• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Orthogonal nonnegative matrix factorization based local hidden Markov model for multimode process monitoring☆

    2016-05-30 12:53:59FanWangHonglinZhuShuaiTanHongboShi

    Fan Wang,Honglin Zhu,Shuai Tan,Hongbo Shi*

    Key Laboratory of Advanced Control and Optimization for Chemical Processes of Ministry of Education,East China University of Science and Technology,Shanghai 200237,China

    1.Introduction

    Fault detection is one of the most important tasks for successful operation of chemical processes.Multivariate statistical process monitoring(MSPM)is growing popular due to large amount of data from large-scale chemical processes.MSPM techniques,such as principal component analysis(PCA)and partial least-squares(PLS),have been intensively investigated and widely applied to chemical process monitoring with success[1–3].To overcome the limitations,such as nonlinearity and dynamics of processes,improvements on traditional methods and other complementary MSPM have been proposed,such as ICA,KPCA,DPCA,SVDD and manifold-learning methods[4–9].However,it should be noted that these approaches often assume that the process operates in a single mode,while complex chemical manufacturing processes often work in multiple modes.Consequently,mode shifts greatly confine the scope of applications of conventional techniques.

    For monitor processes with multiple operating modes,Chen and Liu[10]proposed a mixture principal component analysis model detector,which is a group of PCA models.Zhao et al.[11,12]handled the processes with multiple PCA models and multiple PLS models.These approaches constructed multiple models for different operating modes to carry out the monitoring task.Based on this idea,Liu[13],Yoo et al.[14],Ng and Srinivasan[15],Khediri et al.[16]and Zhu et al.[17]came up with other techniques.Yu and Qin[18]developed a finite Gaussian mixture model and used the Bayesian inference-based probability index for process monitoring.Ge and Song[19]presented a mixture Bayesian regularization method of PPCA.These methods integrated monitoring results of different operating modes in a probabilistic manner.

    In contrast to above traditional approaches,hidden Markov model(HMM)-based methods have not been explored widely and deeply in multimode process monitoring.Yu[20]applied HMM to model complicated data distribution with nonlinear and multimodal features and developed two HMM-based process monitoring quantification indications.Rashid and Yu[21]presented a HMM based ICA approach for processes with multiple operating modes and inherent system uncertainty.The hidden Markov model was built to estimate dynamic mode sequence.Then the local ICA models were developed to characterize differentoperating modes for online process monitoring purpose.Ning etal.[22]incorporated HMMand the window-based SPA monitoring method in a single framework where HMM is adopted to identify the operating mode.

    In this paper,a novel process monitoring scheme based on HMM is proposed for multimode processes.First,a new clustering method named orthogonal nonnegative matrix factorization(ONMF)is used to divide data of different modes.Then,multiple local HMMs are constructed for various operating modes.Because hidden Markov model is a powerfultool to describe a stochastic sequence,the proposed method does not presume the distribution of sample data in each operating mode.Furthermore,build a HMMfor every mode with higher modeling accuracy.During online monitoring period,the monitored samples can be classified into proper modes by comparing the relevance with every HMM.At last,the HMM based monitoring indication named negative log likelihood probability(NLLP)is used for fault detection in every mode.The effectiveness ofthe proposed approach is shown by a numerical example and the Tennessee Eastman(TE)process.

    2.Method

    2.1.Orthogonal nonnegative matrix factorization

    Orthogonal nonnegative matrix factorization(ONMF)works well for clustering tasks in document clustering field and is equivalent to K-meansclustering in the sense thatthey share the same objective function[23,24].ONMF can be viewed as approximate matrix factorization techniques with both nonnegative and orthogonal constraints,which is formulated as the following optimization problem:

    subject to W≥0,H≥0,HHΤ=I

    where X?Rm×n,W?Rm×k,H?Rk×n,and the entries of matrices X,W and H are nonnegative.

    The factor matrices W and H have the following explanation.When columns of original data matrix X are data points in m dimensional space,columns in W are treated as basis vectors and every row in H represents encoding that means the extent to which each basis vector is utilized to reconstruct original data vector.

    2.2.Hidden Markov model

    Hidden Markov model(HMM)is a probabilistic model extended from Markov chains to generate the statistically inferential information on a series of state sequences[25].In general,it contains finite numbers of hidden states,where each state outputs an observation at certain time point.Each hidden state is characterized by two sets of probabilities:a transition probability between two states and an observation probability distribution.Not like Markov chains,HMM are doubly stochastic processes:the stochastic transition between one state to another state and stochastic output observations generated at each state.A HMM has the following key ingredients[25].

    (1)The hidden states

    where N denotes the number of hidden states.

    (2)State transition probability distribution

    where aij=Pr(qt+1=Sj|qt=Si),1≤i,j≤N,and qtis the hidden state at time t.

    (3)The observations

    where M represents the number of distinctive observation per state.M is in finite when the observation space is continuous.

    (4)The observation probability distribution

    where bi(K)=Pr(OK|qt=Si),1≤i≤N,1≤K≤M.

