• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Vanadium oxide nanotubes for selective catalytic reduction of NO x with NH3

    2016-05-30 12:54:11SeyedMahdiMousavi

    Seyed Mahdi Mousavi*

    Faculty of Chemistry,University of Kashan,Kashan 87317,Iran

    1.Introduction

    Over the pastdecade,nanostructure materials have been considered as a new and fast developing research area of technology.These novel materials have gained intense interest due to their extraordinary physical and chemical properties that may be tailored for various applications.New one-dimensional nanostructured materials attract great attention due to their future possible applications[1,2].Among them,the tubular morphology nanomaterials are particularly attractive since it provides access to the three different contact regions:inner and outer surfaces as well as the tube ends[3–5].

    Recently,great interest was assigned to synthesis of metal oxide nanotubes such as titanium dioxide nanotubes(TiO2-NTs)and vanadium oxide nanotubes(VOx-NTs),because of their potential applications as catalysts and electrochemical devices[6–10].However,study of their applications such as catalytic performance is still under the way.VOx-NTs can be prepared with a unique structure of multilayer scrolls with a hydrothermal process[11,12].The interlayer distance and inner and outer diameters of the tube can be easily controlled by a proper choice of structure directing agents,hydrolysis and hydrothermal conditions[9].Due to the special morphology of VOx-NTs,it may have high performance in a wide range of catalytic processes,especially in NOxremoval technologies[8].

    Nitrogen oxides(NOx),generally referring to nitric oxide(NO)and nitrogen dioxide(NO2)are mainly generated fromcombustion processes.The emission of NOxis directly responsible for various environment problems including the formations of photochemical smog and acid rain,depletion of the stratospheric ozone layer as well as respiratory diseases[13].A well-known NOxcontrol technology is the selective catalytic reduction(SCR)of NOx.In SCR processes,NH3and hydrocarbons are usually used as reducing agents,which convert NOxinto N2and H2O via catalytic reactions[14,15].Many catalytic systems including transition,noble and rare earth metal containing catalysts(supported,unsupported and/or their mixed oxides)have been reported to be active for NH3-SCR of NOx[16–20].Vanadia based catalysts(V2O5/TiO2or V2O5–WO3/TiO2and V2O5supported on other supports)are the most commonly employed for NH3-SCR,due to their high resistance towards SO2poisoning[20–22].However,most of the developed Vanadia catalysts are active at high temperature(>350 °C)[13,21,23,24].Therefore,the trend is to develop new low-temperature catalysts that are more selective to the production of inert product(N2).

    The aim of the present work is to develop some Vanadia oxide nanostructure catalysts and to investigate their efficiency in NH3-SCR of NOxat low temperatures.Vanadia oxide nanostructures were prepared by hydrothermalprocess by varying some preparation parameters such as volume ratio of the EtOH/(EtOH+H2O)and time of hydrolysis.

    2.Materials and Methods

    2.1.Synthesis and characterization of VOx nanostructures

    The synthesis of the VOxnanostructure was adapted from the technique developed by Spahr et al.(1998).VOxnanostructure was synthesized from a suspension of V2O5and dodecylamine as a structure directing agent,with a molar ratio of 1:1,prepared in a mixture of distilled water and ethanol with a variety of volume ratios(EtOH/(EtOH+H2O)=0,25%,50%,75%and 100%).After preparation of the suspension,hydrolysis was performed under stirring for a desired time(24 and 48 h).The resulting suspension was hydrothermally treated at 180°C for 7 days in a Te flon-lined autoclave with a stainless steel shell,then it was allowed to naturally cool down to room temperature.The obtained solid was filtered,repeatedly washed with ethanol and hexane and finally dried at 110°C for 10 h.

    The phase composition of the samples was characterized by X-ray powder diffraction(XRD)using a Siemens D5000 dual goniometer diffractometer by a graphite monochromator CuKαradiation(λ =1.54 nm).The diffractograms were recorded within the 2θ range of 20°–80°with a scanning rate of 0.04 s?1.

    The Brunauer,Emmett,Teller(BET)specific surface areas of the VOxsamples were measured with a Micromeritics ASAP 2010 using nitrogen adsorption at 77 K.Prior to the measurements,the samples were outgassed to eliminate volatile adsorbents on the surface at 453 K for 4 h under high vacuum.

    The morphology and nanostructure of samples were characterized by a LEO 1430 VP scanning electron microscope.Transmission Electron Microscopy(TEM)studies of the nanotube samples were performed using a JEOL(JEM-2010)microscope.For TEM analysis,few droplets of an ultrasonically dispersed suspension of each sample in ethanol were placed on a copper grid with lacey carbon film and dried at ambient conditions.

    2.2.Catalytic activity tests

    The NH3-SCR activities of the prepared VOxnanostructure were measured in a tubular(i.d.=10 mm) fixed bed glass reactor at atmospheric pressure.At steady state,a gas mixture containing 1000 ml·L?1NO,1000 ml·L?1NH3,5%O2and Ar as balance,was introduced into the reactor.In all the tests,0.2 g of the prepared catalyst was dispread between glass wool plugs;the total flow rate was fixed at 200 cm3·min?1,which corresponded to a gas hourly space velocity(GHSV)of 12,000 h?1.The SCR experiments were carried out at a temperature range of 100–400 °C.

    The concentrations of NOxat the inlet and outlet of the reactor were monitored by a Flue Gas Analyzer(Testo 350M/XL).A gas chromatograph(SHIMADZU model 2010 plus)equipped with a molecular sieve(HP-Molesieve,30 m length,0.53 mm diameter)column and a thermal conductivity detector(TCD)was used to determine the concentration of N2and N2O.According to the concentration of NOx(NO+NO2),N2and N2O in the inlet and outlet flow,NOxconversion and N2selectivity were calculated using the following equations:

    The subscripts in and outindicate the inletand outletconcentrations at steady state,respectively.

