• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    CO2 methanation over TiO2-Al2O3 binary oxides supported Ru catalysts☆

    2016-05-29 10:58:12JinghuaXuQingquanLinXiongSuHongminDuanHaoranGengYanqiangHuang

    Jinghua Xu ,Qingquan Lin ,Xiong Su ,Hongmin Duan ,Haoran Geng *,Yanqiang Huang ,*

    1 School of Materials Science and Engineering,Shandong University,Jinan 250061,China

    2 State Key Laboratory of Catalysis,Dalian Institute of Chemical Physics,Chinese Academy of Sciences,Dalian 116023,China

    3 School of Chemistry and Chemical Engineering,Yantai University,Shandong Applied Research Center of Gold Nanotechnology(Au-SDARC),Yantai 264005,China

    1.Introduction

    The concentration of CO2in atmosphere continues to increase with the expansion of the world's population and economic growth.Therefore,areduction in CO2emission into the atmosphere is an urgent necessity.Among all the technologies(capture,sequestration,conversion,etc.),converting CO2into CH4has received renewed interests due to its us age as chemical storage of the excess H2generated from renew ableenergy and a solution for carbon resources recycling[1-3].Moreover,this reaction is regarded as a key technology for enabling longer manned space missions in the future,which is because of the recycling of wasted CO2from breathing and wasted H2from water electrolysis in the International Space Station[4-6].

    The CO2methanation reaction is know n for a long time and was first introduced by Sabatier and Senderens[7],as the following reaction(Eq.(1)).

    Notice that the reaction of CO2hydrogenation is strongly exothermic,albeit thermodynamically favored at low temperatures.Thus,the catalyst used in CO2hydrogenation must be efficient with a high activity at low temperatures and stable enough to endure the reaction heat.A series of VIIIB metals catalysts(Fe,Ru,Co,Rh,Ni)have been carried out on various supports(e.g.,SiO2,TiO2,Al2O3,ZrO2,CeO2)for the CO/CO2methanation reaction[8-13].Among all the investigated catalysts,Ru/TiO2has been regarded as the most efficient catalyst and has the highest selectivity towards CH4[14-17].It is reported that much higher activity on Ru/TiO2catalyst in the reaction of CO2methanation is resulted from a strong interaction between Ru and the TiO2support[18,19].Many works have been done to investigate the effects of different types of TiO2on catalytic activities in CO2methanation reaction,such as different facets[20],crystalline phases and morphologies of TiO2[21].Although TiO2has been regarded as the most effective support for Ru catalyst in CO2methanation,it presents the disadvantages of low surface area and poor structural stability w hen submitted to high temperature.Besides TiO2,another widely tested support for CO2methanation reaction is Al2O3,because it presents high surface area and resists to abrasion.How ever,Al2O3supported catalysts exhibited much lower catalytic activity than that of TiO2supported systems[22].

    Incorporation of titania to alumina for preparation of titania-alumina compositeis now commonly used where great enhancement of catalytic activity is achieved as w ell as the higher surface area and thermal stability of titania-alumina mixture compared to the titania alone.TiO2-Al2O3binary oxides are widely applied as catalyst support[23].For instance,Lu et al.[24]have investigated the catalytic activities of Ru supported on TiO2-Al2O3binary oxide for the CO2methanation reaction.The results show ed that their catalytic activities were influenced by the content of TiO2in the supports.How ever,the influence of TiO2phase and the particle size of Ru on CO2conversions have not been reported in the literature.In this work,TiO2modified Al2O3binary oxide was prepared by using a w et-impregnation method,and used as the support for ruthenium catalyst(structure model is show n in Fig.1).The catalytic performance of Ru/TiO2-Al2O3catalyst in CO2methanation reaction was investigated.The effect of TiO2content and TiO2-Al2O3calcination temperature on the catalytic performance was addressed.

    Fig.1.Structure model of TiO2-Al2O3 binary oxides supported Ru catalysts.

    2.Experimental

    2.1.Chemicals

    Alumina(Al2O3,AR,SBET≥260 m2·g-1)was purchased from Aluminum Corporation of Shandong.Titanium tetra chloride(TiCl4,≥98.0%)and Ruthenium(III)chloride(RuCl3,11.1 wt%)solution were purchased from Sinopharm Chemical Reagent Co.,Ltd.Deionized water was used in all experiments.

    2.2.Catalyst Preparation

    2.2.1.Preparation of the TiO2-Al2O3 binary oxide

    TiO2-Al2O3binary oxides with different mass concentrations of TiO2(5%,10%,15%)were prepared by a wet-impregnation method using Al2O3as the support.Typically,3 g Al2O3was added into the solution of TiCl4(10 vol%),and kept static at room temperature until the water was evaporated.Then,the samples were dried at 120°C for 12 h,and calcined in air at different temperatures(600,800,950,1100°C)for 4 h.

    2.2.2.Preparation of the ruthenium catalysts

    Al2O3or TiO2-Al2O3binary oxides supported Ru catalysts were prepared by incipient-wetness impregnation method with 5 w t%of metal loading.An aqueous solution(0.47 g)of RuCl3(11.1 w t%)was diluted to 0.85 g using ultra-super water.The Al2O3or TiO2-Al2O3support(1.00 g)was added into the solution and kept still at room temperature for 8 h.The obtained samples were dried at 120 °C for 12 h,then calcined in air at 300 °C for 4 h for further catalytic evaluations.

    2.3.Activity test

    The catalytic performance of these Ru catalysts in the CO2methanation reaction was carried out in a continuous- flow fixed-bed reactor under atmospheric pressure.50 mg catalyst(0.42-0.85 mm),diluted in 400 mg SiO2(0.42-0.85 mm),was loaded in a U-shape quartz reactor(i.d.6 mm).Before starting the reaction,the catalysts were reduced at 400°C for 1 h in the feed gas containing 18 vol%CO2,72 vol%H2and balanced with 10 vol%N2(employed as internal standard gas)with a flow rate of 50 ml·min-1.