    (5)Initial hidden state probability distribution

    where πi=Pr(qt=1=Si),1 ≤ i≤ N.

    The three main components of a HMM are the state transition probability matrix A,the measurementprobability distribution matrix B,and the initial state probability distribution π.For convenience,a compact notation is used to indicate the complete parameter set of the model:

    In a HMM,the following three basic problems need to be solved:training parameters of HMMs,calculating the probability of one observation sequence,and finding a state sequence that matches the observation sequence perfectly.There are three basic algorithms,namely the Baum–Welch algorithm,the forward–backward procedure and the Viterbi algorithm[25].

    3.ONMF Based Local HMM for Multimode Processes Monitoring

    For multimode process fault detection,this work implements a monitoring procedure based on local HMM models.This method is applied by combining the ONMF clustering algorithmand HMMalgorithm introduced in the preceding section.To design the monitoring scheme,the dataset is first separated using ONMF clustering approach.This allows us to divide different groups of datasets with similar characteristics.Then,for each class of data a local HMM is constructed to describe the underlying data distribution.At last,the new observation samples are monitored by determining their proper mode label and then computing the monitoring indicator in the correct HMM model.

    3.1.Of fline modeling

    When ONMF is applied to clustering,dimension k refers to the number of clusters.Let each column of the data set Y(J×T)(where J is the number of variables and T is the sample number)be treated as a data sample,then after the factorization,each column of W(J×k)represents a cluster center and elements of every column of H(k×T)are the cluster indicator.

    After the clustering task,multiple local HMMs are constructed for different modes.

    3.2.Local HMM for mode identification and fault detection

    In a HMM,negative log likelihood probability(NLLP)presents how well a new observed data sample matches the probability distribution of HMM trained by a data set.Thus it can be employed for both mode identification and fault detection.After local HMM models are built for each mode,a data sample must have minimal NLLP in the local HMM,which corresponds to the mode it belongs to.For fault detection,when the data sample is normal,the NLLP is small since it follows the HMM distribution perfectly.On the other hand,the NLLP of a fault data sample should be larger than usual one.Therefore,NLLP can act as an effective monitoring index for evaluating process states.

    This quantization indication is developed by calculating the probability P(yt∣λ)of one observation sample yt,given the HMM model λ.This mathematical problem can be solved by the forward–backward procedure.

    For a data set Y(J×T)=[y1,y2,…,yT],define a forward variableαt(i),which is the probability of the partial observation sequence(until time t),and state Siat time t,given the model λ.

    We can solve αt(i)by inductive steps as follows.

    where 1≤i≤N.

    where 1≤t≤T?1 and 1≤j≤N.

    As a result,NLLP is computed as

    During online process monitoring stage,compute NLLP of the monitored sample in every local HMM.Then the sample can be located in the proper HMM with the minimal NLLP.At last,compare its NLLP against the threshold in the local model to determine whether this data sample is normal or not.

    3.3.The proposed monitoring procedure

    The monitoring procedure based on the proposed method includes two stages:of fline modeling and online process monitoring.The procedure is summarized as follows.

    Of fline modeling:

    (1)Collect data samples when the process is under normal condition.The pre-processing of dataset is implemented.

    (2)Use ONMF for the clustering job.

    (3)Build local HMM models for each mode and utilize the Baum–Welch algorithm to obtain the parameters of HMM,namely λ=(A,B,π).

    (4)Calculate the NLLP of normal samples in every local HMM and determine corresponding threshold for NLLP by the KDE method with a confidence bound.

    Online process monitoring:

    (1)For every monitored data sample,compute NLLP in every HMM and determine proper local HMM with minimal NLLP.

    (2)Locate the sample in suitable HMM,and compare its NLLP against the threshold of local HMM to decide whether it is normal or not.

    4.Illustrative Examples

    4.1.A numerical example

    A multivariate linear system is first used to demonstrate the effectiveness of the proposed method,and its performance is compared with the kernel K-means clustering based local SVDD method[16].The simulation process is a three variable multimodalprocess,originally suggested by Yu and Qin[18].

    where[s1,s2]Τdenotes Gaussian distribution data sources and[e1,e2,e3]Τare zero-mean white noises with standard deviations of 0.01.Three operating modes and corresponding data sources are listed as follows.

    For each operating mode,100 samples are generated and total 300 samples are used as training data.

    To show the performance of the proposed monitoring method,the test data are generated in the following two faulty situations.

    Case 1:the system is initially running at mode 1,and then a bias error of 4 is added to x1from the 101st through 200th samples.

    Case 1:the system is initially running at mode 2,and a drifting error of 0.04(l-100)with l denoting the serial number of test samples is applied to x2between the 101st through 200th samples.

    In this numerical simulation,300 normal data samples from three operating modes are collected for of fline modeling training.The confidence level is chosen as 98%for both approaches so that the proposed method can be compared with its counterparts fairly.