    3.Results and Discussion

    3.1.Characterization of VOx nanostructures

    Recent studies have shown that the physico-chemical properties of vanadium oxide nanostructures are sensitive to the initial materials and the synthesis procedures,especially the vanadium source,alkylamine used as a structure directing agent and the applied hydrolysis and hydrothermal conditions[9,11].Many studies in the literature are available on the investigation of the effects of vanadium precursors such as VO(OPr)3[25],NH4VO3[11]and V2O5sols[26],structure directing agent[27]and hydrothermal time and temperature[28].To the best of our knowledge there is no report on the investigation of the solventtype in reaction mixture as wellas time ofhydrolysis.Therefore,it has a great significance to study the effect of the solvent type in reaction mixture and time ofhydrolysis on structure and morphology of VOxnanostructure.For this purpose,various experiments were performed which are shown in Table 1.According to Table 1,six VOxnanostructures(VOx0–VOx5)were prepared with different EtOH/(EtOH+H2O)volume ratios and times of hydrolysis.All prepared VOxmaterials were in black color.As regards mixed-valent vanadium(IV,V)oxides being generally black[29],it can be concluded that some vanadium is in 4+oxidation states in prepared VOxmaterial.

    The XRDpatterns ofVOxsamples prepared atdifferentvolume ratios

    Table 1 The hydrolysis and hydrothermal condition of different VO x samples

    of EtOH/(EtOH+H2O)were shown in Fig.1.The XRD patterns of the VOx1 and VOx2 feature the low-angle re flection peaks(2θ< 10°),corresponding to well-ordered layered structures.The weak re flection peaks of VOx0 confirm the weakening degree of the crystallinity of layered structures.No characteristic peak is recognized in the XRD pattern of VOx4 and VOx5,which indicates thatthe layered structure is notformed.From Fig.1,it can be seen that with the rise of the EtOH/(EtOH+H2O)volume ratio(VOx1 to VOx2)the intensity of the re flection peaks increased,which represents an increase of crystallinity in VOx2.

    Fig.1.XRD patterns of prepared VO x s at different volume ratios of EtOH/(EtOH+H2O).

    Fig.2.XRD patterns of VO x s prepared at 50 vol%EtOH/(EtOH+H2O)and different times of hydrolysis.

    The XRD patterns of the VOx2 and VOx3 samples prepared at differenttimes ofhydrolysis were compared in Fig.2.According to this figure,an obvious decrease in intensity of the re flection peaks with a decrease of the time of hydrolysis process was observed,indicating a decrease in crystallinity of layered structures of VOx.In the formation of the layered structure of vanadium oxide,two main processes take place during hydrolysis:surfactant adsorption and vanadium reduction[12].These processes start at the first minutes of stirring and continue during the hydrolysis process.Therefore,the time of hydrolysis is an important parameterin the formation and completion ofthe layered structure ofVOx.With an increase in EtOH/(EtOH+H2O)volume ratio,the adsorption of surfactant has probably reduced and led to abatement of order in layered structures of VOx.

    The average interlayer distance(d001values)calculated from the sharpest peak(001 re flection peak)is listed in Table 2.The average interlayer distances of VOx1,VOx2 and VOx3 are close to the values reported in the literature for a similar synthesis procedure[11,12].These d001values are also consistent with the length of the dodecylamine chain used as a structure directing agent.The d001value calculated for VOx0 was longer than others.Probably,the water molecules intercalated together with the protonated amines in dodecylamine chain are increased the interlayer distance.

    Table 2 Structural properties of the prepared VO x nanostructures

    A general impression of the prepared samples is provided by the SEMimages,which evidence the successfulformation ofVOxnanostructure.From the SEM images of VOx1(Fig.3),it can be seen that the VOx1 clearly reveals the presence of well-developed nanorods with 80–120 nm diameter and 1–4 μm length.The SEM images of VOx2 and VOx3 are shown in Fig.4.The nanotube structures can be observed for both the VOx2 and VOx3 samples.However,it can be clearly seen that the VOx2 has a more regular nanostructure than VOx3.In VOx2,most of the nanotubes have open ends,but a small part of the nanotubes with closed ends was noticed.The side of the other tube wrapped around the end to close it off.The dimensions of VOx2 nanotubes were 0.5–2 μm long,110–180 nm for their outer diameter and 50–100 nm for theirinner diameter.As shown in Fig.5,the VOx0 had notany regular structure.The VOx4 and VOx5 had no special morphology(SEM images not shown).

    The TEM image of the VOx2 sample is presented in Fig.6.From this figure,it can be clearly seen that the nanostructures of VOx2 are multilayered wall nanotubes,formed by several parallel layers.In the TEM image,the dark lines represent the VOxlayers,while the bright ones are the interlayer.The interlayer distance was approximately 3.2 nm,corresponding to the estimated values obtained by XRD(d001).

    The nanotubes and nanorods of VOxare formed by scrolling up VOxlayers in hydrothermal process[25].The VOx1,VOx2 and VOx3 samples which had a well-ordered layered structure(confirmed by XRD and TEM results)provide ideal condition for scrolling up VOxlayers,resulting in the formation of nanotubes and nanorods(confirmed by SEM images).But,in the VOx0,VOx4 and VOx5 samples which had no layered structure(confirmed by XRD results),the formation of a tube or rod structure would not be possible.

    The BET surface areas of the prepared VOxare listed in Table 2.It is apparent that the volume ratio of the EtOH/(EtOH+H2O)and time of hydrolysis have a notable impact on the surface area of VOxnanostructures.A BET specific surface area of 122 and 117 m2·g?1was measured for the VOx2 and VOx3 samples,respectively,which are significantly highervalues than thatfound forthe other samples.Although,itexpected to be have a higher specific surface area(due to nanotube morphology),however,this because ofresidualsolventmolecules covering parts of the surface of nanotubes.

