• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamic interaction analysis and pairing evaluation in control configuration design☆

    2016-05-30 12:54:00XionglinLuoPengfeiCaoFengXu

    Xionglin Luo*,Pengfei Cao,Feng Xu

    Department of Automation,China University of Petroleum,Beijing 102249,China

    1.Introduction

    In industrialprocesses,multi-inputand multi-output(MIMO)systems are difficult to control due to the interactions within loops,while decentralized PID control remains dominant since it is easy for operation and maintenance.With decentralized control strategy,a MIMO system is always decomposed into multiple single-input and single-output(SISO)subsystems for which PID controllers are designed independently.However,the interactions between these subsystems exertprofound in fluence on process controland cannotbe ignored.Good controlperformance may not be achieved with stronger interactions between these subsystems.Therefore,the control configuration design,to determine pairing of manipulated(input)and controlled(output)variables to form multi-SISO-subsystems,is the primary problem for decentralized control system.Interaction analysis is the most extensive means to achieve this goal.

    Interaction analysis focuses on measuring the extent of interactions within loops and provides the most reliable variable pairing.The relative gain array(RGA)has been widely used forinteraction analysis since its introduction in 1966 by Bristol[1].RGA shows advantages that it is dependenton process models only and independentofthe scaling ofinputs and outputs.With the consideration of the stability of decentralized control systems,the Niederlinski index(NI)is used in conjunction with the RGA based pairing rules[2,3].However,using steady-state gain alone may result in incorrect interaction measures and consequently poor pairing decisions for RGA,since no dynamic information of the process is taken into consideration.To overcome the limitations of RGA method,several dynamic interaction analysis methods have been proposed.

    Witcher and McAvoy proposed the relative dynamic array[4]and Gagnepain and Seborg proposed the average relative gain matrix[5]based on the integralofopen-loop step response.Meeuse and Huesman proposed the dynamic RGAwith closed-loop response based on the best achievable control performance using internal model control[6].McAvoy et al.presented a new approach to define dynamic RGA[7],which assumes the availability of a state space model with proportional outputoptimalcontroller designed,and defines the dynamic RGAbased on the controller gain matrix.Through defining the effective relative gain array(ERGA),Xiong et al.presented a new dynamic loop pairing criterion[8–11].The elements of ERGA,which include both steadystate gain and bandwidth information of the open-loop transfer functions,can re flect the dynamic loop interactions under finite bandwidth control.He et al.proposed the relative normalized gain array(RNGA)as a complement to the RGA-NI loop interaction analysis method[12].RNGA investigates both the steady-state gain and normalized the integrated error of outputs for interaction measurement and provides a more comprehensive description of loop interactions.Monshizadeh-Naini et al.defined the effective relative energy array based on the ERGA[13],each element of which is the product of squared zero frequency gain and bandwidth frequency to re flect the effective energy.

    There also exist non-square systems extensively in industrial processes with unequal numbers of inputs and outputs[14,15].The nonsquare structure brings new difficulties for control configuration design[16].Most of the interaction analysis methods above cannot be directly applied in non-square systems.Chang and Yu have extended the RGA to non-square systems with more outputs than inputs[17].The closed-loop gain is derived with the assumption of perfect control in least-square sense of which the control objective is to minimize the sum of square errors of all outputs.Then non-square RGA(NRGA)is derived.The system is first squared down,and then pairing is obtained based on the NRGA criterion.Reeves and Arkun have introduced non-square dynamic block relative gain and relative sensitivities as dynamic interaction measures that depend on the controller tuning,which are consequently applicable to the design of non-square decentralized controllers[18].

    These interaction analysis methods including those proposed in this paper have their limitations and may not provide the best pairing result for allprocesses[19].Itis necessary to evaluate whether the recommended pairing resultissuitable;ifnot,anotherloop pairing isneeded.However,few literatures have reported the research on pairing evaluation.

    In this paper,a new open-loop interaction analysis method foropenloop stable square system is introduced and corresponding pairing criterions are derived.More detailed analysis about non-square system and its main pairing problem are taken,and an interaction analysis method is utilized forobtaining properpairing for non-square multivariable systems.Specific pairing evaluation method is introduced based on closed-loop dynamic relative gain.

    2.An Open-loop Interaction Analysis Based on REGA

    Using steady-state relative gains of RGA only may result in some incorrect interaction measures and consequently wrong loop pairing decision,since no dynamic information of the process is taken into consideration.A method providing overall evaluation for interactions between control loops is preferred,so a relative energy gain array(REGA)method is proposed here.

    Relative gain should include both steady-state and dynamic information of loop interactions.For the interaction analysis method based on REGA,the steady-state information is extracted from the process steady-state gain and the dynamic information is extracted based on step response analysis.

    For n×n system,we have transfer function matrix as below.

    For ij loop,we can rewrite the transfer function as

    Thus the normalized output can be expressed as

    Here,the integrated square error criterion of step response is adopted to evaluate the process dynamics

    where(∞)represents the final steady-state value of normalized output and θE,ijis defined as control energy consumption.Apparently,a small energy consumption value implies a fast dynamic response for output,while a large one indicates a slow process dynamic response.Generally,the original state is considered steady at t=0 and(0)=0.With the unit step input signal,the normalized output is shown in Fig.1.

    Fig.1.The response curve of normalized output.