    In Case 1,measurement x1is contaminated by a bias fault of some magnitude in 101–200 samples.Fig.1 shows that the K-means based SVDD method fails to provide a satisfactory monitoring consequence due to its miss fault detection performance.In contrast,as shown in Fig.2,NLLP detects all faults from samples 100–200 while they hardly trigger false alarms for the normal observation from samples 1–100.

    Fig.1.Monitoring results of kernel K-means based local SVDD for Case 1.

    In Case 2,the capability of detecting a drift fault is tested with two monitoring approaches.Fig.3 depicts the monitoring results of the K-means clustering based local SVDD method.The drift fault can only be well captured until the 140th sample.It means that operators catch the fault with a time lag of about 40 samples.As a comparison,the monitoring performance is improved by utilizing our proposed method according to Fig.4.It is able to detect the drift fault with a delay of about 30 samples.

    4.2.The Tennessee Eastman process

    The ONMF based local HMM monitoring method is applied to the Tennessee Eastman(TE)process developed by Down and Vogel[26].The process consists of five major unit operations:a reactor,a product condenser,a vapor–liquid separator,a recycle compressor,and a product stripper.Overall 41 measured output variables and 12 manipulated variables are involved in this process.The decentralized control scheme developed by Richer is employed to generate closed-loop data[27].

    Fig.2.Monitoring results of ONMF based local HMM for Case 1.

    Fig.3.Monitoring results of kernel K-means based local SVDD for Case 2.

    Fig.4.Monitoring results of ONMF based local HMM for Case 2.

    In this paper,modes 1 and 3 are adopted to evaluate the effectiveness of the proposed method.Total 60 h normal data samples are collected from each mode as the training data.The sampling time interval is 0.03 h.A total of 31 variables,which contains 22 continuous process measurements and 9 manipulated variables,are utilized to conduct process monitoring.

    First,the training data samples of modes 1 and 3 are separated by ONMF.Dimension k is chosen as 2 because the number of clusters is 2.After the calculation,the matrix W has the meaning of cluster centroids so the two columns(w1and w2)of W represent two clustering centers.Then the matrix H acts as the cluster indicator.The clustering results are presented in Fig.5.The red dots mean data samples of mode 1 while blue ones are those from mode 3.It is clear that ONMF has the ability to do clustering job well.

    Fig.5.Clustering results of data samples from modes 1 and 3.

    The monitoring results of the ONMF based local HMM method are compared to those of the kernel K-means clustering based local SVDD approach[16].The same training data set is selected for both methods.The thresholds of monitoring indices are obtained under 99%con fidence level to guarantee a fair comparison.In the online monitoring part,14 different faults of two modes are all tested.The test data set includes 1000 data samples where the first 200 samples are normal ones and process faults are introduced from the 201st sample to the end.The fault detection results of the two approaches are listed in Table 1.It isobvious that our proposed method has higher fault detection rates in most cases.For example,for fault 4,the fault detection rate of kernel K-means based local SVDD is 1.375%,while that of ONMF based local HMM is 100%.The monitoring results of the proposed approach for faults 10 and 11 are also much better.Table 2 gives similar results.The proposed method is quite successful in detecting faults 4 and 11.

    Table 1 Monitoring results of 14 faults in TE mode 1

    Table 2 Monitoring results of 14 faults in TE mode 3

    5.Conclusions

    A novel monitoring approach combining ONMF clustering and hidden Markov model(HMM)is developed for multimode processes.For complex chemicalprocesses with multiple operating modes and system uncertainty,the proposed method employs ONMF to classify data samples of diverse modes.The process uncertainty and dynamics can be well interpreted through the hidden Markov estimation.Then the quantification indication NLLP is responsible for fault detection.The case studies on a numerical example and the TE process show that the proposed method can effectively deal with multimode process monitoring problem.Since a transition stage always exists in various operating modes in actual processes,transitional modes will be the future research direction.

    [1]S.J.Qin,Statistical process monitoring:Basics and beyond,J.Chemom.17(2003)480–502.

    [2]M.Kano,K.Nagao,S.Hasebe,I.Hashimoto,H.Ohno,A new multivariate statistical process monitoring method using principal component analysis,Comput.Chem.Eng.25(2001)1103–1113.

    [3]X.Wang,U.Kruger,B.Lennox,Recursive partial least squares algorithms for monitoring complex industrial processes,Control.Eng.Pract.11(2003)613–632.

    [4]M.Kano,K.Nagao,S.Hasebe,I.Hashimoto,H.Ohno,Monitoring independent components for fault detection,AICHE J.49(2003)969–976.

    [5]C.Y.Cheng,C.C.Hsu,M.C.Chen,Adaptive kernel principal component analysis(KPCA)for monitoring small disturbances of nonlinear processes,Ind.Eng.Chem.Res.49(2010)2254–2262.

    [6]Y.X.Ma,B.Song,H.B.Shi,Y.W.Yang,Neighborhood based global coordination for multimode process monitoring,Chemom.Intell.Lab.Syst.139(2014)84–96.