    3.2.NH3-SCR performance of VOx nanostructures

    The NH3-SCR activity of all prepared VOxcatalyst and pure V2O5in terms of NOxconversion(%)as function of reaction temperature is presented in Fig.7.The N2O was not detected in any of the tests,suggesting that an effective selectivity to N2can be achieved over all the studied catalysts.According to Fig.7,the V2O5,VOx0,VOx4 and VOx5 samples exhibited quite low activity in the whole temperature range.As reaction temperature increases,the NOxconversion of these samples slightly increases,however,the maximum NOxconversion over these catalysts was less than 45%.

    From Fig.7,itcan be clearly seen thatas the reaction temperature increases,the NOxconversion ofthe VOx2 and VOx3 samples extremely increases,however,the NOxconversion decreases above 250°C.The VOx2 exhibited relatively higher NOxconversion than VOx3 in the low temperature range(100–250 °C).Under identical operating conditions,VOx2 catalyst which had a well-ordered nanotube morphology(confirmed by XRD,SEM and TEM results),showed more than 85%NOxconversion at 250°C.Newly designed VOxnanotubes show a very good NH3-SCRactivity in the low temperature range,while mostofthe developed Vanadia base catalysts are active at high temperature(>350 °C)[21,24,30].According to Fig.7,it can be observed that the NH3-SCR activity of VOx1 catalyst,which had a nanorod morphology,was lower than the activity of the VOx2 and VOx3 nanotubes.

    From Fig.7,it can be seen that with the rise of reaction temperature above 250°C,the NOxconversion of VOx2 and VOx3 nanotube catalysts extremely decreases,which is probably due to the thermal instability of VOxnanostructures.Thermogravimetric analysis(TGA)results of VOxnanostructuresin the presence ofoxygen have shown one majorweight loss between 250 and 400°C[31].Itsuggested thatloss ofweightcorresponds to the decomposition of template and the loss of water between vanadiumoxide layers.In fact,the decline ofNOxconversion over 250°C might be caused by the destruction of the well-ordered crystalline structure of VOxnanotubes through combustion and elimination of template.Itis interesting to note thatallthe VOxnanostructure catalysts show the orange color like V2O5after the NO reduction tests.

    Fig.3.SEM images of VO x1 nanostructure(25 vol%EtOH/(EtOH+H2O),hydrolysis time of 48 h?1).

    Fig.4.SEMimages of(a,b)VO x2(50 vol%EtOH/(EtOH+H2O)and hydrolysis time of48 h?1)and(c,d)VO x3 nanostructures(50 vol%EtOH/(EtOH+H2O)and hydrolysis time of24 h?1).

    The O2is an important operation parameter in the NH3-SCR of NOxreaction.The NOoxidation to nitrites and/or nitrates and NH3activation to NH2/OH are the key steps in the SCR reaction[17,32].Increasing O2content can improve these two steps.However,the thermal instability of VOxnanotube catalysts strongly depends on the presence of oxygen.Fig.8 shows the effectofO2concentration on the NH3-SCRperformance ofVOx2 nanotubes as function ofreaction temperature.The NOxconversion was only 65%at 250°C when the O2content was 1%,however,it achieved 89%with 3%O2,indicating the obvious promoter action of O2in SCR of NOx.In addition,the tests showed that the NOxconversion declined with increasing O2contentabove 3%.Itmightbe caused by the increase in the probability ofdestruction ofthe crystalline structure ofVOxnanotubes through combustion of template.

    3.3.Concluding remarks

    The mechanism of the NH3-SCR process involves the adsorption of reactants(NO,NH3and O2)and redox reaction on the catalyst surface[23].Three obvious differences of the VOxnanostructure catalysts prepared in this study are their morphology,crystallinity and specific surface area,which may be the possible reasons why the nanotubular VOxcatalystexhibits such superiorcatalytic activity.The high crystallinity nanotubes provide access to the three different contact regions:inner and outer surface as wellas the tube ends.Therefore the nanotube morphology leads to an increase in adsorption of reactant and consequently an increase in NOxconversion.Furthermore VOx2 nanotubes are more crystalline in the layered structure than VOx3 nanotubes(see XRD patterns).It can be concluded that the excellent activity of nanotube VOx2 catalyst is mainly due to the specific surface structure and the well-ordered crystalline phase.

    Fig.5.SEM images of VO x0(0 vol%EtOH/(EtOH+H2O)and hydrolysis time of 48 h?1).

    Fig.6.TEM image of VO x2 nanotubes.

    Fig.7.NO x conversion(%)ofdifferent VO x catalysts(reaction conditions:1000 ml·L?1 NO,NH3/NO is 1,5%O2,GHSV=12000 h?1).

    4.Conclusions

    Fig.8.Effect of O2 concentration on NH3-SCR performance of VO x2 nanotubes.

    VOxnanotubes and nanorods were successfully synthesized by the hydrothermal method and their performance was evaluated in NH3-SCR of NOx.The results of the current investigation revealed that the solvent type in the reaction mixture(EtOH/(EtOH+H2O))and time of hydrolysis were two important parameters in the synthesis of VOxnanostructures.VOxnanorods with 80–120 nm diameter and 1–4 μm length were prepared in 25 vol%EtOH/(EtOH+H2O),whereas VOxnanotubes with 0.5–2 μm length,110–180 nm for their outer diameter and 50–100 nm for their inner diameter were synthesized in 50 vol%EtOH/(EtOH+H2O).The VOxnanotubes prepared athigher time of hydrolysis showed more regular nanostructure tubes.The prepared VOxnanotubes exhibited superior NH3-SCR activity(89%NOxconversion and 100%N2selectivity)at low temperature of 250°C,while most of the developed VOxbase catalysts are active at high temperature(>350 °C).The excellent NH3-SCR activity of VOxnanotubes may have been caused by their well-ordered crystalline phases,specific nanotube morphology as well as high surface area,confirmed by XRD,SEM,TEM and BET analysis.The decrease of NH3-SCR activity of VOxnanotubes above 250°C could be related to thermal instability of VOxnanostructures.