    In Fig.1 the square of the shaded area refers to the control energy consumption.For most industrial processes,the element of transfer function matrix can be described as first order plus delay time(FOPDT)model

    or second order plus delay time(SOPDT)model

    When gij(s)is described as FOPDT modelor SOPDT model,θE,ijcan be obtained as(Appendix A)

    or

    The steady-state gain gij(0)re flects the steady-state effect ujon yiand θE,ijaccounts for the response speed.With steady-state gain and control energy consumption,energy gain kE,ijbetween yiand ujwith other loop open is defined as

    The relative energy gain can be obtained as

    where k′E,ijis the gain between yiand ujwith other loops closed.The REGA can be obtained as

    where?is the Hadamard product.The pairing criterion based on REGA and NI is developed as

    (1)all paired RGA elements are positive;

    (2)NI is positive;

    (3)the paired REGA elements are closest to 1.0;

    (4)large REGA elements should be avoided.

    Example 1.For a 2×2 system

    According to the analysis method based on RGA and RNGA,no proper pairing is provided.Based on ERGA,the pairing y1?u2,y2?u1is proposed,while based on REGA,the pairing y1?u1,y2?u2is proposed.In order to verify if the pairing is proper,optimal PID controllers are designed by using IMC method[20]for both diagonal and off-diagonal pairings.At time 0 and 33 min,there are unit step changes for setpoints of y1and y2.The comparative simulations are shown in Fig.2.The control performance with diagonal pairing is much better than that with off-diagonal pairing.The method based on REGA provides proper choice for pairing.This example demonstrates the limitation of RGA,RNGA and ERGA that the contributions of response time constant and delay time to process dynamics are not balanced well.

    Example 2.For a 3×3 system

    Fig.2.Control performance with two pairings.diagonal pairing;— —offdiagonal pairing.

    Based on RGA and RNGA,the pairing y1?u2,y2?u1,y3?u3is proposed,defined as P1.Based on ERGAand REGA,the pairing y1?u1,y2?u3,y3?u2is proposed,defined as P2.In order to verify if the pairing is proper,optimal PID controllers are designed by using IMC method[20]for these two pairings.At time 0,80 and 150 min there are unit step changes for setpoints y1,y2and y3.The comparative simulations are shown in Fig.3.The control performance with pairing P2 is much better than that with pairing P1.The method based on REGA assesses the interactions accurately and provides proper pairing for this system.

    3.Interaction Analysis for Non-square Multivariable Systems

    Non-square multivariable systems with unequal numbers of inputs and outputs exist extensively in industrial processes and decentralized control is still the main control strategy.However,unequal numbers of inputs and outputs may bring in great difficulties for control configuration design.Therefore,how to pair manipulated variables and controlled ones is a more difficult task for non-square systems.

    Fig.3.Control performance with two pairings.pairing P2;— —pairing P1.

    Assume that the input dimension is m and output dimension is n.There are two non-square systems for industrial processes:the one with m >n is a“fat”system;the other with m < n is a“thin”system.Both systems have difficulties for appropriate pairing.There may be more pairing choices for “fat”systems,in which manipulated variables remain and how to pair the rest manipulated and controlled variables are the main problems for “fat”systems.However,since the number of controlled variables is more than manipulated ones for“thin”systems,it seems more difficult to choose proper pairing with some outputs remained without control.Appropriate variable pairing should be obtained in orderto guarantee good controlperformance foralloutputs.

    Based on the idea of literature[17],we extend the REGA interaction analysismethod to non-square systems.The core problemisto calculate the pseudo-inverse matrix for KEdefined in Eq.(11),then the nonsquare relative energy gain array(NREGA)can be obtained similar to REGA of Eq.(11).The interaction analysis method for non-square systems is based on NREGA.

    When KEis row full rank,we have the pseudo-inverse matrix

    When KEis column full rank,we have

    Then NREGA can be obtained

    Several properties for NREGA are as follows.

    (1)When m<n,the sum of each column elements is equal to 1.

    (2)When m>n,the sum of each row elements is equal to 1.

    (3)When m=n,KE+equals KE?1,that is NREGA=REGA.Therefore,the REGA of square system is a special case of NREGA of nonsquare system.

    (4)The closer to 1 the element of NREGA is,the smaller the interactions from other loops are.

    The pairing method and criterion based on NREGA are as follows.

    (1)When m<n,remove the corresponding inputs of the rows with the smaller sum of all elements to leave the same numbers of inputs and outputs.When m>n,remove the corresponding outputs of the columns with the smaller sum of all elements to leave the same numbers of inputs and outputs.

    (2)Once a newsubsystemwith the same numbers ofinputs and outputs is obtained,calculate the REGA for the subsystem and choose appropriate pairing through the pairing criterion based on REGA.

    Example 3.Consider a mixing tank as “fat”system with three input streams and one exit stream[18],as shown in Fig.4.The concentrations of input steams are constants and the outlet valve is fixed.The height of liquid in the tank h and exit concentration cAare controlled variables,and the flow rates of input streams F1,F2and F3are manipulated variables.

    Fig.4.A mixer tank.

    The 2×3 transfer function matrix can be obtained as

    For this “fat”system,we can calculate the NREGA

    All sums of each column elements are calculated as 0.3846,0.9615 and 0.6538.According to the squaring method,we remove the first input variable u1.We have the square subsystem as

    and calculate the REGA as

    According to the pairing criterion based on REGA,we have the final pairing y1?u2,y2?u3for this“fat”system.This pairing result is in accordance with the one in literature[18],which has proven that better control performance can be achieved compared to other pairings.

