄色视频| 中亚洲国语对白在线视频| 国产亚洲欧美精品永久| 麻豆成人av在线观看| 国产主播在线观看一区二区| 高清毛片免费观看视频网站 | 久久狼人影院| 十八禁人妻一区二区| 欧洲精品卡2卡3卡4卡5卡区| 激情视频va一区二区三区| 91麻豆精品激情在线观看国产 | 18禁裸乳无遮挡动漫免费视频| 黑人猛操日本美女一级片| 午夜免费鲁丝| 女人爽到高潮嗷嗷叫在线视频| 久久国产精品影院| 99精品欧美一区二区三区四区| a级毛片在线看网站| 国产成人av教育| 久久草成人影院| 免费观看精品视频网站| 午夜激情av网站| 一进一出抽搐gif免费好疼 | 成年人免费黄色播放视频| 国产精品九九99| 欧美精品人与动牲交sv欧美| 麻豆av在线久日| 大香蕉久久成人网| 亚洲综合色网址| 好看av亚洲va欧美ⅴa在| 欧美精品亚洲一区二区| 国产xxxxx性猛交| 午夜影院日韩av| 大型黄色视频在线免费观看| 久久久水蜜桃国产精品网| 久久九九热精品免费| 丰满人妻熟妇乱又伦精品不卡| 色综合婷婷激情| 日韩中文字幕欧美一区二区| 欧美日韩亚洲高清精品| 丁香欧美五月| 亚洲av成人av| 啪啪无遮挡十八禁网站| 99riav亚洲国产免费| 后天国语完整版免费观看| 色婷婷av一区二区三区视频| netflix在线观看网站| 涩涩av久久男人的天堂| 一级片免费观看大全| 男女高潮啪啪啪动态图| 动漫黄色视频在线观看| 国产欧美日韩精品亚洲av| 国产精品美女特级片免费视频播放器 | 丰满的人妻完整版| 欧美日韩福利视频一区二区| 亚洲自偷自拍图片 自拍| 国产又爽黄色视频| 欧美精品一区二区免费开放| 亚洲精品国产一区二区精华液| 法律面前人人平等表现在哪些方面| www.熟女人妻精品国产| 我的亚洲天堂| 免费在线观看影片大全网站| 午夜福利一区二区在线看| 欧美黄色片欧美黄色片| 久久香蕉国产精品| 亚洲色图 男人天堂 中文字幕| 看免费av毛片| 日韩 欧美 亚洲 中文字幕| 免费看十八禁软件| 国产激情欧美一区二区| 亚洲伊人色综图| 性色av乱码一区二区三区2| 国产区一区二久久| 亚洲在线自拍视频| 91精品国产国语对白视频| 久久国产精品影院| 精品人妻在线不人妻| 国产三级黄色录像| 大型av网站在线播放| 啪啪无遮挡十八禁网站| e午夜精品久久久久久久| 99国产精品一区二区三区| 日韩欧美一区二区三区在线观看 | 不卡av一区二区三区| 日韩欧美一区二区三区在线观看 | 一级黄色大片毛片| 女性生殖器流出的白浆| 色综合欧美亚洲国产小说| 国产精品99久久99久久久不卡| 深夜精品福利| 国产精品亚洲av一区麻豆| 成年版毛片免费区| 亚洲精品粉嫩美女一区| 色综合欧美亚洲国产小说| 国产亚洲av高清不卡| 捣出白浆h1v1| 免费久久久久久久精品成人欧美视频| 欧美 日韩 精品 国产| 免费高清在线观看日韩| 一级片'在线观看视频| 中文亚洲av片在线观看爽 | www日本在线高清视频| 两个人免费观看高清视频| 如日韩欧美国产精品一区二区三区| 一级毛片高清免费大全| 国产av一区二区精品久久| 香蕉国产在线看| 91在线观看av| 久热这里只有精品99| 男人的好看免费观看在线视频 | 乱人伦中国视频| 日本a在线网址| 国产日韩一区二区三区精品不卡| 久久国产乱子伦精品免费另类| 视频在线观看一区二区三区| 