    Acknowledgments

    The authors would like to gratefully acknowledge the Iran Nanotechnology Initiative Council for the financial and other supports.

    [1]B.Azambre,M.J.Hudson,Growth of copper nanoparticles within VOxnanotubes[J],Mater.Lett.57(20)(2003)3005–3009.

    [2]W.Shan,C.Liu,H.Guo,L.Yang,X.Wang,Z.Feng,Synthesis of zero,one,and three dimensional CeO2particles and CO oxidation over CuO/CeO2[J],Chin.J.Catal.32(6–8)(2011)1336–1341.

    [3]N.M.Mubarak,E.C.Abdullah,N.S.Jayakumar,J.N.Sahu,An overview on methods for the production of carbon nanotubes[J],J.Ind.Eng.Chem.20(12)(2014)1186–1197.

    [4]Z.Tang,X.Yin,Y.Zhang,N.Zhang,Y.Xu,Inhibiting Pd nanoparticle aggregation and improving catalytic performance using one-dimensional CeO2nanotubes as support[J],Chin.J.Catal.34(6)(2013)1123–1127.

    [5]F.Ji,C.Cao,H.Xu,Z.Yang,Mechanosynthesis of boron nitride nanotubes[J],Chin.J.Chem.Eng.14(3)(2006)389–393.

    [6]R.Rouhani,H.R.Aghabozorg,Asadabad M.Asadi,Synthesis and characterization of Re-,Mo-,and W-doped vanadium oxide nanotubes[J],Synth.React.Inorg.41(8)(2011)1018–1021.

    [7]J.Li,L.F.Zheng,K.F.Zhang,X.Q.Feng,Z.X.Su,J.T.Ma,Synthesis of Ag modified vanadium oxide nanotubes and their antibacterial properties[J],Mater.Res.Bull.43(10)(2008)2810–2817.

    [8]K.F.Zhang,D.J.Guo,X.Liu,J.Li,H.L.Li,Z.X.Su,Vanadium oxide nanotubes as the support of Pd catalysts for methanol oxidation in alkaline solution[J],J.Power Sources 162(2)(2006)1077–1081.

    [9]G.T.Chandrappa,N.Steunou,S.Cassaignon,C.Bauvais,J.Livage,Hydrothermal synthesis of vanadium oxide nanotubes from V2O5gels[J],Catal.Today 78(1)(2003)85–89.

    [10]A.Liu,M.Ichihara,I.Honma,H.Zhou,Vanadium-oxide nanotubes:Synthesis and template-related electrochemical properties[J],Electrochem.Commun.9(7)(2007)1766–1771.

    [11]X.Chen,X.Sun,Y.Li,Self-assembling vanadium oxide nanotubes by organic molecular templates[J],Inorg.Chem.41(17)(2002)4524–4530.

    [12]A.V.Grigorieva,E.A.Goodilin,A.V.Anikina,I.V.Kolesnik,Y.D.Tretyakov,Surfactants in the formation of vanadium oxide nanotubes[J],Mendeleev Commun.18(2)(2008)71–72.

    [13]S.Roy,M.S.Hegde,G.Madras,Catalysis for NOx abatement[J],Appl.Energy 86(11)(2009)2283–2297.

    [14]S.M.Mousavi,D.Salari,A.Niaei,P.N.Panahi,S.Sha fiei,A modelling study and optimization of catalytic reduction of NO over CeO2–MnOx(0.25)–Ba mixed oxide catalyst using design of experiments[J],Environ.Technol.35(5)(2014)581–589.

    [15]S.Saravanan,G.Nagarajan,R.Ramanujam,S.Sampath,Controlling NOxemission of crude rice bran oil blend for sustainable environment[J],Clean Soil Air Water 39(6)(2001)515–521.

    [16]Panahi P.Nakhostin,D.Salari,A.Niaei,S.M.Mousavi,NO reduction over nanostructure M–Cu/ZSM-5(M:Cr,Mn,Co and Fe)bimetallic catalysts and optimization of catalyst preparation by RSM[J],J.Ind.Eng.Chem.19(6)(2013)1793–1799.

    [17]J.Amanpour,D.Salari,A.Niaei,S.M.Mousavi,P.N.Panahi,Optimization of Cu/activated carbon catalyst in low temperature selective catalytic reduction of NO process using response surface methodology[J],J.Environ.Sci.Health A 48(8)(2013)879–886.

    [18]S.M.Mousavi,A.Niaei,M.J.Illán Gómez,D.Salari,Panahi P.Nakhostin,V.Abaladejo-Fuentes,Characterization and activity of alkaline earth metals loaded CeO2–MOx(M=Mn,Fe)mixed oxides in catalytic reduction of NO[J],Mater.Chem.Phys.143(3)(2014)921–928.

    [19]Panahi P.Nakhostin,A.Niaei,H.H.Tseng,D.Salari,S.M.Mousavi,Modeling of catalyst composition–activity relationship of supported catalysts in NH3–NO-SCR process using artificial neural network[J],Neural Comput.&Applic.26(7)(2015)1515–1523.

    [20]S.Bai,S.Jiang,H.Li,Y.Guan,Carbon nanotubes loaded with vanadium oxide for reduction NO with NH3at low temperature[J],Chin.J.Chem.Eng.23(3)(2015)516–519.

    [21]A.Boyano,M.J.Lazaro,C.Cristiani,F.J.Maldonado-Hodar,P.Forzatti,R.Moliner,A comparative study of V2O5/AC and V2O5/Al2O3catalysts for the selective catalytic reduction of NO by NH3[J],Chem.Eng.J.149(1–3)(2009)173–182.

    [22]G.J.Dong,Y.F.Zhang,Y.Zhao,Y.Bai,Effect of the pH value of precursor solution on the catalytic performance of V2O5–WO3/TiO2in the low temperature NH3-SCR of NOx[J],J.Fuel Chem.Technol.42(12)(2014)1455–1463.

