• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experiment and simulation of foaming injection molding of polypropylene/nano-calcium carbonate composites by supercritical carbon dioxide☆

    2016-05-29 10:58:24ZhenhaoXiJieChenTaoLiuLingZhaoLihShengTurng

    Zhenhao Xi ,Jie Chen ,Tao Liu ,Ling Zhao ,*,Lih-Sheng Turng

    1 State Key Laboratory of Chemical Engineering,East China University of Science and Technology,Shanghai 200237,China

    2 Department of Mechanical Engineering,University of Wisconsin-Madison,WI 53706,USA

    1.Introduction

    Microcellular foams,a kind of polymeric foam with bubble sizes less than 10 μm and bubble densities larger than 108to 109cm-3,were introduced by Suh[1]in the 1980s to reduce material usage.However,maintaining the mechanical properties of microcellular polymeric foams as compared to solid materials still remains a major challenge today[2].Polymer composite foams,on the other hand,have been regarded as a promising alternative to their neat resin foams due to their enhanced mechanical properties,better thermal stability,improved barrier properties,and superior flame retardancy[3-5].Polypropylene/calcium carbonate(PP/CaCO3)composites are widely used owing to the excellent properties of PP along with the low price of CaCO3[6,7].The incorporation of CaCO3into PP not only increases the tensile strength of the composite,but also actsasan excellent crystal nucleation agent to enhance the impact strength of composites[8-11].This makes PP/CaCO3composites a promising candidate for overcoming the mechanical weakness of foamed PP alone for industrial applications.

    Microcellular injection molding technology has been successfully commercialized by Trexel,Inc.[12,13]to injection mold microcellular foams which can further improve the mechanical and thermal properties,such as higher strength/weight ratios,enhanced toughness,and increased impact strength[14-18].Recently,an intensive research has been conducted on foaming processes employing environmentally benign blowing agents such as supercritical carbon dioxide(CO2)and nitrogen(N2).That is due to their unique properties such as being nonflammable,non-toxic,quick dissolving,and having high self-nucleating characteristics[19,20].Furthermore,blending supercritical fluid(SCF)in a polymer melt can effectively reduce the viscosity,the glass transition temperature and the interfacial tension[21,22].Thus,the foaming process can be operated at low temperatures and the degree of polymer degradation can be reduced[23,24].Since the properties of molded polymer composites are affected by the processing conditions and the amount of filler,a finer cell structure and more uniform cell size distribution can be achieved by controlling the foaming processing conditions[25,26].

    For micro cellular foaming process,there are numerous models of bubble nucleation and growth[27-36],among which the classic nucleation model and diffusion-induced bubble grow th have been employed by the majority researchers for foaming process.By combining the bubble nucleation and growth model,Taki and co-workers numerically studied cell morphology the batch foamed PP by CO2[35,37].Different from batch foaming process with static polymer melt,the bubble nucleation and grow th in micro cellular injection molding undergo macroscopic melt polymer flow.Thus,an appropriate fluid model should be combined with the classic nucleation model and diffusion-induced bubble growth during the injection molding process.The Mu cell simulation function in the a CAE software Moldex 3D is a recent development of three dimensional prediction of final bubble morphology with finite volume method in micro cellular injection molding process,in which the capability of 3D Mucell prediction has been well validated with the experimental results of micro cellular injection molding of polypropylene with supercritical nitrogen[10,11,38,39].

    In this work,microcellular injection molding of isotactic polypropylene/nano-CaCO3composites was performed to investigate the microstructures of microcellular foams.The effects of the processing conditions,including the nano-CaCO3w eight content,mold temperature,super-critical gas content,and injection speed,on the microstructures of microcells were studied.Then the Moldex 3D softw are was applied to simulate the microcellular injection molding process of neat polypropylene and polypropylene/nanocalcium carbonate composites respectively.

    2.Experimental

    2.1.Materials

    Isotatic polypropylene(Pro-fax7523)with an average melt flow index(MFI)of 4.0 g per 10 min(230°C,21.6 N)was supplied by Basell Co.,America.The filler,nano-CaCO3without surfacetreatment waspurchased from Shanghai LingFeng Chemical Co.,China.The primary particle size of nano-CaCO3is about 100 to 200 μm.TYZON TPT used as titanate compatibilizer,was provided by Dorf Ketal Chemical LLC,America.The physical blow ing agent CO2(99.97%)was supplied by Airgas.Co.,USA.All other materials were used as received.

    The iPP was melt compounded with different w eight contents of nano-CaCO3in a twin screw extruder(Leistritz,GmbH)at a screw speed of 50 r·min-1.The nano-CaCO3was organically pretreated with the titanate compatibilizer using the following process.First,2 ml TYZON TPT was dissolved into 500 ml toluene with stirring at 45°C for 4 h.Thereafter,200 g of nano-CaCO3was added into this solution with stirring for another 6 h.The mixture was filtrated with Buchner funnel and washed several times using toluene.The rest of solvent was removed in a fume cupboard.Before compounding,the PP resin and the pretreated nano-CaCO3powder were dried in a vacuum oven at 80°C for 12 h.For comparison,the neat PP for injection molding was also treated under the same process condition as the composites in the extruder.