    The gas products from the reactor were passed through an ice-bath unit to remove the water vapor,and then analyzed on line with an Agilent 6890 gas chromatograph with a TDX-01 column connected to a TCD detector.The catalytic performance was expressed by the conversion of CO2based on different concentrations between inlet and outlet,which is defined as:

    w here,CO2(in)and N2(in)are the CO2and N2concentrations at inlet;CO2(out)and N2(out)are the CO2and N2concentrations at outlet,respectively.We did not detect any CO or other by-products except CH4w hen the reaction temperatures were low er than 350°C.

    2.4.Catalyst characterizations

    The X-ray diffraction(XRD)patterns were recorded with a PANalytical X'Pert-Pro pow der X-ray diffractometer,using Cu Kαmonochromatized radiation(λ=0.1541 nm)operated at 40 kV and 40 m A.The scanning angle(2θ)range was from 10°to 90°,and operated with a scanning speed of 10(°)·min-1.

    Temperature-programmed reduction(TPR)experiments were carried out on a Micromeritics AutoChem II2920 Automated Catalyst Characterization System.Prior to the H2-TPR experiment,about 50 mg of the calcined sample was loaded into a U-shape quartz reactor and pretreated with air at 150°C for 1 h to remove the adsorbed water.After cooling to room temperature,10 vol%H2/Ar mixed gas was passed through the sample and then heated to 900°C at a ramping rate of 10 °C·min-1.

    Nitrogen adsorption-desorption isotherms were obtained on a Quadrasorb SI-20 apparatus at-196°C.Prior to the measurements,the samples were degassed at 300°C for 5 h.The Brunauer-Emmett-Teller(BET)method was used to calculate the specific surface areas(SBET).The pore size(Dp)and pore volume(Vp)were derived from the desorption branches of the isotherms using the Barrett-Joyner-Halenda(BJH)method.

    High angular annular dark field scanning transmission electron microscopy(HAADF-STEM)images were recorded using a JEM-2100F field emission electronic microscope equipped with an STEM darkfield(DF)detector under the accelerating voltage of 200 kV.

    3.Results and Discussion

    Fig.2.CO2 conversions as a function of the reaction temperature for Ru/Al2O3 and Ru/5 wt%TiO2-Al2O3 catalyst.TiO2-Al2O3 support was calcined at 950°C.

    Fig.2 show s the catalytic activities as a function of reaction temperature over Ru/Al2O3and Ru/TiO2-Al2O3catalysts in the temperature range of 150-400°C.It is observed that the Ru/TiO2-Al2O3catalyst exhibited much higher activity than Ru/Al2O3.At the temperature of 225°C,about 6.7%CO2in the feed gas was converted to CH4on the Ru/TiO2-Al2O3catalyst,but the CO2conversion over Ru/Al2O3catalyst was only 1.7%.The reaction rates of the investigated catalysts at 225°C were calculated.There action rate on the Ru/TiO2-Al2O3catalyst was0.59 mol CO2·(g Ru)-1·h-1,3.1 times higher than that on Ru/Al2O3[0.19 mol CO2·(g Ru)-1·h-1],indicating that the TiO2-Al2O3binary oxide is a superior support to load Ru for CO2hydrogenation to CH4.

    Fig.3 shows the XRD patterns of supported Ru catalysts on Al2O3and TiO2-Al2O3supports be fore and after reduction at 400°C.It can be clearly seen that the peak intensity of Ru O2on TiO2-Al2O3support before reduction is much weaker than that on Al2O3.Using Scherrer's equation,we get the crystal size of RuO2which is 8.3 nm when supported on Al2O3,while the peak intensity of Ru O2supported on TiO2-Al2O3is too weak to calculate the particle size.The relatively wide peaks indicate the small crystal size,suggesting that coating TiO2on the surface of Al2O3can effectively prohibit the aggregation of Ru O2.After the catalysts were reduced at 400°C for 1 h,the peak intensity of Ru supported on TiO2-Al2O3support is also much weaker than that on Al2O3,indicating the smaller particle size of Ru on TiO2-Al2O3support.

    Fig.4 show s the STEM-HAADF images of supported Ru catalysts on Al2O3and TiO2-Al2O3support after reduction at 400°C for 1 h.We can easily find out that the Ru nanoparticles(displayed as bright round spots in the STEM-HAADF images)on the surface of Al2O3support are larger than those on TiO2-Al2O3.The averaged particle size of the Ru on Al2O3support is found to be(4.3±2.5)nm.How ever,it is only about(2.8±1.6)nm and with a narrower particle size distribution for the Ru/TiO2-Al2O3catalyst.CO chemisorption on the catalysts was also carried out to determine the dispersion of Ru metal.Results show ed that the dispersion of Ru on Ru/Al2O3is about 4.7%,but this value was increased to 5.5%on the Ru/TiO2-Al2O3catalyst.We further calculated the turnover frequency(TOF)of CO2conversion with respect to the number of surface Ru atoms at 225°C.The TOF over Ru/Al2O3and Ru/TiO2-Al2O3catalysts are 0.11 and 0.30 s-1,respectively.These results indicate that coating TiO2on the surface of Al2O3appears to be an efficient strategy to stabilize smaller nano-sized particles of Ru by a strong interaction between Ru and the TiO2support.It is considered as one of the reasons for the enhanced activity.