    [23]P.Forzatti,Present status and perspectives in de-NOx SCR catalysis[J],Appl.Catal.A Gen.222(2001)221–236.

    [24]Y.Gao,T.Luan,T.Lü,K.Cheng,H.Xu,Performance of V2O5–WO3–MoO3/TiO2catalyst for selective catalytic reduction of NOx by NH3[J],Chin.J.Chem.Eng.21(1)(2013)1–7.

    [25]F.Krumeich,H.J.Muhr,M.Niederberger,F.Bieri,B.Schnyder,R.Nesper,Morphology and topochemical reactions of novel vanadium oxide nanotubes[J],J.Am.Chem.Soc.121(36)(1999)8324–8331.

    [26]W.Chen,Synthesis of vanadium oxide nanotubes from V2O5sols[J],Mater.Lett.58(17–18)(2004)2275–2278.

    [27]M.Niederberger,H.J.Muhr,F.Krumeich,F.Bieri,D.Gunther,R.Nesper,Low-cost synthesis of vanadium oxide nanotubes via two novel non-alkoxide routes[J],Chem.Mater.12(7)(2000)1995–2000.

    [28]Krishnan S.Pillai,F.Krumeich,H.J.Muhr,M.Niederberger,R.Nesper,The first oxide nanotubes with alternating inter-layer distances[J],Solid State Ionics 141-141(185-190)(2001).

    [29]L.Mai,W.Chen,Q.Xu,Q.Zhu,C.Han,J.Peng,Cost-saving synthesis of vanadium oxide nanotubes[J],Solid State Commun.126(10)(2003)541–543.

    [30]H.J.Chae,I.S.Nam,S.W.Ham,S.B.Hong,Characteristics of vanadia on the surface of V2O5/Ti-PILC catalyst for the reduction of NOx by NH3[J],Appl.Catal.B Environ.53(2004)117–126.

    [31]W.Chen,L.Q.Mai,J.F.Peng,Q.Xu,Q.Y.Zhu,FTIR study of vanadium oxide nanotubes from lamellar structure[J],J.Mater.Sci.39(2004)2625–2627.

    [32]S.M.Mousavi,A.Niaei,D.Salari,P.N.Panahi,M.Samandari,Modelling and optimization of Mn/activate carbon nanocatalysts for NO reduction:comparison of RSM and ANN techniques[J],Environ.Technol.34(11)(2013)1377–1384.