    Example 4.Consider a side-stream distillation[17],separating benzene,toluene and xylene,as shown in Fig.5.The concentrations of four impurities in three product streams are controlled by three manipulated variables:reboiler duty,re flux ratio and side stream flow rate.

    Fig.5.Distillation column.

    The transfer function matrix can be obtained as shown in Table 1.For the “thin”system,we can calculate the NREGA

    All sums of each row elements are calculated as 0.9802,0.9579,0.2417 and 0.8202.According to the squaring method,we remove the third output variable y3.We have the square subsystem

    Table 1 Process transfer function matrix for distillation column

    and calculate the REGA as

    According to the pairing criterion based on REGA,we have the final pairing y1?u3,y2?u2and y4?u1forthis“thin”system.This pairing result is in accordance with the one in literature[17].

    4.Closed-loop Evaluation for Control Con figuration Design

    From the two examples in Section 3,some interaction analysis methods cannot provide appropriate variable pairing for all multivariable systems.Therefore,it is necessary to evaluate if the recommended pairing is proper.

    How could we know if the pairing is proper or not for a closed-loop system?The control performance curve may provide the evidence.However,it cannot illustrate the extent of appropriateness or inappropriateness of recommended pairing accurately and intuitively.Therefore,some quantitative index for evaluating the recommended pairing is more preferred.

    In this part,a closed-loop relative gain(CRG)is defined as the quantitative index,and whether the CRG is within specified scope determines the appropriateness or inappropriateness of recommended pairing[19].

    For ij loop,the traditional relative gain between ujand yican be easily transformed into

    In the definition of relative gain,the use of controllers with integral is inherent.It is sometimes referred to as the“perfect control requirement”.A better term would be “perfect steady-state control requirement”because the integral control leads to offset-free.When the steady-state output yiis approximately equal to its setpoint yi,sp,we can rewrite Eq.(15)to

    where λ′ijis defined as CRG,which is the ratio of the gain between controller output ujand controller input yi,spwhen all other loops is closed to the gain between ujand yi,spwhen all other loops is open.

    For ij loop,when all other loops is closed,the steady-state gain between controller output ujand controller input yi,spis defined as^kij,which can be obtained easily from experimental data.

    When all other loops is closed and a step input is added to yi,sp,the energy consumption for manipulated variable ujrepresenting the process dynamics is defined as

    where(∞)represents the final steady-state value of normalized input and(t)can be easily obtained from experimentaldata.Eq.(17)is similar to the one of Eq.(4)for REGA.A small energy consumption value implies a fast dynamic response for manipulated variable,whereas a large one indicates a slow process dynamic response.

    With the steady-state gainand energy consumptionbetween yi,spand uj,the closed-loop dynamic gain of ij loop with all other loops closed can be obtained as

    Similarly,for ij loop,when all other loops is open,the steady-state gain between controller output ujand controller input yi,spis defined asand the energy consumption for manipulated variable ujwith a step input added tois defined asthen the closed-loop dynamic gain of ij loop with all other loops open can be obtained as if ned in Eq.(16)can be derived as

    Finally,the closed-loop dynamic relative gain(CDRG)of ij loop de-

    For remaining n-1 control loops,the dynamic relative gain can also be obtained through Eqs.(18)–(20).

    Based on the CDRG,we can give an evaluation criterion.

    For ij control loop,if 0.7≤λ′ij≤1.2,this control loop is proper with tolerable interaction level.

    If λ′ij≤ 0,the controlled loop will be unstable,so this pairing result is inappropriate.

    If 0<λ′ij< 0.7 or λ′ij> 1.2,there are large interactions from other loops,the recommended pairing is usually considered inappropriate.

    If the CDRG of each closed-loop belongs to the scope,the recommended pairing is proper.Otherwise,the pairing is inappropriate and another one is needed.Generally,more than two control loops are not in the best scope with inappropriate pairing simultaneously.

    We have the evaluation procedure as follows.

    (1)Design the optimal PID controller through same approach for each control loop.

    (2)Record sampled data of manipulated variables and steady-state gains between controller outputs and controller inputs with other control loops open or closed,and calculate the closedloop dynamic gains according to Eqs.(18)and(19).

    (3)Calculate CDRGs for all control loops according to Eq.(20).

    (4)Judge whether the CDRGs are in the best scope.If all the CDRGs are in the scope,the recommended pairing is proper for multivariable system.Otherwise,the pairing is inappropriate.Finding another one,and go to step(1).

    Example 5.Consider a 3×3 system

    The interaction analysis method based on ERGA is utilized for obtaining pairing.We have the ERGA for this system:

    The system can be stable with both pairings(NI>0)y1?u2,y2?u1,y3?u3(defined as P1)and y1?u1,y2?u3,y3?u2(defined as P2),and P1 is recommended according to the pairing criterion based on ERGA method.According to the evaluation procedure,we obtain the CDRGs for all control loops: λ′13=0.3778, λ′22=0.3026, λ′31=0.7663.Apparently, λ′13and λ′22exceed the best scope,so that the recommended pairing is inappropriate.With another pairing P2,following the evaluation procedure,the closedloop dynamic relative gains for all loops can be obtained:λ′13=0.7438,λ′22=0.7494,λ′31=0.7438.Apparently,all the dynamic relative gains are within the best scope,so this pairing is appropriate for this system.