日日夜夜操网爽| 欧美av亚洲av综合av国产av| 久久精品亚洲av国产电影网| 高清欧美精品videossex| 80岁老熟妇乱子伦牲交| 国产成人一区二区三区免费视频网站| 国产精品亚洲一级av第二区| 久久人妻福利社区极品人妻图片| 久久ye,这里只有精品| 久久久久久人人人人人| 狠狠狠狠99中文字幕| 久久人妻av系列| 国产xxxxx性猛交| 亚洲五月婷婷丁香| 欧美性长视频在线观看| 亚洲精品国产精品久久久不卡| 亚洲成国产人片在线观看| 中文亚洲av片在线观看爽 | 亚洲欧美精品综合一区二区三区| 在线免费观看的www视频| 久久香蕉激情| 欧美精品亚洲一区二区| 国产av精品麻豆| 国产片内射在线| 男人舔女人的私密视频| 久久精品91无色码中文字幕| 免费一级毛片在线播放高清视频 | 99久久人妻综合| 最近最新免费中文字幕在线| 美国免费a级毛片| 国产不卡av网站在线观看| 国产国语露脸激情在线看| 女性被躁到高潮视频| 男女床上黄色一级片免费看| 高清av免费在线| 久久婷婷成人综合色麻豆| 香蕉丝袜av| 亚洲精品国产色婷婷电影| 飞空精品影院首页| 1024视频免费在线观看| 久久精品亚洲精品国产色婷小说| 午夜福利,免费看| 国产成人免费观看mmmm| 女人被躁到高潮嗷嗷叫费观| 午夜福利在线观看吧| 中文字幕高清在线视频| 国产精品国产av在线观看| 精品无人区乱码1区二区| 国产精品一区二区精品视频观看| 免费观看人在逋| 久久久久久久久免费视频了| 免费少妇av软件| 超色免费av| 国产在视频线精品| 美女高潮到喷水免费观看| 亚洲综合色网址| 美女视频免费永久观看网站| 色精品久久人妻99蜜桃| 久久精品国产综合久久久| 黄片小视频在线播放| 欧美黄色淫秽网站| 久久久久久久国产电影| 久久久久久久久久久久大奶| 好看av亚洲va欧美ⅴa在| 欧美黄色片欧美黄色片| 婷婷丁香在线五月| 欧美日韩亚洲高清精品| 在线观看免费日韩欧美大片| 曰老女人黄片| 俄罗斯特黄特色一大片| 99国产精品99久久久久| 99热只有精品国产| 一级片'在线观看视频| 成人国产一区最新在线观看| 最新的欧美精品一区二区| 亚洲一区二区三区不卡视频| av有码第一页| 久久久久久久久免费视频了| 欧美黑人精品巨大| 婷婷丁香在线五月| 老熟女久久久| 亚洲人成电影免费在线| 精品一区二区三区视频在线观看免费 | 99re6热这里在线精品视频| 中文字幕色久视频| 乱人伦中国视频| 中文欧美无线码| av不卡在线播放| 日本黄色日本黄色录像| 精品第一国产精品| 日韩 欧美 亚洲 中文字幕| x7x7x7水蜜桃| 午夜精品国产一区二区电影| 国产成人影院久久av| 又黄又粗又硬又大视频| 色94色欧美一区二区| av天堂久久9| tube8黄色片| 免费在线观看黄色视频的| 9热在线视频观看99| 老司机影院毛片| 欧美久久黑人一区二区| 91麻豆精品激情在线观看国产 | 老司机在亚洲福利影院| 欧美日韩亚洲综合一区二区三区_| 国产成人av激情在线播放| 国产真人三级小视频在线观看| 99精品久久久久人妻精品| 亚洲专区国产一区二区| 电影成人av| 久久精品亚洲精品国产色婷小说| 成在线人永久免费视频| 看免费av毛片| 捣出白浆h1v1| 一级毛片女人18水好多| 亚洲成av片中文字幕在线观看| 