    [7]X.Q.Liu,K.Li,M.McAfee,G.W.Irwin,Improved nonlinear PCA for process monitoring using support vector data description,J.Process Control 21(2011)1306–1317.

    [8]B.Song,Y.X.Ma,H.B.Shi,Multimode process monitoring using improved dynamic neighborhood preserving embedding,Chemom.Intell.Lab.Syst.135(2014)17–30.

    [9]Z.Q.Ge,Z.H.Song,Process monitoring based on independent component analysis–principal component analysis(ICA–PCA)and similarity factors,Ind.Eng.Chem.Res.46(2007)2054–2063.

    [10]J.H.Chen,J.L.Liu,Mixture principal componentanalysis models for process monitoring,Ind.Eng.Chem.Res.38(1999)1478–1488.

    [11]S.J.Zhao,J.Zhang,Y.M.Xu,Monitoring of processes with multiple operating modes through multiple principle component analysis models,Ind.Eng.Chem.Res.43(2004)7025–7035.

    [12]S.J.Zhao,J.Zhang,Y.M.Xu,Performance monitoring of processes with multiple operating modes through multiple PLS models,J.Process Control 16(2006)763–772.

    [13]J.L.Liu,Process monitoring using Bayesian classification on PCA subspace,Ind.Eng.Chem.Res.43(2004)7815–7825.

    [14]C.K.Yoo,K.Villez,I.B.Lee,C.Rosen,P.A.Vanrolleghem,Multi-model statistical process monitoring and diagnosis of a sequencing batch reactor,Biotechnol.Bioeng.96(2007)687–701.

    [15]Y.S.Ng,R.Srinivasan,An adjoined multi-model approach for monitoring batch and transient operations,Comput.Chem.Eng.33(2009)887–902.

    [16]L.B.Khediri,C.Weihs,M.Limam,Kernel k-means clustering based local support vector domain description fault detection of multimodal processes,Expert Syst.Appl.39(2012)2166–2171.

    [17]Z.B.Zhu,Z.H.Song,A.Palazoglu,Process pattern construction and multi-mode monitoring,J.Process Control 22(2012)247–262.

    [18]J.Yu,S.J.Qin,Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models,AICHE J.54(2008)1811–1829.

    [19]Z.Q.Ge,Z.H.Song,Mixture Bayesian regularization method of PPCA for multimode process monitoring,AICHE J.56(2010)2838–2849.

    [20]J.B.Yu,Hidden Markov models combining local and global information for nonlinear and multimodal process monitoring,J.Process Control 20(2010)344–359.

    [21]M.M.Rashid,J.Yu,Hidden Markov model based adaptive independent component analysis approach for complex chemical process monitoring and fault detection,Ind.Eng.Chem.Res.51(2012)5506–5514.

    [22]C.Ning,M.Y.Chen,D.H.Zhou,Hidden Markov model-based statistics pattern analysis for multimode process monitoring:an index-switching scheme,Ind.Eng.Chem.Res.53(2014)11084–11095.

    [23]J.Yoo,S.Choi,Orthogonal nonnegative matrix tri-factorization for co-clustering:Multiplicative updates on Stiefel manifolds,Inf.Process.Manag.46(2010)559–570.

    [24]F.Pompili,N.Gillis,P.A.Absil,F.Glineur,Two algorithms for orthogonal nonnegative matrix factorization with application to clustering,Neurocomputing 141(2014)15–25.

    [25]L.R.Rabiner,A tutorial on hidden Markov models and selected applications in speech recognition,Proc.IEEE 77(1989)257–286.

    [26]J.J.Down,E.F.Vogel,A plant-wide industrial process control problem,Comput.Chem.Eng.17(1993)245–255.

    [27]N.L.Richer,Decentralized control of the Tennessee Eastman challenge process,J.Process Control 6(1996)205–221.