    The control performance of the controlled system with two pairing is shown in Fig.6.The control performance with pairing P1 recommended by ERGAis worse than the one with P2.ERGAdoes notmeasure the interactions accurately and provide appropriate pairing for this system.This may happen to other interaction measurement methods for many MIMO systems.On the other hand,the closed-loop evaluation method proposed in this paper is effective and can provide some credible evaluation for recommended pairing.

    5.Conclusions

    This paper focuses on interaction analysis approaches and pairing evaluation method originated and developed in our group,and demonstrates our concept and idea for control configuration design.There are three extinct contributions.

    Fig.6.Control performance with two pairings.control performance with pairing P2;— —control performance with pairing P1.

    (1)A new interaction analysis approach in open-loop introduces

    new concept of control energy consumption,based on which the contributions of response time constant and delay time to dynamics of relative gain are rebalanced and more reasonable.(2)More detailed analysis about system types and main pairing problem for non-square systems is taken.The extension of one of the proposed open-loop pairing approaches is utilized for non-square system pairing.

    (3)For examining whether a recommended pairing is proper,an evaluation method is proposed in closed-loop with optimal controllers foreach loop.The closed-loop relative gains between manipulated variables and controlled variables setpoints are presented as an evaluation index.When they are within a defined scope,one can determine if the pairing is appropriate.

    Appendix A

    When gij(s)is described as FOPDT model,we have

    When gij(s)is described as SOPDT model,we have

    Let

    If 0<ξij<1,the normalized output is calculated as

    and

    If 1<ξij<∞,(s)can be rewritten to

    We have the roots of characteristics equation as

    and

    The normalized output is calculated as

    and

    Therefore,if gij(s)is described as SOPDT model,we have the control energy consumption as

    [1]E.Bristol,On a new measure of interaction for multivariable process control,IEEE Trans.Autom.Control 11(1)(1966)133–134.

    [2]A.Niederlinski,A heuristic approach to the design of linear multivariable interacting control systems,Automatica 7(6)(1971)691–701.

    [3]P.Grosdldler,M.Morari,B.R.Holt,Closed-loop properties from steady state gain information,Ind.Eng.Chem.Fundam.24(2)(1985)221–235.

    [4]M.F.Witcher,T.J.McAvoy,Interaction control systems:steady state and dynamic measurement of interaction,ISA Trans.16(3)(1977)35–41.

    [5]J.P.Gagnepain,D.E.Seborg,Analysis of process interactions with application to multiloop control system design,Ind.Eng.Chem.Process.Des.Dev.21(1)(1982)5–11.

    [6]F.M.Meeuse,A.E.M.Huesman,Analyzing dynamic interaction of control loops in the time domain,Ind.Eng.Chem.Res.41(18)(2002)4585–4590.

    [7]T.McAvoy,Y.Arkun,R.Chen,D.Robinson,P.D.Schnelle,A new approach to defining a dynamic relative gain,Control.Eng.Pract.11(8)(2003)907–914.

    [8]Q.Xiong,W.J.Cai,M.J.He,A practical loop pairing criterion for multivariable processes,J.Process Control 15(7)(2005)741–747.

    [9]Q.Xiong,W.J.Cai,M.J.He,Decentralized control system design for multivariable processes—a novel method based on effective relative gain array,Ind.Eng.Chem.Res.45(8)(2006)2769–2776.

    [10]Q.Xiong,W.J.Cai,Effective transfer function method for decentralized control system design for multi-input multi-output processes,J.Process Control 16(8)(2006)773–784.

    [11]Q.Xiong,W.J.Cai,M.J.He,Equivalent transfer function method for PI/PID controller design of MIMO processes,J.Process Control 17(8)(2007)665–673.

    [12]M.J.He,W.J.Cai,W.Ni,L.H.Xie,RNGA based control system configuration for multivariable processes,J.Process Control 19(6)(2009)1036–1042.

    [13]N.Monshizadeh-Naini,A.Fatehi,A.K.Sedigh,Input–output pairing using effective relative energy array,Ind.Eng.Chem.Res.48(15)(2009)7137–7144.

    [14]M.Morari,G.Stephanopoulos,Studies in the synthesis of control structures for chemical processes:part III:optimal selection of secondary measurements within the framework of state estimation in the presence of persistent unknown disturbances,AICHE J.26(2)(1980)247–260.

    [15]S.Treiber,Multivariable control for non-square systems,Ind.Eng.Chem.Process.Des.Dev.23(4)(1984)854–857.

    [16]M.Morari,W.Grimm,M.J.Oglesby,I.D.Prosser,Design of resilient processing plants—VII.Design of energy management system for unstable reactors—new insights,Chem.Eng.Sci.40(2)(1985)187–198.

    [17]J.W.Chang,C.C.Yu,The relative gain for non-square multivariable systems,Chem.Eng.Sci.45(5)(1990)1309–1323.

    [18]D.E.Reeves,Y.Arkun,Interaction measure for nonsquare decentralized control structures,AICHE J.35(4)(1989)603–613.

    [19]X.L.Luo,L.H.Ren,P.F.Cao,Y.Zhao,F.Xu,A closed-loop evaluation for regulatory control structure of multivariable system,Proceedings of the 10th World Congress on Intelligent Control and Automation,2012.