欧美日韩亚洲国产一区二区在线观看 | 在线天堂中文资源库| av一本久久久久| 波多野结衣av一区二区av| 在线观看免费午夜福利视频| 久久婷婷成人综合色麻豆| 午夜福利在线观看吧| 欧美国产精品va在线观看不卡| 91成年电影在线观看| 精品一区二区三区av网在线观看| 国产精品久久久av美女十八| 18禁黄网站禁片午夜丰满| 国产亚洲精品久久久久久毛片 | 不卡一级毛片| 久久午夜亚洲精品久久| 国产一区二区三区视频了| 久久精品成人免费网站| 国产精品99久久99久久久不卡| 黄频高清免费视频| 亚洲av片天天在线观看| 久久久久久久午夜电影 | 日韩免费av在线播放| 久久性视频一级片| 精品一区二区三区视频在线观看免费 | 国产av精品麻豆| 国产1区2区3区精品| 99re6热这里在线精品视频| 欧美精品av麻豆av| 日韩欧美一区二区三区在线观看 | 国产野战对白在线观看| 亚洲欧美激情综合另类| 女人高潮潮喷娇喘18禁视频| 极品人妻少妇av视频| 免费在线观看影片大全网站| 亚洲一卡2卡3卡4卡5卡精品中文| 成人av一区二区三区在线看| 欧美色视频一区免费| 又紧又爽又黄一区二区| 亚洲五月天丁香| 热99国产精品久久久久久7| 国产精品av久久久久免费| 亚洲 欧美一区二区三区| 国产免费av片在线观看野外av| 高清av免费在线| 丁香欧美五月| av网站在线播放免费| 天天躁狠狠躁夜夜躁狠狠躁| 久久久国产成人精品二区 | 亚洲九九香蕉| 亚洲自偷自拍图片 自拍| 叶爱在线成人免费视频播放| 欧美人与性动交α欧美软件| 午夜亚洲福利在线播放| 国产精品久久久久成人av| 亚洲av电影在线进入| 啦啦啦在线免费观看视频4| 深夜精品福利| 欧美最黄视频在线播放免费 | 久久天躁狠狠躁夜夜2o2o| 亚洲国产精品合色在线| 高清黄色对白视频在线免费看| 超碰成人久久| 交换朋友夫妻互换小说| 老熟妇乱子伦视频在线观看| 夜夜爽天天搞| 99国产精品一区二区三区| 91av网站免费观看| 日韩免费高清中文字幕av| 精品久久久久久久毛片微露脸| 中文字幕av电影在线播放| 黄色视频不卡| 看片在线看免费视频| 一二三四社区在线视频社区8| 黄片播放在线免费| 中文字幕人妻丝袜一区二区| 人妻丰满熟妇av一区二区三区 | 色尼玛亚洲综合影院| 精品人妻在线不人妻| svipshipincom国产片| 日韩欧美一区视频在线观看| 免费av中文字幕在线| 国产av一区二区精品久久| 黑人猛操日本美女一级片| 国产免费av片在线观看野外av| 国内久久婷婷六月综合欲色啪| 午夜福利一区二区在线看| 国内久久婷婷六月综合欲色啪| 国产免费av片在线观看野外av| 男女高潮啪啪啪动态图| 午夜福利,免费看| 国产在线精品亚洲第一网站| 国产欧美亚洲国产| 亚洲国产欧美网| 国产一区二区三区在线臀色熟女 | 日韩成人在线观看一区二区三区| 一级片'在线观看视频| 日韩精品免费视频一区二区三区| 成人18禁在线播放| 18禁国产床啪视频网站| 久久人人爽av亚洲精品天堂| 一二三四社区在线视频社区8| 精品国内亚洲2022精品成人 | 久久人人爽av亚洲精品天堂| 亚洲精品粉嫩美女一区| 韩国av一区二区三区四区| 91av网站免费观看| 亚洲色图av天堂| 亚洲五月天丁香| 麻豆乱淫一区二区| 亚洲一卡2卡3卡4卡5卡精品中文| 