    The influence of TiO2loading on CO2conversions for supported Ru catalysts is studied.Fig.5 displays the catalytic activities as a function of reaction temperature over supported Ru catalysts with different loadings of TiO2.We can see that it has little impact on the catalytic activities when the TiO2loading increases from 5 wt%to 15 w t%.XRD patterns of the corresponding catalysts are show n in Fig.6.It is interesting to find out that there exist two structure types of Al2O3(α-Al2O3and θ-Al2O3)in these catalysts.The peak intensity of α-Al2O3is enhanced gradually with the increasing loading of TiO2,indicating that the phase transformation of θ-Al2O3to α-Al2O3in TiO2-Al2O3complex support can be promoted as the loading of TiO2increases.At the same time,the BET surface area of TiO2-Al2O3decreases from 67 to 56 m2·g-1(see Table 1)along with the θ-Al2O3to α-Al2O3phase transformation.In addition,the peak intensity of r-TiO2is also enhanced with the increasing loading of TiO2,indicating that the particle size of r-TiO2becomes bigger.The bigger particle size of r-TiO2and decreased specific surface area of TiO2-Al2O3along with the increasing loading of TiO2may be the possible reasons for the unimproved activity.

    Fig.7 displays the catalytic activities over supported Ru catalysts as the calcination temperature of TiO2-Al2O3binary oxide support increased from 600 to 1100°C.Obviously,the CO2conversion increases with the increase of calcination temperature(from 600 to 950°C).However,further increase the calcination temperature to 1100°C,the CO2conversion doesn't increase.On the contrary,it shows a decreased tendency within the reaction temperature range of 150-350°C.The CO2conversion increases only w hen the reaction temperature is above 350°C,which may be attributed to a different reaction mechanism to be further identified.From the above discussions,the optimal calcination temperature of the support is considered to be 950°C.

    To investigate the relation ship between catalytic activities and structural properties of the catalysts after calcination at different temperatures,the powdered X-ray diffraction measurements were performed.From the results(Fig.8),it can be seen that the signals of anatase-TiO2(abbreviated as a-TiO2)disappears w hen the calcination temperature of TiO2-Al2O3binary oxide increases to 950°C,which is considered to be transformed to rutile phase.How ever,the relative XRD peak intensity is too weak to be identified due to the small crystal size of rutile.At the same time,γ-Al2O3is transformed to θ-Al2O3,leading to the specific surface area of TiO2-Al2O3decrease from 181 to 67 m2·g-1(Table 1).When the calcination temperature further increases to 1100°C,the rutile crystal signals could be clearly observed and its intensity greatly enhanced,indicating the bigger particle size of the support.Meanwhile,θ-Al2O3is transformed to α-Al2O3,and the corresponding specific surface area of TiO2-Al2O3decreases to 47 m2·g-1(Table 1).Both of the factors would lead to the aggregation of metal particles with the loss of surface active sites,which should be responsible for the decreased conversion of CO2.It is previously reported that in Al2O3-TiO2complex support,the presence of TiO2could reduce the phase transformation temperature of Al2O3.How ever,the presence of Al2O3could raise the temperature of anatase to rutile TiO2transformation[25,26].In addition,the peak intensity of Ru O2weakened along with the anatase to rutile TiO2transformation,indicating that RuO2particle size is decreased.Using Scherrer's equation,w e obtained that the crystal size of Ru O2were 8.2 nm and 7.4 nm w hen the Al2O3-TiO2binary support was calcined at 600 and 800°C,respectively.How ever,w hen the calcination temperature of the support is above 950°C,the peak intensity of Ru O2is too weak to calculate the particle size.Therefore,by analyzing the XRD patterns of these catalysts,we conclude that r-TiO2appears to be a better support than a-TiO2to improve the dispersion of RuO2.This is consistent with a previous report that there was a strong interaction between Ru O2and r-TiO2,which prohibited the aggregation of RuO2[19].As a result,the smaller particle size of Ru on TiO2-Al2O3support is obtained,which is considered to be one of the reasons for the improved activity in CO2methanation.

    Fig.3.XRD patterns of supported Ru catalysts.(a)Ru/Al2O3 and(b)Ru/5 wt%TiO2-Al2O3.TiO2-Al2O3 support was calcined at 950°C.

    Fig.4.STEM-HAADF images and size distribution of supported Ru catalysts(a)&(c)Ru/Al2O3;(b)&(d)Ru/5 wt%TiO2-Al2O3.TiO2-Al2O3 support was calcined at 950°C.

    Fig.5.Effect of TiO2 loading on CO2 conversion for supported Ru catalysts.TiO2-Al2O3 support was calcined at 950°C.

    Fig.6.XRD patterns of supported Ru catalysts with different TiO2 loading.TiO2-Al2O3 support was calcined at 950°C.

    Table 1 Surface measurements for TiO2-Al2O3 supported catalysts

    Fig.7.Effect of calcination temperatures of supports on CO2 conversions for supported Ru catalysts.

    Fig.8.XRD patterns of the supported Ru catalysts at different calcination temperatures.

    Fig.9 show s H2-TPR pro files of the supported Ru catalysts on TiO2-Al2O3binary oxide which are calcined at different temperatures.The Ru O2species start to be reduced at 156°C w hen the calcination temperature is 600°C,but the reduction temperature is delayed to 162 °C w hen the calcination temperature increases to 800 and 950 °C.The most likely explanation is the strong interaction between RuO2and r-TiO2,which hindered the reduction of RuO2.How ever,the reduction temperature of RuO2is reduced to 146°C when the calcination temperature further increases to 1100°C,which is probably due to the weakened interaction between Ru O2and r-TiO2originated from the much larger particle size of r-TiO2.

    By analyzing these results,w e get the know ledge that the presence of TiO2in Al2O3-TiO2complex support facilitated the phase transformation of Al2O3,leading to a decrease of the specific surface area of Al2O3-TiO2complex support.Therefore,grafting titanium on other thermally stable supports,such as SiO2,seems to be a better option to prepare the binary oxide support.That part of research is under investigation in our research group.The results will be reported separately later on.

    Fig.9.H2-TPR pro files of the supported Ru catalysts at different calcination temperatures.