    大片免费播放器 马上看| 日本wwww免费看| 国产爱豆传媒在线观看| 天天躁夜夜躁狠狠久久av| freevideosex欧美| 一级毛片黄色毛片免费观看视频| 精品人妻偷拍中文字幕| 国产 一区精品| 亚洲一级一片aⅴ在线观看| 激情 狠狠 欧美| 国产亚洲最大av| 六月丁香七月| 亚洲国产成人一精品久久久| 日本一本二区三区精品| 日韩一区二区视频免费看| 日韩视频在线欧美| av专区在线播放| 国产伦理片在线播放av一区| 成人午夜精彩视频在线观看| 日韩成人伦理影院| 三级经典国产精品| 国内精品美女久久久久久| 蜜臀久久99精品久久宅男| av国产免费在线观看| 精品一区二区免费观看| 亚洲内射少妇av| 欧美性感艳星| 在线观看免费高清a一片| 免费观看的影片在线观看| 国产人妻一区二区三区在| 在线a可以看的网站| 午夜福利高清视频| 天堂中文最新版在线下载 | 一级毛片aaaaaa免费看小| 人妻一区二区av| 黄色日韩在线| 久久久久久伊人网av| 六月丁香七月| 久久精品国产亚洲av天美| 久久久久国产网址| 日韩不卡一区二区三区视频在线| 六月丁香七月| 亚洲在线观看片| 网址你懂的国产日韩在线| 哪个播放器可以免费观看大片| 亚洲av电影在线观看一区二区三区 | 69人妻影院| 色视频www国产| 免费av观看视频| 男的添女的下面高潮视频| 国产国拍精品亚洲av在线观看| 国内精品宾馆在线| 国产日韩欧美在线精品| 国产午夜福利久久久久久| 亚洲精品乱久久久久久| 国产亚洲av嫩草精品影院| videos熟女内射| 成人亚洲欧美一区二区av| 日韩不卡一区二区三区视频在线| 高清欧美精品videossex| 天堂影院成人在线观看| 三级国产精品欧美在线观看| 男女国产视频网站| 国产中年淑女户外野战色| 小蜜桃在线观看免费完整版高清| 亚洲精品日韩在线中文字幕| 久久99热这里只频精品6学生| 亚洲一区高清亚洲精品| .国产精品久久| 国产伦精品一区二区三区视频9| 91精品伊人久久大香线蕉| 精品久久久久久成人av| 在线a可以看的网站| 久久久久久久久大av| 国语对白做爰xxxⅹ性视频网站| 国产乱人偷精品视频| 人体艺术视频欧美日本| 亚洲欧洲日产国产| 亚洲精品第二区| 欧美高清成人免费视频www| 亚洲精品久久久久久婷婷小说| 成人漫画全彩无遮挡| 建设人人有责人人尽责人人享有的 | 久久精品久久精品一区二区三区| 嘟嘟电影网在线观看| 搞女人的毛片| 亚洲综合色惰| 水蜜桃什么品种好| 熟妇人妻久久中文字幕3abv| 亚洲国产av新网站| 麻豆成人午夜福利视频| 精品久久久久久久人妻蜜臀av| 日韩精品青青久久久久久| 精品一区在线观看国产| 午夜精品国产一区二区电影 | 熟妇人妻久久中文字幕3abv| 精品久久久噜噜| 国产v大片淫在线免费观看| 国产又色又爽无遮挡免| 国产高潮美女av| 菩萨蛮人人尽说江南好唐韦庄| 久久97久久精品| 91精品国产九色| 中国美白少妇内射xxxbb| 人妻夜夜爽99麻豆av| 日韩三级伦理在线观看| 一二三四中文在线观看免费高清| 简卡轻食公司| 国产色婷婷99| 国内精品美女久久久久久| 免费不卡的大黄色大毛片视频在线观看 | 综合色丁香网| 国产老妇伦熟女老妇高清| 国产黄色小视频在线观看| 亚洲最大成人手机在线| 成人亚洲精品av一区二区| 伊人久久精品亚洲午夜| 国产亚洲5aaaaa淫片| 亚洲精品色激情综合| 久久久久久久午夜电影| 久久精品久久精品一区二区三区| 亚洲va在线va天堂va国产| 国产一级毛片在线| 国产淫语在线视频| 人人妻人人澡人人爽人人夜夜 | 国产精品女同一区二区软件| 亚洲精品日本国产第一区| 成人亚洲精品av一区二区| 免费看不卡的av| 国产免费福利视频在线观看| 五月伊人婷婷丁香| a级毛片免费高清观看在线播放| 最近手机中文字幕大全| 午夜福利成人在线免费观看| 欧美激情国产日韩精品一区| 大话2 男鬼变身卡| 久久久久久伊人网av| av国产久精品久网站免费入址| 免费看av在线观看网站| 亚洲av在线观看美女高潮| 成人高潮视频无遮挡免费网站| 亚洲自拍偷在线| 国产综合精华液| 成人鲁丝片一二三区免费| 可以在线观看毛片的网站| 夜夜看夜夜爽夜夜摸| 国产精品av视频在线免费观看| 丰满少妇做爰视频| 麻豆成人午夜福利视频| 波多野结衣巨乳人妻| 天天躁夜夜躁狠狠久久av| 麻豆国产97在线/欧美| 好男人在线观看高清免费视频| 