99国产极品粉嫩在线观看| 亚洲免费av在线视频| 亚洲国产精品sss在线观看 | 91老司机精品| 黄色视频不卡| 国产亚洲精品一区二区www | 午夜视频精品福利| 色婷婷av一区二区三区视频| 99re在线观看精品视频| 久久久久精品国产欧美久久久| 久久中文看片网| 高潮久久久久久久久久久不卡| 国产欧美亚洲国产| 欧美乱码精品一区二区三区| cao死你这个sao货| 亚洲中文字幕日韩| 欧美人与性动交α欧美精品济南到| 国产精品综合久久久久久久免费 | 中文字幕另类日韩欧美亚洲嫩草| 欧美激情久久久久久爽电影 | 日本a在线网址| 亚洲色图av天堂| 国产成人影院久久av| 999精品在线视频| 99精品久久久久人妻精品| 老熟女久久久| 人妻久久中文字幕网| 80岁老熟妇乱子伦牲交| 怎么达到女性高潮| 精品久久久久久久毛片微露脸| 中文字幕精品免费在线观看视频| 久久久久久久精品吃奶| 黑人巨大精品欧美一区二区mp4| 两性夫妻黄色片| 999久久久国产精品视频| 免费不卡黄色视频| 精品国产一区二区三区四区第35| av一本久久久久| 亚洲成av片中文字幕在线观看| 91精品国产国语对白视频| 久久中文字幕人妻熟女| 九色亚洲精品在线播放| 波多野结衣一区麻豆| 国产深夜福利视频在线观看| 久久久国产成人精品二区 | 丝袜人妻中文字幕| 少妇粗大呻吟视频| 日本一区二区免费在线视频| 国产在线观看jvid| 国产高清国产精品国产三级| 国产三级黄色录像| 国产精品乱码一区二三区的特点 | 国产成人精品无人区| 亚洲欧美精品综合一区二区三区| 国产熟女午夜一区二区三区| 极品少妇高潮喷水抽搐| 人人妻人人添人人爽欧美一区卜| 国产精品二区激情视频| 中文字幕高清在线视频| 满18在线观看网站| 亚洲三区欧美一区| 国产国语露脸激情在线看| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲欧洲精品一区二区精品久久久| 深夜精品福利| 午夜91福利影院| 亚洲精品中文字幕一二三四区| 欧美性长视频在线观看| 久久人妻熟女aⅴ| 王馨瑶露胸无遮挡在线观看| 久久国产亚洲av麻豆专区| 日韩成人在线观看一区二区三区| 国产熟女午夜一区二区三区| 亚洲精品成人av观看孕妇| 免费女性裸体啪啪无遮挡网站| 免费一级毛片在线播放高清视频 | 国产日韩一区二区三区精品不卡| 国产xxxxx性猛交| 国产单亲对白刺激| 涩涩av久久男人的天堂| 国产成人一区二区三区免费视频网站| 美女视频免费永久观看网站| 一区二区三区精品91| 在线观看免费视频日本深夜| 久久久久久久久久久久大奶| 成年人午夜在线观看视频| 久久中文字幕一级| 91九色精品人成在线观看| 国产精品.久久久| 日日夜夜操网爽| 捣出白浆h1v1| 人妻丰满熟妇av一区二区三区 | 热99re8久久精品国产| 亚洲全国av大片| 日本wwww免费看| 搡老岳熟女国产| 国产日韩一区二区三区精品不卡| 日韩视频一区二区在线观看| 老司机在亚洲福利影院| tocl精华| 国产日韩欧美亚洲二区| www.