    4.Conclusions

    In this study,TiO2modified Al2O3binary oxide was prepared by a w et-impregnation method and used as a support for ruthenium catalyst.The catalytic performance of Ru/TiO2-Al2O3catalyst in CO2methanation reaction was tested.The Ru/TiO2-Al2O3catalyst exhibited a much higher activity in CO2methanation reaction than the Ru/Al2O3catalyst.The reaction rate on the Ru/TiO2-Al2O3catalyst was 0.59 mol CO2·(g Ru)-1·h-1,3.1 times higher than that on Ru/Al2O3[0.19 mol CO2·(g Ru)-1·h-1].The effect of TiO2content and TiO2-Al2O3calcination temperature on catalytic activity was addressed.It was found that TiO2content has little impact on the catalytic activity in CO2methanation reaction.But the phase of TiO2has a great influence on activity of catalysts.When the calcination temperature of TiO2-Al2O3increased from 600 to 950°C,anatase TiO2transformed into rutile phase,resulting in smaller Ru particle size(2.8 nm)than that on Al2O3(4.3 nm).The small Ru particle size,originated from a strong interaction between Ru and the r-TiO2support,should be responsible for the improved activity over Ru/TiO2-Al2O3catalyst.

    [1]W.Wang,S.P.Wang,X.B.Ma,J.L.Gong,Recent advances in catalytic hydrogenation of carbon dioxide,Chem.Soc.Rev.40(7)(2011)3703-3727.

    [2]D.J.Cheng,F.R.Negreiros,E.Aprà,A.Fortunelli,Computational approaches to the chemical conversion of carbon dioxide,ChemSusChem 6(6)(2013)944-965.

    [3]L.He,Q.Q.Lin,Y.Liu,Y.Q.Huang,Unique catalysis of Ni-Al hydrotalcite derived catalyst in CO2methanation:Cooperative effect between Ni nanoparticles and a basic support,J.Energy Chem.23(5)(2014)587-592.

    [4]J.X.Liu,W.H.Hou,Study on Ru-based catalyst used in reductive reaction of CO2,Space Med.Med.Eng.17(6)(2004)457-460(in Chinese).

    [5]Y.Y.Meng,C.X.Shang,A study on CO2methanization reduction technology,Space Med.Med.Eng.7(2)(1994)115-120(in Chinese).

    [6]K.H.Zhou,B.Z.Wu,C.B.Ren,Comparative analysis of Sabatier CO2reduction system for space station,Space Med.Med.Eng.24(5)(2011)384-390(in Chinese).

    [7]P.Sabatier,J.B.Senderens,New synthesis of methane,C.R.Acad.Sci.134(1902)514-516.

    [8]Q.H.Liu,X.F.Dong,Z.L.Liu,Performance of Ni/Nano-Zr O2catalysts for CO preferential methanation,Chin.J.Chem.Eng.22(2)(2014)131-135.

    [9]I.Graca,L.V.González,M.C.Bacariza,A.Fernandes,C.Henriques,CO2hydrogenation into CH4on NiHNaUSY zeolites,Appl.Catal.B Environ.147(2014)101-110.

    [10]W.Wang,J.L.Gong,Methanation of carbon dioxide:an overview,Front.Chem.Sci.Eng.5(1)(2011)2-10.

    [11]G.D.Weatherbee,C.H.Bartholomew,Hydrogenation of CO2on group VIII metals:IV.Specific activities and selectivities of silica-supported Co,Fe,and Ru,J.Catal.87(2)(1984)352-362.

    [12]Q.H.Liu,X.F.Dong,Z.L.Liu,Performance of Ni/nano-ZrO2catalysts for CO preferential methanation,Chin.J.Chem.Eng.22(2)(2014)131-135.

    [13]J.Liu,D.M.Cui,J.Yu,F.B.Su,G.W.Xu,Performance characteristics of fluidized bed syngas methanation over Ni-Mg/Al2O3catalyst,Chin.J.Chem.Eng.23(1)(2015)86-92.

    [14]J.A.Mieth,J.A.Schwarz,The effect of catalyst preparation on the performance of alumina-supported ruthenium catalysts:I.The impact of catalytic precursor on particle size and catalytic activity,J.Catal.118(1)(1989)203-217.

    [15]Q.Jiang,G.C.Deng,R.T.Chen,Z.T.Huang,A study on catalysts for methanation of carbon dioxide I.The activity of supported group VII metal catalysts,Chin.J.Catal.18(1)(1997)5-8.

    [16]S.Sharma,Z.Hu,P.Zhang,E.W.McFarland,H.Metiu,CO2methanation on Ru-doped ceria,J.Catal.278(2)(2011)297-309.

    [17]D.Li,N.Ichikuni,S.Shimazu,T.Uematsu,Hydrogenation of CO2over sprayed Ru/TiO2fine particles and strong metal-support interaction,Appl.Catal.A 180(1-2)(1999)227-235.

    [18]C.M.Li,S.T.Zhang,B.S.Zhang,D.S.Su,S.He,Y.F.Zhao,J.Liu,F.Wang,M.Wei,D.G.Evans,X.Duan,Photohole-oxidation-assisted anchoring of ultra-small Ru clusters onto TiO2with excellent catalytic activity and stability,J.Mater.Chem.A 1(7)(2013)2461-2467.

    [19]Q.Q.Lin,X.Y.Liu,Y.Jiang,Y.Wang,Y.Q.Huang,T.Zhang,Crystal phase effects on the structure and performance of ruthenium nanoparticlesfor CO2hydrogenation,Catal.Sci.Technol.4(7)(2014)2058-2063.

    [20]F.Wang,S.T.Zhang,C.M.Li,J.Liu,S.He,Y.F.Zhao,H.Yan,M.Wei,D.G.Evans,X.Duan,Catalytic behavior of supported Ru nanoparticles on the(101)and(001)facets of anatase TiO2,RSC Adv.4(21)(2014)10834-10840.