    亚洲人成网站在线观看播放| 国产亚洲最大av| 国产精品不卡视频一区二区| av黄色大香蕉| 免费看av在线观看网站| 精品久久久精品久久久| 中国国产av一级| 少妇丰满av| 亚洲av日韩在线播放| 搞女人的毛片| 午夜福利成人在线免费观看| 日韩亚洲欧美综合| 精品久久久久久久久av| 高清日韩中文字幕在线| 中文天堂在线官网| 午夜精品一区二区三区免费看| 国产精品一区www在线观看| 午夜老司机福利剧场| 久久人人爽人人爽人人片va| 91aial.com中文字幕在线观看| 夫妻性生交免费视频一级片| 亚洲丝袜综合中文字幕| 久久久久久久大尺度免费视频| 免费观看性生交大片5| 亚洲一级一片aⅴ在线观看| 国产午夜福利久久久久久| 免费看不卡的av| 午夜视频国产福利| 成人一区二区视频在线观看| 国产91av在线免费观看| 亚洲国产精品成人久久小说| 久久97久久精品| av一本久久久久| 成人国产麻豆网| 男女边摸边吃奶| 欧美日韩综合久久久久久| 国产又色又爽无遮挡免| 高清在线视频一区二区三区| 秋霞在线观看毛片| 在线 av 中文字幕| 日日干狠狠操夜夜爽| 亚洲内射少妇av| 男女下面进入的视频免费午夜| 欧美精品一区二区大全| 成人高潮视频无遮挡免费网站| 午夜精品一区二区三区免费看| 18禁动态无遮挡网站| 成年人午夜在线观看视频 | 亚洲av一区综合| 五月玫瑰六月丁香| 国产一区二区在线观看日韩| 国产永久视频网站| av天堂中文字幕网| av在线亚洲专区| 午夜精品一区二区三区免费看| 99久国产av精品| 老司机影院成人| 男女视频在线观看网站免费| 国产精品日韩av在线免费观看| 最新中文字幕久久久久| 亚洲av电影不卡..在线观看| 日韩成人av中文字幕在线观看| 久久精品久久精品一区二区三区| 国产成人福利小说| 搡女人真爽免费视频火全软件| 三级国产精品欧美在线观看| www.av在线官网国产| 99久久精品一区二区三区| 中文字幕人妻熟人妻熟丝袜美| 国产69精品久久久久777片| 精品欧美国产一区二区三| 18禁在线无遮挡免费观看视频| 欧美性猛交╳xxx乱大交人| 久久久久久国产a免费观看| 97超视频在线观看视频| 色哟哟·www| 搡老乐熟女国产| 2018国产大陆天天弄谢| 久久久久久久午夜电影| 美女黄网站色视频| 亚洲欧美成人综合另类久久久| 免费播放大片免费观看视频在线观看| 日韩中字成人| 亚洲av成人精品一二三区| 国产黄频视频在线观看| 中文字幕av成人在线电影| 欧美三级亚洲精品| 岛国毛片在线播放| 搞女人的毛片| 亚洲性久久影院| 亚洲欧美成人精品一区二区| 精品一区二区三卡| 久久精品国产鲁丝片午夜精品| 99久国产av精品| 免费看日本二区| 干丝袜人妻中文字幕| 国产单亲对白刺激| 色视频www国产| 色视频www国产| a级毛色黄片| 五月天丁香电影| 美女内射精品一级片tv| 国模一区二区三区四区视频| 欧美成人a在线观看| 久久精品久久精品一区二区三区| 乱人视频在线观看| 淫秽高清视频在线观看| 亚洲国产欧美在线一区| 亚洲18禁久久av| 国产av不卡久久| 高清日韩中文字幕在线| 国产 亚洲一区二区三区 | 欧美三级亚洲精品| 欧美日韩一区二区视频在线观看视频在线 | 天天躁夜夜躁狠狠久久av| 女人久久www免费人成看片| av天堂中文字幕网| 男的添女的下面高潮视频| 大话2 男鬼变身卡| 亚洲欧美精品专区久久| 免费av毛片视频| 亚洲av男天堂| 青青草视频在线视频观看| 能在线免费看毛片的网站| 亚洲人与动物交配视频| 日本三级黄在线观看| av在线老鸭窝| 日日啪夜夜爽| av黄色大香蕉| 国产乱人偷精品视频| 精品久久久久久成人av| 天堂俺去俺来也www色官网 | 麻豆av噜噜一区二区三区| 男插女下体视频免费在线播放| 最近中文字幕高清免费大全6| 亚洲aⅴ乱码一区二区在线播放| 九色成人免费人妻av| 一级毛片 在线播放| 色吧在线观看| 99久久中文字幕三级久久日本| 亚洲美女视频黄频| 菩萨蛮人人尽说江南好唐韦庄| 国内揄拍国产精品人妻在线| 久久这里只有精品中国| 又大又黄又爽视频免费| 免费不卡的大黄色大毛片视频在线观看 | 亚洲婷婷狠狠爱综合网| av卡一久久| 精品一区在线观看国产| eeuss影院久久| 亚洲精品乱码久久久久久按摩| 中文天堂在线官网| 日韩av在线免费看完整版不卡| 91午夜精品亚洲一区二区三区| 极品教师在线视频| 尤物成人国产欧美一区二区三区| 久久精品国产鲁丝片午夜精品| 亚洲图色成人| 日本三级黄在线观看| 亚洲图色成人| 午夜久久久久精精品| videos熟女内射| 男女那种视频在线观看| 中文字幕人妻熟人妻熟丝袜美| av黄色大香蕉| videos熟女内射| 真实男女啪啪啪动态图| 亚洲美女搞黄在线观看| 国产又色又爽无遮挡免| 波多野结衣巨乳人妻| av在线亚洲专区| 免费看光身美女| 男的添女的下面高潮视频| 中文字幕av成人在线电影| 一区二区三区高清视频在线| 日本黄大片高清| 国产av码专区亚洲av| 看黄色毛片网站| 乱码一卡2卡4卡精品| 精品一区二区三区视频在线| 亚洲综合精品二区| 精品一区二区三区视频在线| 国产精品一二三区在线看| 免费黄网站久久成人精品| 免费黄频网站在线观看国产| 午夜免费观看性视频| kizo精华| 网址你懂的国产日韩在线| 大陆偷拍与自拍| 永久免费av网站大全| 少妇人妻一区二区三区视频| 欧美日韩精品成人综合77777| 日韩精品有码人妻一区| 七月丁香在线播放| 2018国产大陆天天弄谢| 天美传媒精品一区二区| 亚洲婷婷狠狠爱综合网| 人妻少妇偷人精品九色| 国产精品伦人一区二区| 真实男女啪啪啪动态图| 亚洲欧美成人精品一区二区| 精品国产露脸久久av麻豆 | 黄片无遮挡物在线观看| 国产精品国产三级国产av玫瑰| 视频中文字幕在线观看| 