熟女人妻精品国产| 91成年电影在线观看| 9热在线视频观看99| 久久久国产成人免费| 国产成人系列免费观看| 最近最新中文字幕大全电影3 | 啦啦啦视频在线资源免费观看| 一夜夜www| 成人特级黄色片久久久久久久| 很黄的视频免费| 在线观看免费视频网站a站| 黄色a级毛片大全视频| 极品教师在线免费播放| 女同久久另类99精品国产91| 日本vs欧美在线观看视频| 国产蜜桃级精品一区二区三区 | 国产成人精品无人区| 国产精品电影一区二区三区 | 成人特级黄色片久久久久久久| 精品一区二区三区四区五区乱码| av视频免费观看在线观看| 黄色毛片三级朝国网站| 男女免费视频国产| 欧美日韩黄片免| 国产单亲对白刺激| 亚洲精品美女久久久久99蜜臀| 窝窝影院91人妻| 亚洲七黄色美女视频| 美女视频免费永久观看网站| 欧美成人免费av一区二区三区 | 色尼玛亚洲综合影院| 国产一区二区激情短视频| 亚洲va日本ⅴa欧美va伊人久久| 久久午夜亚洲精品久久| 日本欧美视频一区| 99精品在免费线老司机午夜| 欧美在线一区亚洲| 亚洲 国产 在线| 夫妻午夜视频| 亚洲人成77777在线视频| 国产精品99久久99久久久不卡| 99久久国产精品久久久| 一区二区日韩欧美中文字幕| 看黄色毛片网站| 视频在线观看一区二区三区| 国产男靠女视频免费网站| 国产aⅴ精品一区二区三区波| 亚洲熟妇熟女久久| 亚洲国产精品合色在线| 国产欧美日韩综合在线一区二区| 亚洲片人在线观看| 真人做人爱边吃奶动态| 亚洲精品自拍成人| 国产亚洲精品第一综合不卡| 最新美女视频免费是黄的| 国产精品av久久久久免费| 精品国产亚洲在线| 亚洲精品乱久久久久久| 亚洲精品美女久久av网站| 手机成人av网站| 久99久视频精品免费| 午夜福利乱码中文字幕| 精品卡一卡二卡四卡免费| 十八禁人妻一区二区| 精品久久久久久,| 国产男女内射视频| 久久久精品免费免费高清| 国产欧美日韩一区二区精品| 亚洲avbb在线观看| 精品一品国产午夜福利视频| 国产97色在线日韩免费| 久久国产精品男人的天堂亚洲| 欧洲精品卡2卡3卡4卡5卡区| 国产欧美日韩一区二区三| 成人影院久久| 日韩三级视频一区二区三区| 两个人看的免费小视频| 成年人免费黄色播放视频| 在线观看免费高清a一片| 国产精品av久久久久免费| 亚洲va日本ⅴa欧美va伊人久久| 电影成人av| 妹子高潮喷水视频| 人人妻人人澡人人看| 涩涩av久久男人的天堂| 国产亚洲欧美精品永久| 亚洲成人国产一区在线观看| 日日夜夜操网爽| 精品国产乱码久久久久久男人| 成年版毛片免费区| 欧美成狂野欧美在线观看| 黑人巨大精品欧美一区二区蜜桃| 亚洲精品乱久久久久久| 少妇被粗大的猛进出69影院| 黄色怎么调成土黄色| 成在线人永久免费视频| 下体分泌物呈黄色| 香蕉国产在线看| 老熟女久久久| 美女扒开内裤让男人捅视频| 国产精品国产av在线观看| 无限看片的www在线观看| 在线观看日韩欧美| 午夜免费观看网址| 欧美精品啪啪一区二区三区| 午夜老司机福利片| a级片在线免费高清观看视频| 亚洲专区字幕在线| 日本一区二区免费在线视频| 亚洲成人国产一区在线观看| 久久久久国产精品人妻aⅴ院 | 午夜精品国产一区二区电影| 久久ye,这里只有精品| 日本a在线网址| av线在线观看网站| 亚洲欧美日韩高清在线视频| 国产精品久久久久久人妻精品电影| 亚洲精品在线观看二区| 怎么达到女性高潮| 国产黄色免费在线视频| 天天影视国产精品| 一区二区三区国产精品乱码| 两性夫妻黄色片| av视频免费观看在线观看|