    [21]G.Y.Wang,Y.X.Gao,W.D.Wang,W.X.Huang,Selective CO methanation over Ru catalysts supported on nanostructured TiO2with different crystalline phases and morphology,Chin.J.Chem.Phys.25(4)(2012)475-480.

    [22]M.H.Brijaldo,F.B.Passos,H.A.Rojas,P.Reyes,Hydrogenation of m-dinitrobenzene over Pt supported catalysts on TiO2-Al2O3binary oxides,Catal.Lett.144(5)(2014)860-866.

    [23]A.E.Awadallaha,M.S.Mostafa,A.A.Aboul-Enein,S.A.Hana fib,Hydrogen production via methane decomposition over Al2O3-TiO2binary oxides supported Ni catalysts:effect of Ti content on the catalytic efficiency,Fuel 129(2014)68-77.

    [24]H.X.Lu,B.H.Qin,K.P.Sun,X.L.Xu,Study of Ru/Al2O3-TiO2catalyst for CO2methanation,J.Mol.Catal.19(1)(2005)27-30(in Chinese).

    [25]S.Nakade,M.Matsuda,S.Kambe,Y.Saito,T.Kitamura,T.Sakata,Y.Wada,H.Mori,S.Yanagida,Dependence of TiO2nanoparticle preparation methods and annealing temp erature on the efficiency of dye-sensitized solar cells,J.Phys.Chem.B 106(39)(2002)10004-10010.

    [26]Y.Wei,X.X.Liu,Preparation and characterization of Al2O3-TiO2complex support,Petrochem.Technol.35(2)(2006)173-177(in Chinese).