国语对白做爰xxxⅹ性视频网站| 亚洲精品成人av观看孕妇| 亚洲精品国产av蜜桃| 欧美一级a爱片免费观看看| 99re6热这里在线精品视频| av福利片在线观看| 亚洲精品乱码久久久久久按摩| 男人舔女人下体高潮全视频| 精品久久久久久久久av| 欧美激情在线99| 99久国产av精品国产电影| 国产乱来视频区| 精品99又大又爽又粗少妇毛片| 夜夜爽夜夜爽视频| 伦精品一区二区三区| 网址你懂的国产日韩在线| 国产永久视频网站| 免费播放大片免费观看视频在线观看| 国产一区亚洲一区在线观看| 乱人视频在线观看| 欧美日韩国产mv在线观看视频 | 日韩欧美 国产精品| 亚洲国产精品专区欧美| 亚洲av福利一区| a级毛片免费高清观看在线播放| 女人十人毛片免费观看3o分钟| 国产在视频线精品| 久久久久性生活片| 伊人久久国产一区二区| 小蜜桃在线观看免费完整版高清| 成人高潮视频无遮挡免费网站| av在线蜜桃| 精华霜和精华液先用哪个| 一边亲一边摸免费视频| 在线观看美女被高潮喷水网站| 午夜老司机福利剧场| 干丝袜人妻中文字幕| 国产色爽女视频免费观看| 欧美日本视频| 亚洲成人av在线免费| 国产亚洲5aaaaa淫片| 黑人高潮一二区| 天美传媒精品一区二区| 日韩亚洲欧美综合| 晚上一个人看的免费电影| 成人综合一区亚洲| 九草在线视频观看| av网站免费在线观看视频 | 日本猛色少妇xxxxx猛交久久| 亚洲精品久久午夜乱码| 在线 av 中文字幕| 久久久久久久国产电影| 成人欧美大片| 岛国毛片在线播放| 日韩大片免费观看网站| 欧美xxxx黑人xx丫x性爽| 秋霞在线观看毛片| 尤物成人国产欧美一区二区三区| 99久久精品一区二区三区| av天堂中文字幕网| 自拍偷自拍亚洲精品老妇| 777米奇影视久久| 亚洲aⅴ乱码一区二区在线播放| 国产麻豆成人av免费视频| 国产亚洲av片在线观看秒播厂 | 亚洲av日韩在线播放| 国产不卡一卡二| 狂野欧美激情性xxxx在线观看| 久久午夜福利片| 少妇熟女欧美另类| 国产色爽女视频免费观看| 久久精品国产亚洲av涩爱| 人妻夜夜爽99麻豆av| 久久精品国产自在天天线| 久久久精品94久久精品| 亚洲欧美清纯卡通| 国产91av在线免费观看| 久久久久久久久中文| 肉色欧美久久久久久久蜜桃 | 日韩人妻高清精品专区| 亚洲国产精品专区欧美| 免费看美女性在线毛片视频| 好男人在线观看高清免费视频| 免费黄网站久久成人精品| 亚洲欧美成人精品一区二区| 熟女电影av网| 欧美日韩精品成人综合77777| 久久久久久久午夜电影| 久久国内精品自在自线图片| 午夜精品国产一区二区电影 | 国产片特级美女逼逼视频| 国产精品麻豆人妻色哟哟久久 | 嫩草影院精品99| 国产极品天堂在线| 看非洲黑人一级黄片| 青青草视频在线视频观看| 国产人妻一区二区三区在| av黄色大香蕉| 黄色一级大片看看| 91aial.com中文字幕在线观看| 国产av不卡久久| 午夜福利视频1000在线观看| 色尼玛亚洲综合影院| 免费看光身美女| 3wmmmm亚洲av在线观看| 国产精品久久视频播放| 晚上一个人看的免费电影| 国产伦一二天堂av在线观看| 男女边摸边吃奶| 国产av不卡久久| 2021少妇久久久久久久久久久| 高清在线视频一区二区三区| 黄色配什么色好看| 国产三级在线视频| 乱人视频在线观看| 高清毛片免费看| 欧美精品一区二区大全| 视频中文字幕在线观看| 久久久a久久爽久久v久久| 91午夜精品亚洲一区二区三区| 亚洲精品色激情综合| 亚洲综合精品二区| 亚洲美女搞黄在线观看| 免费看光身美女| 亚洲精品,欧美精品| 有码 亚洲区| 在线 av 中文字幕| 国产高清三级在线| 久久久久久久久久人人人人人人| 日韩中字成人| 69人妻影院| 久热久热在线精品观看| 亚洲无线观看免费| 蜜臀久久99精品久久宅男| 视频中文字幕在线观看| 精品99又大又爽又粗少妇毛片| 日韩,欧美,国产一区二区三区| 一级毛片 在线播放| 人妻系列 视频| 色5月婷婷丁香| 亚洲成人中文字幕在线播放| 美女xxoo啪啪120秒动态图| 非洲黑人性xxxx精品又粗又长| av专区在线播放| 国产爱豆传媒在线观看| 97在线视频观看| 三级毛片av免费| 少妇的逼水好多| 亚洲真实伦在线观看| 深爱激情五月婷婷| 欧美丝袜亚洲另类| 午夜视频国产福利| 男女啪啪激烈高潮av片| 中国国产av一级| 狠狠精品人妻久久久久久综合| 国产精品一区二区三区四区免费观看| 久久精品久久久久久噜噜老黄| 一个人观看的视频www高清免费观看| 如何舔出高潮| 国产精品1区2区在线观看.| 天堂√8在线中文| 亚洲精品中文字幕在线视频 | 国产单亲对白刺激| 日本熟妇午夜| 少妇被粗大猛烈的视频| 少妇猛男粗大的猛烈进出视频 | 中文字幕制服av| 男人狂女人下面高潮的视频| 免费观看av网站的网址| 一夜夜www| 成人欧美大片| 哪个播放器可以免费观看大片| 日韩av在线大香蕉| 蜜桃久久精品国产亚洲av| 国产男女超爽视频在线观看| 草草在线视频免费看| 一区二区三区乱码不卡18| 精品国内亚洲2022精品成人| 午夜福利网站1000一区二区三区| 亚洲av福利一区| 亚洲欧美一区二区三区国产| 18+在线观看网站| 久久99蜜桃精品久久| 嫩草影院新地址| 欧美高清性xxxxhd video| 最近中文字幕2019免费版| 一边亲一边摸免费视频| 国产精品一二三区在线看| 精品酒店卫生间| 七月丁香在线播放| 国产人妻一区二区三区在| 午夜免费男女啪啪视频观看| 欧美日韩在线观看h| 国产免费视频播放在线视频 | 国产精品无大码| 精品久久久久久久末码| 日韩视频在线欧美| 国产一区二区三区av在线| 禁无遮挡网站| 亚洲丝袜综合中文字幕| 日本与韩国留学比较| 啦啦啦中文免费视频观看日本| 亚洲不卡免费看| 国产午夜福利久久久久久| 国产一区二区亚洲精品在线观看| 三级国产精品片| 亚洲在久久综合| 亚洲美女视频黄频| 亚洲最大成人手机在线| 秋霞伦理黄片| 亚洲乱码一区二区免费版| 99久久精品国产国产毛片| 免费大片黄手机在线观看| 少妇的逼好多水| 国产v大片淫在线免费观看| 美女高潮的动态| 国产精品久久久久久久电影| 国模一区二区三区四区视频| 夫妻性生交免费视频一级片| 久久韩国三级中文字幕| 国产毛片a区久久久久| 69人妻影院| 特级一级黄色大片| 青青草视频在线视频观看| 成年女人在线观看亚洲视频 | 日韩精品有码人妻一区| 极品教师在线视频| 免费观看a级毛片全部| 久久精品久久久久久久性| 免费看a级黄色片| 在现免费观看毛片| 寂寞人妻少妇视频99o| 亚洲婷婷狠狠爱综合网| .