    [20]M.J.He,W.J.Cai,B.F.Wu,M.He,Simple decentralized PID controller design method based on dynamic relative interaction analysis,Ind.Eng.Chem.Res.44(22)(2005)8334–8344.

    亚洲情色 制服丝袜| 国产深夜福利视频在线观看| 曰老女人黄片| 又黄又爽又免费观看的视频| 久久国产精品人妻蜜桃| 欧美中文综合在线视频| 免费人成视频x8x8入口观看| 天堂√8在线中文| 身体一侧抽搐| 亚洲一区中文字幕在线| www日本在线高清视频| 丝袜美足系列| 欧美乱码精品一区二区三区| av国产精品久久久久影院| 熟女少妇亚洲综合色aaa.| 婷婷丁香在线五月| 十分钟在线观看高清视频www| 亚洲成国产人片在线观看| 亚洲成a人片在线一区二区| 欧美日韩一级在线毛片| 国产欧美日韩一区二区精品| 夜夜爽天天搞| 久久人妻福利社区极品人妻图片| 极品教师在线免费播放| 精品久久久久久久毛片微露脸| 人人妻人人澡人人爽人人夜夜| 一进一出好大好爽视频| 精品一品国产午夜福利视频| 老汉色∧v一级毛片| 欧美不卡视频在线免费观看 | 国产成人啪精品午夜网站| 国产国语露脸激情在线看| a在线观看视频网站| 1024视频免费在线观看| 嫩草影视91久久| 美国免费a级毛片| 久久久久国产精品人妻aⅴ院 | 丝袜在线中文字幕| 久久香蕉精品热| 激情在线观看视频在线高清 | 午夜福利在线免费观看网站| 国产欧美日韩精品亚洲av| 岛国毛片在线播放| 亚洲性夜色夜夜综合| 人人妻人人澡人人爽人人夜夜| 午夜福利在线免费观看网站| 黄频高清免费视频| cao死你这个sao货| 1024视频免费在线观看| 后天国语完整版免费观看| 69精品国产乱码久久久| 国产成人免费观看mmmm| av网站在线播放免费| 色综合欧美亚洲国产小说| √禁漫天堂资源中文www| 国产精品 欧美亚洲| 久久久久久久久免费视频了| 欧美久久黑人一区二区| 免费在线观看日本一区| 中文字幕精品免费在线观看视频| 9热在线视频观看99| 亚洲三区欧美一区| 天堂俺去俺来也www色官网| 日韩制服丝袜自拍偷拍| 国产在线观看jvid| 91精品三级在线观看| 91av网站免费观看| 香蕉丝袜av| 亚洲五月天丁香| 国产精品成人在线| 日韩一卡2卡3卡4卡2021年| 国产亚洲欧美精品永久| 淫妇啪啪啪对白视频| 好看av亚洲va欧美ⅴa在| 精品国产亚洲在线| 美女午夜性视频免费| 亚洲久久久国产精品| 极品教师在线免费播放| 免费看十八禁软件| 国产麻豆69| 夫妻午夜视频| 国精品久久久久久国模美| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品久久久久久精品古装| 91字幕亚洲| av天堂在线播放| 亚洲成人国产一区在线观看| 久久久国产精品麻豆| 亚洲黑人精品在线| 99久久国产精品久久久| 久久久国产一区二区| 欧美大码av| 久久精品国产综合久久久| 色婷婷久久久亚洲欧美| netflix在线观看网站| 下体分泌物呈黄色| 不卡一级毛片| 午夜免费成人在线视频| 日韩欧美一区视频在线观看| 黄片小视频在线播放| 少妇裸体淫交视频免费看高清 | 看片在线看免费视频| 精品福利观看| 老汉色∧v一级毛片| 精品一品国产午夜福利视频| 成人免费观看视频高清| 久久久久久久久久久久大奶| 亚洲精华国产精华精| bbb黄色大片| 狂野欧美激情性xxxx| 美女扒开内裤让男人捅视频| 成人18禁在线播放| 国产1区2区3区精品| 亚洲国产精品合色在线| 老汉色∧v一级毛片| 极品少妇高潮喷水抽搐| 国产又爽黄色视频| 丰满的人妻完整版| 亚洲中文av在线| 一夜夜www| 欧美色视频一区免费| 国产亚洲欧美98| 欧洲精品卡2卡3卡4卡5卡区| 亚洲在线自拍视频| 欧美日韩国产mv在线观看视频| 久久国产精品影院| 大型黄色视频在线免费观看| 久久精品aⅴ一区二区三区四区| 亚洲久久久国产精品| 夜夜爽天天搞| 久久九九热精品免费| 亚洲成国产人片在线观看| 国产精品一区二区在线不卡| 午夜日韩欧美国产| 成年版毛片免费区| 极品少妇高潮喷水抽搐| 丁香欧美五月| 亚洲熟妇熟女久久| 日韩欧美免费精品| 欧美日韩乱码在线| 极品教师在线免费播放| 欧美精品人与动牲交sv欧美| 视频区图区小说| 欧美中文综合在线视频| netflix在线观看网站| 亚洲欧美激情在线| ponron亚洲| 