免费人成在线观看视频色| 你懂的网址亚洲精品在线观看| 搡女人真爽免费视频火全软件| 免费观看性生交大片5| 亚洲精品成人av观看孕妇| 成人一区二区视频在线观看| 人妻夜夜爽99麻豆av| 97在线视频观看| 国产人妻一区二区三区在| 国产成人精品一,二区| 亚洲第一区二区三区不卡| 午夜激情久久久久久久| 成人无遮挡网站| 韩国高清视频一区二区三区| 天堂网av新在线| 天堂中文最新版在线下载 | 日韩av在线免费看完整版不卡| 国产精品国产三级国产av玫瑰| 亚洲精品国产成人久久av| 亚洲精品影视一区二区三区av| 久久久久久久国产电影| 色5月婷婷丁香| 日产精品乱码卡一卡2卡三| 国产精品三级大全| videossex国产| 国产精品麻豆人妻色哟哟久久 | 国精品久久久久久国模美| 99热这里只有是精品在线观看| 国产亚洲av片在线观看秒播厂 | av免费在线看不卡| 嫩草影院新地址| 日韩一区二区三区影片| 中文乱码字字幕精品一区二区三区 | 日韩亚洲欧美综合| 亚洲精品国产av成人精品| 免费观看的影片在线观看| 国产精品精品国产色婷婷| 99热网站在线观看| 国产亚洲5aaaaa淫片| 免费观看av网站的网址| 日韩中字成人| 日日干狠狠操夜夜爽| 熟妇人妻不卡中文字幕| 午夜免费男女啪啪视频观看| 色综合色国产| 国产不卡一卡二| 视频中文字幕在线观看| 最近手机中文字幕大全| 亚洲精品一区蜜桃| 欧美日本视频| 国产三级在线视频| 少妇裸体淫交视频免费看高清| 乱人视频在线观看| 久久韩国三级中文字幕| av卡一久久| 大片免费播放器 马上看| 美女高潮的动态| 97超碰精品成人国产| 亚洲色图av天堂| 国产av码专区亚洲av| 小蜜桃在线观看免费完整版高清| 精品酒店卫生间| 精品熟女少妇av免费看| 日韩制服骚丝袜av| 啦啦啦中文免费视频观看日本| 国国产精品蜜臀av免费| 欧美成人一区二区免费高清观看| 久热久热在线精品观看| 天堂俺去俺来也www色官网 | 毛片女人毛片| 国产精品爽爽va在线观看网站| 国产不卡一卡二| 精品一区二区三区人妻视频| 国产亚洲精品av在线| 亚洲不卡免费看| 麻豆成人午夜福利视频| 一个人免费在线观看电影| 草草在线视频免费看| 久久久久久九九精品二区国产| 亚洲欧美日韩东京热| 亚洲天堂国产精品一区在线| 亚洲成人久久爱视频| 色播亚洲综合网| 国产精品一区二区三区四区久久| 亚洲精品视频女| 白带黄色成豆腐渣| 国产伦精品一区二区三区四那| 美女高潮的动态| 免费观看的影片在线观看| 少妇裸体淫交视频免费看高清| 精品国产三级普通话版| 国产高潮美女av| 久久久久国产网址| 成人欧美大片| 特大巨黑吊av在线直播| 在线 av 中文字幕| 久久精品久久精品一区二区三区| 久久久久久国产a免费观看| 久久精品夜夜夜夜夜久久蜜豆| 你懂的网址亚洲精品在线观看| 国产伦理片在线播放av一区| 丝袜喷水一区| 韩国av在线不卡| 美女cb高潮喷水在线观看| 深爱激情五月婷婷| 亚洲自偷自拍三级| 久久国产乱子免费精品| 中文天堂在线官网| 欧美最新免费一区二区三区| 人人妻人人看人人澡| 欧美一级a爱片免费观看看| 女人被狂操c到高潮| 麻豆成人午夜福利视频| 少妇猛男粗大的猛烈进出视频 | 国产精品国产三级专区第一集| 一级毛片黄色毛片免费观看视频| 亚洲在久久综合| 国产伦精品一区二区三区四那| 国产久久久一区二区三区| 久99久视频精品免费| 精品久久久久久久末码| 国产精品三级大全| 亚洲av男天堂| 日韩不卡一区二区三区视频在线| 91午夜精品亚洲一区二区三区| 国产av码专区亚洲av| 免费大片黄手机在线观看| 免费观看精品视频网站| 亚洲av在线观看美女高潮| 亚洲成人一二三区av| 成年人午夜在线观看视频 | 亚洲综合精品二区| 欧美zozozo另类| 搡老乐熟女国产| 麻豆国产97在线/欧美| 丰满人妻一区二区三区视频av| 亚洲精品日韩av片在线观看| 日韩av在线免费看完整版不卡| 成人亚洲欧美一区二区av| 成人欧美大片| 18禁裸乳无遮挡免费网站照片| 日本色播在线视频| 日韩在线高清观看一区二区三区| 毛片女人毛片| 99久久中文字幕三级久久日本| 免费无遮挡裸体视频| 成人鲁丝片一二三区免费| 亚洲精品国产成人久久av| 精品一区二区三区人妻视频| 91精品国产九色| 青春草亚洲视频在线观看| 日韩欧美 国产精品| 国产大屁股一区二区在线视频| 激情 狠狠 