国产精品久久| 欧美xxxx黑人xx丫x性爽| 网址你懂的国产日韩在线| 啦啦啦中文免费视频观看日本| 十八禁网站网址无遮挡 | 亚洲不卡免费看| 哪个播放器可以免费观看大片| 麻豆乱淫一区二区| 人人妻人人澡人人爽人人夜夜 | 国产亚洲av片在线观看秒播厂 | 一本久久精品| 国产白丝娇喘喷水9色精品| 国产黄色小视频在线观看| 日韩欧美一区视频在线观看 | 麻豆成人午夜福利视频| 精品国内亚洲2022精品成人| 欧美日韩在线观看h| 日韩亚洲欧美综合| 精品国产一区二区三区久久久樱花 | av天堂中文字幕网| 国产精品一区二区三区四区久久| 熟女人妻精品中文字幕| 天堂中文最新版在线下载 | 男人舔奶头视频| 天天躁日日操中文字幕| 成年女人在线观看亚洲视频 | 亚洲av中文av极速乱| 卡戴珊不雅视频在线播放| 成人欧美大片| 热99在线观看视频| 成人av在线播放网站| 国产毛片a区久久久久| 高清av免费在线| 中文字幕制服av| 国产精品综合久久久久久久免费| av在线播放精品| 在线观看美女被高潮喷水网站| 日本黄色片子视频| 国产熟女欧美一区二区| 亚洲av电影在线观看一区二区三区 | 国产一区亚洲一区在线观看| 亚洲成人一二三区av| 寂寞人妻少妇视频99o| 天美传媒精品一区二区| 国产色婷婷99| 少妇丰满av| 少妇人妻精品综合一区二区| 白带黄色成豆腐渣| 日本猛色少妇xxxxx猛交久久| 超碰97精品在线观看| 日本免费在线观看一区| 欧美日韩视频高清一区二区三区二| 肉色欧美久久久久久久蜜桃 | 九色成人免费人妻av| 欧美一级a爱片免费观看看| 亚洲av男天堂| 成人鲁丝片一二三区免费| 身体一侧抽搐| 国产免费视频播放在线视频 | 亚洲18禁久久av| 欧美成人精品欧美一级黄| 精品人妻偷拍中文字幕| 一区二区三区免费毛片| 中国美白少妇内射xxxbb| 精品午夜福利在线看| 狠狠精品人妻久久久久久综合| 男女边摸边吃奶| 午夜福利视频1000在线观看| 伊人久久精品亚洲午夜| 日本猛色少妇xxxxx猛交久久| 欧美成人午夜免费资源| 亚洲乱码一区二区免费版| 国产片特级美女逼逼视频| h日本视频在线播放| 少妇猛男粗大的猛烈进出视频 | 人人妻人人看人人澡| 一级毛片 在线播放| 国产v大片淫在线免费观看| 男女啪啪激烈高潮av片| 国产人妻一区二区三区在| 你懂的网址亚洲精品在线观看| 青青草视频在线视频观看| 可以在线观看毛片的网站| av免费在线看不卡| 久久久久久久国产电影| 国产亚洲5aaaaa淫片| 精品一区二区三区视频在线| 精品不卡国产一区二区三区| 免费观看性生交大片5| 午夜免费男女啪啪视频观看| 国产 亚洲一区二区三区 | 天堂俺去俺来也www色官网 | 亚洲综合色惰| 晚上一个人看的免费电影| 亚洲精品aⅴ在线观看| 欧美成人一区二区免费高清观看| 日韩欧美一区视频在线观看 | 日日啪夜夜撸| 亚洲欧美中文字幕日韩二区| 高清午夜精品一区二区三区| 欧美激情在线99| 久久久久免费精品人妻一区二区| 床上黄色一级片| 精品亚洲乱码少妇综合久久| 成人国产麻豆网| 尤物成人国产欧美一区二区三区| 亚洲综合色惰| 老女人水多毛片| 我的女老师完整版在线观看| 女的被弄到高潮叫床怎么办| 久久久久久九九精品二区国产| 97热精品久久久久久| www.av在线官网国产| 国产精品爽爽va在线观看网站| 中文字幕久久专区| 亚洲av免费在线观看| 极品少妇高潮喷水抽搐| 久久久久精品久久久久真实原创| 欧美3d第一页| 国产极品天堂在线| 日韩 亚洲 欧美在线| 国内精品美女久久久久久| 亚洲综合精品二区| 色5月婷婷丁香| 高清av免费在线| 精品久久久噜噜| 2018国产大陆天天弄谢| 午夜视频国产福利| 一级a做视频免费观看| 欧美97在线视频| 国产成人精品婷婷| 十八禁国产超污无遮挡网站| 亚洲怡红院男人天堂| 免费黄网站久久成人精品| 日本色播在线视频| 18禁动态无遮挡网站| 亚洲美女视频黄频| 成年av动漫网址| eeuss影院久久| 欧美 日韩 精品 国产| 国产真实伦视频高清在线观看| 久久99热6这里只有精品| 国产亚洲5aaaaa淫片| 少妇熟女欧美另类| 亚洲av国产av综合av卡| 97精品久久久久久久久久精品| 午夜福利高清视频| 亚洲成人久久爱视频| av网站免费在线观看视频 | 欧美 日韩 精品 国产| 亚洲国产精品sss在线观看| 一级av片app| 97人妻精品一区二区三区麻豆| 成人二区视频| 日本色播在线视频| 欧美 日韩 精品 国产| 美女主播在线视频| 亚洲av电影不卡..在线观看| 最新中文字幕久久久久| 99热这里只有精品一区| 日本色播在线视频| 久久久久久久大尺度免费视频| 日本午夜av视频| 久久久久久久国产电影| 精品国产三级普通话版| 国产91av在线免费观看| 精品国产三级普通话版| av黄色大香蕉| 日韩三级伦理在线观看| 中文字幕久久专区| 一级a做视频免费观看| 看黄色毛片网站| 欧美性感艳星| 免费看光身美女| 毛片一级片免费看久久久久| 国产高清不卡午夜福利| 男插女下体视频免费在线播放|