欧美精品高潮呻吟av久久| 啦啦啦 在线观看视频| 久久人妻熟女aⅴ| 久久久精品国产亚洲av高清涩受| 黄色丝袜av网址大全| 中文字幕精品免费在线观看视频| 久久婷婷成人综合色麻豆| 精品国产一区二区三区四区第35| 五月开心婷婷网| 18禁裸乳无遮挡免费网站照片 | 最近最新免费中文字幕在线| 精品久久久久久电影网| 中文字幕最新亚洲高清| 久久精品亚洲精品国产色婷小说| 欧美成人午夜精品| 91成人精品电影| 高清视频免费观看一区二区| 亚洲av熟女| 夜夜夜夜夜久久久久| 国产片内射在线| 99久久99久久久精品蜜桃| 午夜两性在线视频| 美女午夜性视频免费| 国产av精品麻豆| 亚洲五月婷婷丁香| 很黄的视频免费| 日韩欧美在线二视频 | 欧美黑人欧美精品刺激| 中文字幕另类日韩欧美亚洲嫩草| 高清视频免费观看一区二区| 极品教师在线免费播放| 亚洲色图 男人天堂 中文字幕| 亚洲成国产人片在线观看| 国产在线精品亚洲第一网站| 不卡av一区二区三区| 久久久久久人人人人人| 精品视频人人做人人爽| 女性生殖器流出的白浆| 国产成人影院久久av| 99久久精品国产亚洲精品| 亚洲欧美日韩高清在线视频| 中文字幕精品免费在线观看视频| 亚洲国产欧美日韩在线播放| av视频免费观看在线观看| 久久中文字幕一级| 69精品国产乱码久久久| 高清在线国产一区| 热99国产精品久久久久久7| 999久久久国产精品视频| 国产蜜桃级精品一区二区三区 | 国产精品欧美亚洲77777| 丰满迷人的少妇在线观看| 国产日韩一区二区三区精品不卡| 久久热在线av| 久久 成人 亚洲| 麻豆乱淫一区二区| 巨乳人妻的诱惑在线观看| 国产免费现黄频在线看| 久久精品成人免费网站| 少妇的丰满在线观看| 色播在线永久视频| 天天躁夜夜躁狠狠躁躁| 黄色女人牲交| 欧美日韩亚洲综合一区二区三区_| 麻豆国产av国片精品| 中文字幕色久视频| 99国产精品99久久久久| 欧美成人午夜精品| 国产又爽黄色视频| 露出奶头的视频| 电影成人av| 精品久久蜜臀av无| 久久人人爽av亚洲精品天堂| 美女国产高潮福利片在线看| 久久精品国产a三级三级三级| 人人妻人人爽人人添夜夜欢视频| 久久精品国产亚洲av高清一级| 国产欧美日韩一区二区精品| 欧美另类亚洲清纯唯美| 一本综合久久免费| 久久人人97超碰香蕉20202| 国产精品国产av在线观看| 在线看a的网站| 日韩有码中文字幕| 黄片播放在线免费| 麻豆乱淫一区二区| avwww免费| 亚洲九九香蕉| 日本一区二区免费在线视频| 亚洲欧美日韩高清在线视频| 女性被躁到高潮视频| 老熟女久久久| 天堂动漫精品| 久久精品亚洲av国产电影网| 国产人伦9x9x在线观看| 国产精品乱码一区二三区的特点 | 久久精品成人免费网站| 国产激情久久老熟女| 在线十欧美十亚洲十日本专区| 嫩草影视91久久| 国产精品九九99| 欧美日韩成人在线一区二区| 亚洲欧洲精品一区二区精品久久久| 亚洲精品一卡2卡三卡4卡5卡| 国产xxxxx性猛交| 国产男女超爽视频在线观看| 久久这里只有精品19| 啦啦啦在线免费观看视频4| 九色亚洲精品在线播放| 巨乳人妻的诱惑在线观看| 天堂中文最新版在线下载| 国产亚洲欧美98| 午夜日韩欧美国产| 丝瓜视频免费看黄片| 国产一区二区三区在线臀色熟女 | 人成视频在线观看免费观看| 精品久久蜜臀av无| 精品国产国语对白av| 99久久人妻综合| 色94色欧美一区二区| 免费在线观看亚洲国产| 高潮久久久久久久久久久不卡| 国产一区二区三区视频了| 亚洲久久久国产精品| 亚洲熟女精品中文字幕| 精品一区二区三区av网在线观看| 变态另类成人亚洲欧美熟女 | 男女高潮啪啪啪动态图| 一级黄色大片毛片| 国产一卡二卡三卡精品| 色精品久久人妻99蜜桃| 国产精品永久免费网站| 一二三四在线观看免费中文在| 男女午夜视频在线观看| 欧美日韩乱码在线| 狂野欧美激情性xxxx| 国产精品国产高清国产av | 91麻豆av在线| 老司机亚洲免费影院| 亚洲精品久久成人aⅴ小说| 黄频高清免费视频| 亚洲成a人片在线一区二区| 99国产精品一区二区三区| 日本欧美视频一区| 在线看a的网站| 国产精品久久电影中文字幕 | 搡老岳熟女国产| 亚洲av熟女| 精品午夜福利视频在线观看一区| 两性午夜刺激爽爽歪歪视频在线观看 | 女性生殖器流出的白浆| 超色免费av| 成人影院久久| 亚洲熟女毛片儿| av视频免费观看在线观看| 十八禁人妻一区二区| 国产在线精品亚洲第一网站| 