欧美| av网站免费在线观看视频 | 伦理电影大哥的女人| 亚洲人成网站在线播| 97精品久久久久久久久久精品| 好男人在线观看高清免费视频| 亚洲国产精品国产精品| 亚洲av二区三区四区| 亚洲精品,欧美精品| 97在线视频观看| 日韩一区二区三区影片| 日韩国内少妇激情av| 国产伦精品一区二区三区视频9| 春色校园在线视频观看| 久久久精品免费免费高清| 永久免费av网站大全| 久久精品综合一区二区三区| 国产v大片淫在线免费观看| 欧美日韩综合久久久久久| 一级片'在线观看视频| 国产人妻一区二区三区在| 老女人水多毛片| 欧美人与善性xxx| 欧美精品一区二区大全| 97超视频在线观看视频| 欧美一区二区亚洲| 成人性生交大片免费视频hd| 免费看不卡的av| 亚洲av国产av综合av卡| 国产亚洲午夜精品一区二区久久 | 精品欧美国产一区二区三| 久久久欧美国产精品| 亚洲自拍偷在线| 国产成人a∨麻豆精品| 晚上一个人看的免费电影| 波野结衣二区三区在线| 91av网一区二区| 欧美日韩国产mv在线观看视频 | 国产亚洲精品av在线| 黄片无遮挡物在线观看| 一个人观看的视频www高清免费观看| videos熟女内射| 亚洲精品乱码久久久久久按摩| 偷拍熟女少妇极品色| 亚洲人成网站在线播| 你懂的网址亚洲精品在线观看| 一级片'在线观看视频| 国产一级毛片在线| 成人毛片60女人毛片免费| 国产成人精品婷婷| 最后的刺客免费高清国语| 欧美日本视频| 久久久久久久久久黄片| 成人二区视频| 高清午夜精品一区二区三区| 夫妻午夜视频| 久久精品国产亚洲av天美| 国内精品美女久久久久久| or卡值多少钱| 午夜久久久久精精品| 欧美精品一区二区大全| 毛片一级片免费看久久久久| 日韩一区二区视频免费看| 国产真实伦视频高清在线观看| 亚洲高清免费不卡视频| 欧美变态另类bdsm刘玥| 精品国产三级普通话版| 久久精品夜色国产| 在线a可以看的网站| 一级a做视频免费观看| 国产69精品久久久久777片| av天堂中文字幕网| 精品一区在线观看国产| 在线观看人妻少妇| 少妇被粗大猛烈的视频| 国产精品美女特级片免费视频播放器| 亚洲av二区三区四区| 麻豆国产97在线/欧美| 久久草成人影院| 在线a可以看的网站| 男女国产视频网站| 国产淫语在线视频| 精品久久久久久久久av| 美女被艹到高潮喷水动态| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产单亲对白刺激| 婷婷色综合大香蕉| 一级av片app| av国产免费在线观看| 建设人人有责人人尽责人人享有的 | 国产三级在线视频| 精品熟女少妇av免费看| 99热网站在线观看| 国语对白做爰xxxⅹ性视频网站| 国产亚洲av片在线观看秒播厂 | 亚洲一级一片aⅴ在线观看| 国产麻豆成人av免费视频| 日韩,欧美,国产一区二区三区| 亚洲精品色激情综合| 亚洲欧美清纯卡通| 免费av观看视频| 日韩欧美三级三区| 极品教师在线视频| 久久久亚洲精品成人影院| 欧美zozozo另类| 天堂av国产一区二区熟女人妻| 亚洲精品日韩av片在线观看| 一区二区三区乱码不卡18| 国产淫语在线视频| 婷婷色综合大香蕉| 国产黄色视频一区二区在线观看| 亚洲色图av天堂| 美女xxoo啪啪120秒动态图| 国产免费又黄又爽又色| 婷婷六月久久综合丁香| 一级黄片播放器| 亚洲国产高清在线一区二区三| 国产精品女同一区二区软件| 久久久a久久爽久久v久久| 人人妻人人澡欧美一区二区| 插阴视频在线观看视频| 国产午夜精品论理片| 久久精品夜夜夜夜夜久久蜜豆| 亚洲人与动物交配视频| 国产男女超爽视频在线观看| 久久久精品欧美日韩精品| 精品久久久久久久久久久久久| 2021天堂中文幕一二区在线观| 久99久视频精品免费| 三级国产精品欧美在线观看| 成人无遮挡网站| 亚洲欧美日韩东京热| 在线免费观看的www视频| 亚洲精品乱码久久久v下载方式| 男人舔女人下体高潮全视频| 成人性生交大片免费视频hd| 最近中文字幕2019免费版| 午夜福利在线观看吧| 色网站视频免费| 一级毛片我不卡| 久久久久久久久久人人人人人人| 美女内射精品一级片tv| 三级男女做爰猛烈吃奶摸视频| 亚洲国产最新在线播放| 国产有黄有色有爽视频| 亚洲精品国产av成人精品| 1000部很黄的大片| 国产乱来视频区| 黄片无遮挡物在线观看| 丝瓜视频免费看黄片| 日日撸夜夜添| 