    又粗又爽又猛毛片免费看| 亚洲aⅴ乱码一区二区在线播放| 一进一出抽搐动态| 男女那种视频在线观看| 全区人妻精品视频| eeuss影院久久| 亚洲熟妇熟女久久| 国产欧美日韩一区二区精品| 欧美一级a爱片免费观看看| 国产黄片美女视频| 精华霜和精华液先用哪个| av女优亚洲男人天堂| tocl精华| 亚洲人成网站高清观看| 三级国产精品欧美在线观看| 日韩欧美三级三区| 亚洲av免费高清在线观看| 亚洲国产中文字幕在线视频| 欧美不卡视频在线免费观看| 久久亚洲精品不卡| 观看美女的网站| 一级黄片播放器| 脱女人内裤的视频| 日韩人妻高清精品专区| 久久久精品欧美日韩精品| 精品熟女少妇八av免费久了| 看免费av毛片| 精品人妻偷拍中文字幕| 中文字幕熟女人妻在线| 欧美3d第一页| 91九色精品人成在线观看| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 精品一区二区三区视频在线观看免费| 中文字幕人成人乱码亚洲影| 久久亚洲真实| 日韩欧美国产在线观看| 夜夜看夜夜爽夜夜摸| 黄色女人牲交| 欧美激情在线99| 成年女人毛片免费观看观看9| 中文字幕高清在线视频| 大型黄色视频在线免费观看| 国产精品自产拍在线观看55亚洲| 免费在线观看亚洲国产| 亚洲国产欧美网| 成人av一区二区三区在线看| 一二三四社区在线视频社区8| 国产亚洲av嫩草精品影院| 最新美女视频免费是黄的| 欧美日韩综合久久久久久 | 黄色日韩在线| 一区福利在线观看| 嫩草影院入口| 国产成人av激情在线播放| 九九在线视频观看精品| 哪里可以看免费的av片| 日韩有码中文字幕| 国产熟女xx| 人人妻人人澡欧美一区二区| 男女之事视频高清在线观看| 国产成人啪精品午夜网站| 岛国在线观看网站| 精华霜和精华液先用哪个| 亚洲欧美日韩卡通动漫| av黄色大香蕉| 精品国产超薄肉色丝袜足j| 国产精品免费一区二区三区在线| 午夜精品在线福利| 怎么达到女性高潮| 好男人电影高清在线观看| 久久久久久大精品| 久久久久性生活片| 国产精品一区二区三区四区免费观看 | a在线观看视频网站| 国产高清videossex| 99视频精品全部免费 在线| 国产精品一及| 久久久色成人| 99热精品在线国产| 久久精品人妻少妇| 性色av乱码一区二区三区2| 女人被狂操c到高潮| 欧美+日韩+精品| 亚洲成人精品中文字幕电影| 嫩草影院入口| 日本一本二区三区精品| 亚洲激情在线av| 国产精品三级大全| 国产av在哪里看| 黄色成人免费大全| 一a级毛片在线观看| 国产不卡一卡二| 香蕉丝袜av| 亚洲av免费高清在线观看| 级片在线观看| 搡老熟女国产l中国老女人| 国产欧美日韩精品一区二区| 日韩中文字幕欧美一区二区| 国产精品久久久久久亚洲av鲁大| 国产高清激情床上av| 国产精品爽爽va在线观看网站| 女人十人毛片免费观看3o分钟| 成年人黄色毛片网站| 美女 人体艺术 gogo| 法律面前人人平等表现在哪些方面| 国产成人av激情在线播放| 欧美日韩瑟瑟在线播放| 日本黄色视频三级网站网址| ponron亚洲| 在线观看一区二区三区| 老汉色av国产亚洲站长工具| 18禁美女被吸乳视频| 国产欧美日韩一区二区精品| 老司机午夜福利在线观看视频| 日本一本二区三区精品| 久久久久国产精品人妻aⅴ院| 日本免费一区二区三区高清不卡| 90打野战视频偷拍视频| 欧美另类亚洲清纯唯美| 每晚都被弄得嗷嗷叫到高潮| 深爱激情五月婷婷| 精品久久久久久久久久久久久| 久久香蕉精品热| 国产国拍精品亚洲av在线观看 | 欧美日本视频| 婷婷六月久久综合丁香| 可以在线观看的亚洲视频| 日韩欧美在线乱码| 亚洲片人在线观看| 女警被强在线播放| 欧美不卡视频在线免费观看| 国产av不卡久久| 在线免费观看不下载黄p国产 | 麻豆一二三区av精品| 日本五十路高清| 日日干狠狠操夜夜爽| 国产成人啪精品午夜网站| 亚洲国产高清在线一区二区三| 国产欧美日韩精品亚洲av| 狂野欧美白嫩少妇大欣赏| 欧美日韩国产亚洲二区| 宅男免费午夜| 亚洲成a人片在线一区二区| 天天一区二区日本电影三级| 国产欧美日韩精品亚洲av| 国内精品久久久久久久电影| 国产精品98久久久久久宅男小说| 亚洲无线在线观看| 麻豆国产av国片精品| 最新美女视频免费是黄的| 亚洲 欧美 日韩 在线 免费| 日本精品一区二区三区蜜桃| 毛片女人毛片| 免费在线观看日本一区| 两个人的视频大全免费| 国产欧美日韩精品亚洲av| 久久久色成人| 天堂网av新在线| 日韩欧美 国产精品| 亚洲熟妇中文字幕五十中出| 给我免费播放毛片高清在线观看| 日本在线视频免费播放| 在线十欧美十亚洲十日本专区| 亚洲美女黄片视频| 国内毛片毛片毛片毛片毛片| 日韩有码中文字幕| 国内精品久久久久精免费| 少妇熟女aⅴ在线视频| 91久久精品电影网| 岛国视频午夜一区免费看| 两个人视频免费观看高清| 国产成人av教育| 国产高清videossex| 在线a可以看的网站| 一区福利在线观看| 俄罗斯特黄特色一大片| 色综合亚洲欧美另类图片| 亚洲av电影在线进入| 性欧美人与动物交配| 成人高潮视频无遮挡免费网站| 日韩 欧美 亚洲 中文字幕| 制服丝袜大香蕉在线| 首页视频小说图片口味搜索| 午夜免费男女啪啪视频观看 | 亚洲真实伦在线观看| 亚洲av成人不卡在线观看播放网| 精品人妻偷拍中文字幕| 亚洲国产精品999在线| 天天添夜夜摸| 久久九九热精品免费| 色视频www国产| 中文字幕人妻熟人妻熟丝袜美 | 一进一出好大好爽视频| 极品教师在线免费播放| bbb黄色大片| 夜夜躁狠狠躁天天躁| 一个人看的www免费观看视频| 欧美av亚洲av综合av国产av| 国产精品爽爽va在线观看网站| 一本一本综合久久| 国产高清三级在线| 九九在线视频观看精品| 国产精品,欧美在线| 午夜老司机福利剧场| 精品久久久久久久人妻蜜臀av| 欧美在线黄色| 99精品久久久久人妻精品| 国产亚洲精品av在线| 