国产精品亚洲一级av第二区| av视频免费观看在线观看| 交换朋友夫妻互换小说| 欧美另类亚洲清纯唯美| av免费在线观看网站| 在线免费观看的www视频| 91国产中文字幕| 怎么达到女性高潮| 午夜两性在线视频| 亚洲av成人av| 免费观看a级毛片全部| 丁香六月欧美| 亚洲专区中文字幕在线| 亚洲av成人av| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲精品av麻豆狂野| 国产高清视频在线播放一区| 国产精品九九99| 女警被强在线播放| netflix在线观看网站| 国产成人系列免费观看| 亚洲性夜色夜夜综合| 99热网站在线观看| 超碰成人久久| 精品一区二区三卡| 18在线观看网站| 淫妇啪啪啪对白视频| 午夜精品国产一区二区电影| 免费高清在线观看日韩| x7x7x7水蜜桃| 精品卡一卡二卡四卡免费| 精品亚洲成国产av| 老鸭窝网址在线观看| 欧美久久黑人一区二区| 999久久久精品免费观看国产| 亚洲第一青青草原| 国产极品粉嫩免费观看在线| 男男h啪啪无遮挡| 亚洲成人免费av在线播放| 亚洲av熟女| 制服人妻中文乱码| 亚洲精品国产区一区二| 欧美激情极品国产一区二区三区| 精品一区二区三区四区五区乱码| 免费在线观看日本一区| 好男人电影高清在线观看| 一个人免费在线观看的高清视频| 欧美丝袜亚洲另类 | 国产麻豆69| 老司机深夜福利视频在线观看| 精品国产一区二区三区四区第35| 十八禁人妻一区二区| 高潮久久久久久久久久久不卡| 乱人伦中国视频| 男女免费视频国产| 国产亚洲欧美精品永久| 亚洲午夜精品一区,二区,三区| 欧美激情 高清一区二区三区| 69精品国产乱码久久久| 黑人操中国人逼视频| 国产在线观看jvid| 99riav亚洲国产免费| 亚洲 欧美一区二区三区| 国产亚洲精品第一综合不卡| 黄片播放在线免费| 丝瓜视频免费看黄片| 麻豆av在线久日| 91大片在线观看| 女性被躁到高潮视频| 欧美老熟妇乱子伦牲交| 午夜老司机福利片| 99国产精品一区二区三区| 99re在线观看精品视频| 91国产中文字幕| netflix在线观看网站| 日韩欧美一区视频在线观看| 在线观看免费午夜福利视频| 王馨瑶露胸无遮挡在线观看| 国产xxxxx性猛交| a在线观看视频网站| 看黄色毛片网站| 国产又色又爽无遮挡免费看| 麻豆国产av国片精品| 一本综合久久免费| 国产免费av片在线观看野外av| 一区在线观看完整版| 91在线观看av| a级片在线免费高清观看视频| 欧美日韩一级在线毛片| 成人永久免费在线观看视频| 精品人妻在线不人妻| av福利片在线| a级毛片黄视频| 欧美日本中文国产一区发布| 99久久综合精品五月天人人| 亚洲三区欧美一区| 日韩三级视频一区二区三区| 午夜老司机福利片| 亚洲国产精品合色在线| 天堂√8在线中文| 国产精品欧美亚洲77777| 亚洲欧美激情在线| 十八禁网站免费在线| 精品欧美一区二区三区在线| 欧美亚洲日本最大视频资源| 国产精品av久久久久免费| 伦理电影免费视频| 亚洲专区中文字幕在线| 精品国产乱码久久久久久男人| 久久热在线av| 在线视频色国产色| 在线观看免费日韩欧美大片| 午夜福利影视在线免费观看| 国产蜜桃级精品一区二区三区 | 九色亚洲精品在线播放| 国产一区二区三区综合在线观看| 久久久精品国产亚洲av高清涩受| 一二三四在线观看免费中文在| 亚洲,欧美精品.| 久久久久视频综合| 久久久久久人人人人人| 午夜福利一区二区在线看| 成人免费观看视频高清| 51午夜福利影视在线观看| 国产av又大| 国产极品粉嫩免费观看在线| 久久精品国产99精品国产亚洲性色 | 成在线人永久免费视频| 国产成人影院久久av| 色综合婷婷激情| 一本一本久久a久久精品综合妖精| 国产av又大| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美日韩成人在线一区二区| 国产成人免费无遮挡视频| 一级a爱片免费观看的视频| 久久九九热精品免费| a级毛片黄视频| 久久久久久久午夜电影 | 国产亚洲欧美精品永久| 999久久久精品免费观看国产| 国产一区二区三区在线臀色熟女 | 成人18禁在线播放| 女人高潮潮喷娇喘18禁视频| 久久午夜亚洲精品久久| 欧美人与性动交α欧美软件| 日本精品一区二区三区蜜桃| 成年女人毛片免费观看观看9 | 欧美黄色片欧美黄色片| 亚洲第一欧美日韩一区二区三区| 欧美日韩亚洲高清精品| 黑丝袜美女国产一区| 两个人看的免费小视频| 