精品一区二区三卡| 色综合站精品国产| 国产精品人妻久久久久久| 在线观看美女被高潮喷水网站| 人妻制服诱惑在线中文字幕| 97热精品久久久久久| 国产精品久久久久久久电影| 亚洲国产色片| 国产三级在线视频| 亚洲久久久久久中文字幕| 爱豆传媒免费全集在线观看| 可以在线观看毛片的网站| 激情五月婷婷亚洲| 亚洲国产日韩欧美精品在线观看| 校园人妻丝袜中文字幕| 欧美日韩综合久久久久久| 亚洲国产色片| 久久久亚洲精品成人影院| 成年免费大片在线观看| 在线观看一区二区三区| 男女那种视频在线观看| 亚洲国产欧美人成| 国产伦在线观看视频一区| 综合色丁香网| 成年版毛片免费区| 国内精品宾馆在线| 国产极品天堂在线| 婷婷色av中文字幕| 亚洲美女视频黄频| 免费黄频网站在线观看国产| 亚洲18禁久久av| a级一级毛片免费在线观看| 免费看美女性在线毛片视频| 色网站视频免费| 在现免费观看毛片| 男人舔奶头视频| 欧美激情在线99| 国产伦一二天堂av在线观看| 国产男人的电影天堂91| 在线免费观看不下载黄p国产| 岛国毛片在线播放| 18禁在线播放成人免费| 成年女人在线观看亚洲视频 | 国产 亚洲一区二区三区 | 一级av片app| 22中文网久久字幕| 男人和女人高潮做爰伦理| 国产男女超爽视频在线观看| 久久97久久精品| 久久久久久久久久成人| 在线观看美女被高潮喷水网站| 波多野结衣巨乳人妻| 高清av免费在线| 丝袜喷水一区| 日韩大片免费观看网站| 国产乱人偷精品视频| 免费播放大片免费观看视频在线观看| 久久精品国产亚洲网站| 日韩av不卡免费在线播放| 日本一二三区视频观看| 美女脱内裤让男人舔精品视频| 大片免费播放器 马上看| 色综合色国产| 国产高清有码在线观看视频| 国产白丝娇喘喷水9色精品| 国语对白做爰xxxⅹ性视频网站| 中文天堂在线官网| 亚洲精品中文字幕在线视频 | 水蜜桃什么品种好| 亚洲熟女精品中文字幕| videos熟女内射| 国国产精品蜜臀av免费| 国产探花极品一区二区| 大香蕉97超碰在线| 日本色播在线视频| 午夜精品一区二区三区免费看| 亚洲最大成人av| 女人久久www免费人成看片| 禁无遮挡网站| 午夜日本视频在线| 国产在线一区二区三区精| 激情五月婷婷亚洲| 国产精品一区二区在线观看99 | 一级毛片黄色毛片免费观看视频| 久久精品夜色国产| 男女下面进入的视频免费午夜| 又黄又爽又刺激的免费视频.| 国产亚洲最大av| 国产毛片a区久久久久| 亚洲综合精品二区| 身体一侧抽搐| 欧美成人精品欧美一级黄| 高清av免费在线| 久久鲁丝午夜福利片| 亚洲欧美清纯卡通| 汤姆久久久久久久影院中文字幕 | av免费观看日本| 成人美女网站在线观看视频| 天美传媒精品一区二区| 美女脱内裤让男人舔精品视频| 韩国av在线不卡| 日韩欧美三级三区| 99久久精品一区二区三区| 国产av国产精品国产| 国产免费福利视频在线观看| 超碰97精品在线观看| 日韩精品有码人妻一区| 成人午夜精彩视频在线观看| 国产精品久久视频播放| 男的添女的下面高潮视频| 晚上一个人看的免费电影| 久久人人爽人人爽人人片va| 久久久久久久久久久免费av| 日本欧美国产在线视频| 亚洲欧美日韩无卡精品| 可以在线观看毛片的网站| 一区二区三区四区激情视频| 日本免费在线观看一区| 一级av片app| 午夜激情久久久久久久| 国产探花极品一区二区| 国产片特级美女逼逼视频| eeuss影院久久| 国产日韩欧美在线精品| 国产av国产精品国产| 亚洲精品亚洲一区二区| 欧美成人午夜免费资源| 国产视频首页在线观看| 国产av码专区亚洲av| 人妻系列 视频| 国产精品国产三级国产av玫瑰| 天天一区二区日本电影三级| 老司机影院成人| 看非洲黑人一级黄片| 久久久欧美国产精品| 18禁裸乳无遮挡免费网站照片| 神马国产精品三级电影在线观看| 精品亚洲乱码少妇综合久久| 视频中文字幕在线观看| 国产成人精品久久久久久| 中文字幕制服av| 搡老乐熟女国产| 亚洲成人av在线免费| 欧美3d第一页| 国产精品三级大全| 国产高清不卡午夜福利| 少妇人妻精品综合一区二区| 久久这里只有精品中国| 国产成人午夜福利电影在线观看| 午夜免费激情av| 国产精品无大码| 天堂av国产一区二区熟女人妻| 91精品伊人久久大香线蕉| 男女边摸边吃奶| 尤物成人国产欧美一区二区三区| 淫秽高清视频在线观看| 亚洲电影在线观看av| 中文字幕制服av|