国产真人三级小视频在线观看| 美女cb高潮喷水在线观看| 人人妻人人看人人澡| 草草在线视频免费看| 无人区码免费观看不卡| 亚洲中文字幕日韩| 亚洲国产精品成人综合色| 观看免费一级毛片| 国产不卡一卡二| 久99久视频精品免费| 久久久久国产精品人妻aⅴ院| 日韩欧美三级三区| 欧美一级毛片孕妇| 亚洲专区中文字幕在线| 超碰av人人做人人爽久久 | 变态另类成人亚洲欧美熟女| 精品国产三级普通话版| 午夜激情福利司机影院| 国产午夜福利久久久久久| 香蕉丝袜av| 亚洲欧美日韩高清在线视频| 亚洲美女视频黄频| 欧美黄色淫秽网站| 此物有八面人人有两片| 欧美乱妇无乱码| 久久久久国产精品人妻aⅴ院| 国产一区二区在线av高清观看| 成人亚洲精品av一区二区| 日韩欧美 国产精品| 老鸭窝网址在线观看| 91在线观看av| 99在线人妻在线中文字幕| 内地一区二区视频在线| 午夜福利18| 最近在线观看免费完整版| 欧美日韩瑟瑟在线播放| 深爱激情五月婷婷| 久久久久久久久中文| 91麻豆精品激情在线观看国产| 又爽又黄无遮挡网站| 亚洲中文字幕一区二区三区有码在线看| 91在线精品国自产拍蜜月 | а√天堂www在线а√下载| 啦啦啦观看免费观看视频高清| 国产一区在线观看成人免费| 欧美黄色淫秽网站| 精品人妻1区二区| 亚洲五月婷婷丁香| h日本视频在线播放| 国产精品精品国产色婷婷| 久久国产精品人妻蜜桃| 久久久成人免费电影| 亚洲一区高清亚洲精品| 婷婷精品国产亚洲av在线| 男人的好看免费观看在线视频| 国产成+人综合+亚洲专区| 亚洲精品美女久久久久99蜜臀| 亚洲男人的天堂狠狠| 99国产极品粉嫩在线观看| 男人的好看免费观看在线视频| 少妇熟女aⅴ在线视频| 丰满乱子伦码专区| 99热精品在线国产| 亚洲精品色激情综合| 色综合欧美亚洲国产小说| 成人国产一区最新在线观看| 在线观看免费午夜福利视频| 不卡一级毛片| 亚洲成av人片免费观看| 日本成人三级电影网站| 亚洲av熟女| 久久久久久久久中文| 亚洲精品色激情综合| 亚洲精品乱码久久久v下载方式 | 淫妇啪啪啪对白视频| 3wmmmm亚洲av在线观看| 免费在线观看亚洲国产| 波多野结衣高清无吗| 国模一区二区三区四区视频| 亚洲最大成人中文| 国产精品女同一区二区软件 | 99精品欧美一区二区三区四区| 色综合欧美亚洲国产小说| 人人妻,人人澡人人爽秒播| 欧美乱妇无乱码| 亚洲专区国产一区二区| 免费人成视频x8x8入口观看| 国产精品99久久久久久久久| 国产精品精品国产色婷婷| 国产欧美日韩精品一区二区| 亚洲熟妇熟女久久| 啦啦啦韩国在线观看视频| 美女黄网站色视频| 两个人看的免费小视频| 久久中文看片网| 亚洲avbb在线观看| 无遮挡黄片免费观看| 少妇人妻精品综合一区二区 | 日韩av在线大香蕉| 最近最新中文字幕大全免费视频| 精品久久久久久成人av| 国产极品精品免费视频能看的| 国产三级黄色录像| 国产成人欧美在线观看| 亚洲精品一卡2卡三卡4卡5卡| 老汉色av国产亚洲站长工具| 日本黄色片子视频| 亚洲av二区三区四区| 亚洲国产欧洲综合997久久,| 免费在线观看成人毛片| 网址你懂的国产日韩在线| 五月玫瑰六月丁香| 很黄的视频免费| 亚洲av五月六月丁香网| 亚洲18禁久久av| 亚洲一区高清亚洲精品| 在线观看免费视频日本深夜| 亚洲国产欧美人成| 精品午夜福利视频在线观看一区| 精品国产超薄肉色丝袜足j| 免费大片18禁| 99热这里只有是精品50| 村上凉子中文字幕在线| 美女cb高潮喷水在线观看| 欧美日韩国产亚洲二区| 丰满人妻一区二区三区视频av | 人妻丰满熟妇av一区二区三区| 亚洲国产精品999在线| 欧美成狂野欧美在线观看| 香蕉久久夜色| 亚洲精品色激情综合| 国产v大片淫在线免费观看| 一进一出抽搐gif免费好疼| 舔av片在线| 最新美女视频免费是黄的| 日本与韩国留学比较| 十八禁人妻一区二区| 少妇熟女aⅴ在线视频| 女生性感内裤真人,穿戴方法视频| 亚洲av电影不卡..在线观看| 日韩欧美 国产精品| 日韩欧美精品免费久久 | 亚洲专区国产一区二区| 老汉色av国产亚洲站长工具| 国产97色在线日韩免费| 在线观看66精品国产| 九九热线精品视视频播放| 亚洲国产中文字幕在线视频| 伊人久久大香线蕉亚洲五| 久久天躁狠狠躁夜夜2o2o| 国产激情偷乱视频一区二区| 少妇丰满av| 变态另类丝袜制服| 成熟少妇高潮喷水视频| 成年女人看的毛片在线观看| 极品教师在线免费播放| 亚洲欧美日韩高清在线视频| 欧美bdsm另类| 亚洲人与动物交配视频| 99视频精品全部免费 在线| 在线观看美女被高潮喷水网站 | 女人被狂操c到高潮| 亚洲中文字幕日韩| 天美传媒精品一区二区| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产精品乱码一区二三区的特点| 哪里可以看免费的av片| 法律面前人人平等表现在哪些方面| 又粗又爽又猛毛片免费看| 久久久久九九精品影院| 无限看片的www在线观看| 天堂√8在线中文| 亚洲avbb在线观看| 男人舔奶头视频| 日本一二三区视频观看| 国产精品一区二区三区四区免费观看 | www.