亚洲欧美色中文字幕在线| 麻豆国产av国片精品| 久久国产精品影院| 国产亚洲精品久久久久5区| 最新美女视频免费是黄的| 久久人人97超碰香蕉20202| 久久久久久久精品吃奶| xxxhd国产人妻xxx| 99re在线观看精品视频| 亚洲欧美激情综合另类| 妹子高潮喷水视频| 啪啪无遮挡十八禁网站| 亚洲av片天天在线观看| 欧美黑人欧美精品刺激| 多毛熟女@视频| 巨乳人妻的诱惑在线观看| 国产伦人伦偷精品视频| 亚洲一卡2卡3卡4卡5卡精品中文| 下体分泌物呈黄色| 国产亚洲精品久久久久5区| 国精品久久久久久国模美| 久久精品国产清高在天天线| 婷婷丁香在线五月| 涩涩av久久男人的天堂| 视频区图区小说| 日韩中文字幕欧美一区二区| 大型av网站在线播放| 国产精品久久久久成人av| 女人久久www免费人成看片| 黄片播放在线免费| 两个人免费观看高清视频| 精品久久蜜臀av无| 村上凉子中文字幕在线| 一级片免费观看大全| 在线国产一区二区在线| 亚洲成av片中文字幕在线观看| 丰满人妻熟妇乱又伦精品不卡| av欧美777| 操出白浆在线播放| 麻豆成人av在线观看| 一夜夜www| 美国免费a级毛片| 久久久久久久午夜电影 | 欧美国产精品一级二级三级| 99re在线观看精品视频| 国产97色在线日韩免费| 少妇粗大呻吟视频| 欧美日韩视频精品一区| 亚洲五月色婷婷综合| 久久99一区二区三区| 9191精品国产免费久久| 捣出白浆h1v1| 国产日韩一区二区三区精品不卡| 久久精品aⅴ一区二区三区四区| 欧美黄色淫秽网站| 国产深夜福利视频在线观看| 在线观看免费午夜福利视频| 动漫黄色视频在线观看| 18在线观看网站| 亚洲精品成人av观看孕妇| 日韩人妻精品一区2区三区| 99国产精品一区二区三区| 中文字幕人妻丝袜制服| 亚洲av成人一区二区三| 女人久久www免费人成看片| 黄色怎么调成土黄色| 美女高潮喷水抽搐中文字幕| 搡老乐熟女国产| 久久天堂一区二区三区四区| 精品午夜福利视频在线观看一区| 精品亚洲成国产av| 免费在线观看亚洲国产| 99国产极品粉嫩在线观看| 精品国产一区二区久久| 自线自在国产av| x7x7x7水蜜桃| 嫩草影视91久久| x7x7x7水蜜桃| 婷婷精品国产亚洲av在线 | 少妇粗大呻吟视频| 成人黄色视频免费在线看| 妹子高潮喷水视频| 后天国语完整版免费观看| 一区二区三区激情视频| 国产色视频综合| 亚洲精品在线美女| 午夜精品在线福利| 欧美亚洲日本最大视频资源| 男人操女人黄网站| 每晚都被弄得嗷嗷叫到高潮| 久9热在线精品视频| 国产精品综合久久久久久久免费 | 伦理电影免费视频| 久久久精品免费免费高清| 午夜成年电影在线免费观看| 久久亚洲精品不卡| 黄色丝袜av网址大全| 国产精品久久久人人做人人爽| 伦理电影免费视频| 日韩欧美三级三区| 中文字幕最新亚洲高清| 高清视频免费观看一区二区| 国产成人av激情在线播放| 男女床上黄色一级片免费看| 精品国内亚洲2022精品成人 | 欧美乱妇无乱码| 欧美日韩黄片免| 在线观看免费午夜福利视频| 成人国产一区最新在线观看| 午夜老司机福利片| 国产日韩欧美亚洲二区| 少妇的丰满在线观看| 波多野结衣av一区二区av| 精品午夜福利视频在线观看一区| av在线播放免费不卡| 欧美中文综合在线视频| av视频免费观看在线观看| 亚洲欧洲精品一区二区精品久久久| 国产一卡二卡三卡精品| 久久久久久久久免费视频了| 日本精品一区二区三区蜜桃| 精品国内亚洲2022精品成人 | 99香蕉大伊视频| 国产精品综合久久久久久久免费 | 久热爱精品视频在线9| 男人的好看免费观看在线视频 | www.精华液| 丰满的人妻完整版| 国产精品一区二区免费欧美| 亚洲av成人av| 精品高清国产在线一区| 精品国产乱码久久久久久男人| 欧美 亚洲 国产 日韩一| 亚洲国产精品一区二区三区在线| 下体分泌物呈黄色| 欧美亚洲 丝袜 人妻 在线| 精品国产亚洲在线| 69精品国产乱码久久久| 乱人伦中国视频| 亚洲精品乱久久久久久| 国产不卡一卡二| 精品第一国产精品| 亚洲精品粉嫩美女一区| 91九色精品人成在线观看| 天堂中文最新版在线下载| 国产乱人伦免费视频| 在线观看免费日韩欧美大片| 12—13女人毛片做爰片一| 亚洲欧美激情综合另类| 国产xxxxx性猛交| 国产片内射在线| 亚洲熟妇中文字幕五十中出 | 国产成人免费无遮挡视频| 亚洲av第一区精品v没综合| 一区二区三区激情视频| 操出白浆在线播放| 亚洲国产看品久久| 黄色a级毛片大全视频|