色视频.com| 日本撒尿小便嘘嘘汇集6| 亚洲国产高清在线一区二区三| 男女之事视频高清在线观看| 怎么达到女性高潮| 精品国产三级普通话版| 非洲黑人性xxxx精品又粗又长| 成人特级黄色片久久久久久久| 免费看美女性在线毛片视频| 国内精品久久久久精免费| 搡女人真爽免费视频火全软件 | 欧美另类亚洲清纯唯美| 国产精品久久久久久亚洲av鲁大| 亚洲最大成人手机在线| 白带黄色成豆腐渣| 国产精品女同一区二区软件 | 亚洲第一电影网av| 美女黄网站色视频| 日日摸夜夜添夜夜添小说| 亚洲精品国产精品久久久不卡| 小蜜桃在线观看免费完整版高清| 我要搜黄色片| 一个人看的www免费观看视频| 免费看十八禁软件| av在线蜜桃| 欧美日韩一级在线毛片| 午夜福利在线在线| 狂野欧美激情性xxxx| 18禁黄网站禁片免费观看直播| 精品99又大又爽又粗少妇毛片 | 在线观看一区二区三区| 成人18禁在线播放| 欧美黑人欧美精品刺激| 看黄色毛片网站| 18禁在线播放成人免费| 老熟妇乱子伦视频在线观看| 男人的好看免费观看在线视频| 人妻夜夜爽99麻豆av| 无人区码免费观看不卡| 丁香欧美五月| 一本精品99久久精品77| 哪里可以看免费的av片| 国产伦在线观看视频一区| 91在线精品国自产拍蜜月 | 亚洲成人久久爱视频| 日本五十路高清| 欧美一级毛片孕妇| 色吧在线观看| 窝窝影院91人妻| 亚洲性夜色夜夜综合| 亚洲最大成人中文| 桃红色精品国产亚洲av| 免费看光身美女| 免费电影在线观看免费观看| 成人午夜高清在线视频| 午夜激情福利司机影院| 国产免费一级a男人的天堂| 日本 欧美在线| 成人永久免费在线观看视频| 90打野战视频偷拍视频| 国内精品久久久久精免费| 91麻豆精品激情在线观看国产| 欧美另类亚洲清纯唯美| 国产男靠女视频免费网站| 天天躁日日操中文字幕| 国产精品野战在线观看| 美女被艹到高潮喷水动态| 波多野结衣高清作品| 国产aⅴ精品一区二区三区波| 国产精品,欧美在线| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 亚洲国产日韩欧美精品在线观看 | 一本综合久久免费| 露出奶头的视频| 午夜日韩欧美国产| 成人特级av手机在线观看| 高潮久久久久久久久久久不卡| 国产蜜桃级精品一区二区三区| 亚洲男人的天堂狠狠| 精华霜和精华液先用哪个| 两人在一起打扑克的视频| 久久精品人妻少妇| 在线观看免费午夜福利视频| av在线蜜桃| 嫁个100分男人电影在线观看| 国产精品一区二区三区四区免费观看 | 国产一区二区在线av高清观看| 精品一区二区三区av网在线观看| 国产精品久久久久久精品电影| 国产成人啪精品午夜网站| 欧美在线黄色| 久久草成人影院| 国产真实伦视频高清在线观看 | 床上黄色一级片| 中文字幕久久专区| 免费高清视频大片| 精品一区二区三区av网在线观看| 黄片小视频在线播放| 尤物成人国产欧美一区二区三区| 国产精品久久久久久精品电影| 亚洲第一电影网av| 啦啦啦免费观看视频1| 国产aⅴ精品一区二区三区波| 久久精品综合一区二区三区| 国产毛片a区久久久久| 桃红色精品国产亚洲av| 女人高潮潮喷娇喘18禁视频| 国产高清videossex| 国产精品日韩av在线免费观看| 欧美绝顶高潮抽搐喷水| 禁无遮挡网站| 午夜福利18| 欧美大码av| 欧美日韩中文字幕国产精品一区二区三区| 国产精品乱码一区二三区的特点| 亚洲成av人片免费观看| 久久国产乱子伦精品免费另类| 一本精品99久久精品77| 亚洲性夜色夜夜综合| 亚洲专区国产一区二区| 午夜激情欧美在线| 国产蜜桃级精品一区二区三区| 免费一级毛片在线播放高清视频| 狠狠狠狠99中文字幕| 成人特级黄色片久久久久久久| 亚洲欧美激情综合另类| 国产精品久久久人人做人人爽| av天堂中文字幕网| 可以在线观看的亚洲视频| 中文字幕人成人乱码亚洲影| 一级毛片女人18水好多| 一个人免费在线观看的高清视频| 成人国产综合亚洲| 久久久国产成人免费| 亚洲成人中文字幕在线播放| 亚洲人成网站高清观看| 制服丝袜大香蕉在线| 亚洲国产高清在线一区二区三| 两人在一起打扑克的视频| 久久这里只有精品中国| 中文字幕高清在线视频| 国产精品久久视频播放| 国产精品影院久久| 在线播放国产精品三级| 乱人视频在线观看| 全区人妻精品视频| 国产精品亚洲av一区麻豆| 国产精品一及| 亚洲一区二区三区不卡视频| 十八禁人妻一区二区| 国产三级在线视频| 最新美女视频免费是黄的| 叶爱在线成人免费视频播放| 亚洲 欧美 日韩 在线 免费| 女人被狂操c到高潮| 99精品欧美一区二区三区四区| 国产免费男女视频| 欧美成狂野欧美在线观看| 国产成人系列免费观看| 免费在线观看日本一区| 免费人成视频x8x8入口观看| 久久精品人妻少妇| 精品久久久久久久久久久久久| 噜噜噜噜噜久久久久久91| 黄色成人免费大全| av片东京热男人的天堂| 日韩欧美三级三区| 亚洲va日本ⅴa欧美va伊人久久| 日韩亚洲欧美综合| 国产精品香港三级国产av潘金莲| 国产精品电影一区二区三区| 老鸭窝网址在线观看| 此物有八面人人有两片| 中文字幕人妻熟人妻熟丝袜美 | 国产老妇女一区| 夜夜夜夜夜久久久久| 深夜精品福利| 亚洲va日本ⅴa欧美va伊人久久| 亚洲国产色片| 九九久久精品国产亚洲av麻豆| 99久久99久久久精品蜜桃| 男人的好看免费观看在线视频| 少妇人妻一区二区三区视频| 怎么达到女性高潮| 夜夜爽天天搞| 此物有八面人人有两片| 久久人妻av系列| 制服丝袜大香蕉在线| 悠悠久久av| 又爽又黄无遮挡网站| 久久久久久久久大av| 亚洲无线观看免费| 一边摸一边抽搐一进一小说| 91字幕亚洲| 黄色丝袜av网址大全| a级毛片a级免费在线| 免费无遮挡裸体视频| 亚洲成人久久爱视频| 在线观看一区二区三区| 99精品在免费线老司机午夜| 51午夜福利影视在线观看| 亚洲中文字幕一区二区三区有码在线看| 欧美黄色淫秽网站| 亚洲精品美女久久久久99蜜臀| 两性午夜刺激爽爽歪歪视频在线观看| 天天躁日日操中文字幕| 九九在线视频观看精品| 亚洲最大成人手机在线| 每晚都被弄得嗷嗷叫到高潮| 无人区码免费观看不卡| 国产精品影院久久| 中文字幕精品亚洲无线码一区| 日韩欧美国产一区二区入口| av片东京热男人的天堂| 久久人人精品亚洲av| www国产在线视频色| 一级a爱片免费观看的视频| 亚洲久久久久久中文字幕| 高清日韩中文字幕在线| xxx96com| 在线免费观看的www视频| 看免费av毛片| 有码 亚洲区| 欧美高清成人免费视频www| 观看美女的网站| 免费无遮挡裸体视频| 日本一二三区视频观看| 欧美一区二区精品小视频在线| 老司机午夜十八禁免费视频| eeuss影院久久| 中文字幕人妻熟人妻熟丝袜美 |