    2.2.Injection molding processing

    The injection molding experiments were conducted on the injection molding machine(Arburg Allrounder 320)equipped with a MuCell SCF dosing system(Trexel,Inc.,Wilmington,MA).Supercritical carbon dioxide(ScCO2)was used as the physical blowing agents.The molding experiments were set to produce the standard ASTM-D638 tensile bars.The extruder barrel temperatures,from the hopper to the die,were set of 20,175,200,220,and 220°C,and the screw speed was 15 m·s-1.

    Based on the experiment scheme as specified in Table 1,the iPP/nano-CaCO3composites with different contents of filler(2.5%and 5.0%)were injection molded for microcellular foams to investigate the effects of processing conditions(i.e.injection speed,mold temperature,and SCF weight percentage)on cell morphologies.A high CO2concentration was achieved by adjusting the pressure difference between the SCF outlet and the barrel[40].The w eight reduction was maintained at 15%for all the foamed parts,with proper control of the shot size.Also,the additional molding trial was made for solid parts at the same processing conditions with no CO2injection.

    Table 1 Experimental design of foaming injection molding

    2.3.Testing techniques

    The micro-cellular structure of the molded parts was examined using a JEOL Neoscope Scanning electron microscopy(SEM)(Nikon Corp.)with an accelerating voltage of 10 kV.The SEM specimens(Fig.1)were taken from the middle of the molded tensile bars by fracturing after being immersed in liquid nitrogen for 10 min and then spurted with a Pd(palladium)coating for 45 s.The average cell sizes and cell densities were obtained from the SEM analysis by the Image-Pro Plus 6.0(Media Cybernetics,Silver Spring,MD)[21].The number average diameter of all of the cells in the micrograph,d,was estimated using the following equation,

    Fig.1.Schematic of SEM specimen preparation.

    where niwas the number of cells with a perimeter-equivalent diameter of di.

    The cell density N0,defined as the number of cells per unit volume with respect to an unfoamed polymer,was determined as,

    w here n was the number of cells in a given area,A was the area of interest.

    3.Simulations by Moldex 3D

    The Mucell simulation in the CAEs oft ware Moldex 3D is a significant development of three-dimensional prediction of final bubble morphology in micro cellular injection molding process recently,in which the capability of 3D Mucell prediction has been w ell validated with the experimental results of micro cellular injection molding of polypropylene with supercritical nitrogen.In this study,the Mucell simulations are carried out for micro cellular injection molding process of both iPP and iPP/nano-CaCO3composites with supercritical carbon dioxide.

    In Mucell simulation by Moldex 3D,the polymer/gas mixture is always considered as a General New tonian compressible fluid during the micro cellular injection molding process,which can simplify the mathematically calculation.Therefore,the flow field can be expressed by mass balance,momentum balance and energy balance equations as follow s:

    where ρ is the density of polymer,t is the time,u is the velocity vector,η is the viscosity,T is the temperature,CPis the specific heat and γ˙is the shear rate.

    The bubble nucleation and grow th models developed by Taki for PP are employed in this study[35].A brief summarize of the model development is show n as follow s.

    Radio of bubble growth for momentum balance equation

    w here R is the bubble radius,PDand PCare the bubble and ambient pressure respectively,η is the viscosity and γ is the surface tension.

    Mass balance at the shell of bubbledescribed by a diffusion equation

    where c is the gas concentration,r is the distance to the center of bubble sphere,and D is the gas diffusion coefficient.

    Mass balance at the interface of bubble

    With the concentration gradient around the bubble

    w here CRis the gas concentration on the w all of bubble while C is the one at infinity,and δ is the distance to the w all of bubble.

    The Mass balance at the interface of bubble can be written as

    Bubble nucleation rate

    The average concentration of gas in polymer

    The Zeldovich factor f0corrects among other things for the fact that some clusters that have reached the critical size still decay to smaller sizes.

    In this study,all the universal parameters used in the simulation by Moldex 3D of injection foaming process for neat iPP and iPP/nano-CaCO3composites injection foaming with ScCO2were listed in Table 2,w here the CO2diffusion coefficient(D)and solubility coefficient(S)were tested by our lab using Magnetic Suspension Balance(MSB)[41],and the surface tension and Shreshold of nucleation Jshresholdmeasured by Taki with a small visual reactor[35,42].Besides that,modified cross model adopted to describe the rheological properties for neat PP melt and the composites was show n as follow s,w here η0is the zero-shear viscosity,n is the non-New tonian index,γ*is shear stress at the initial shear-thinning behavior,and B and Tbare the polymer nature constants.

    Table 2 Input parameters for injection foaming simulation of iPP and iPP/nano-CaCO3 composites

    Fig.2.SEM images of microcellular injection molded neat iPP.

    4.Results and Discussion

    4.1.Cellular structure

    Typical SEM micrographs of microcellular structures for microcellular injection molded specimens of neat iPP and iPP/nano-CaCO3composites are show n in Figs.2 and 3,respectively.

    4.1.1.Effect of dissolved CO2 concentration and back pressure

    Fig.3.SEM images of microcellular injection molded iPP/nano-CaCO3 composites at LB=5%.

    The cell morphologies for foamed neat iPP under three different dissolved CO2and back pressure levels are show n in three lines from top to the bottom.Comparing these three line,it can be clearly seen that the bubble size sequence is HB 7%<HB 5%<LB 5%,and the bubble density sequence is HB 7%>HB 5%>LB 5%.In foaming injection molding,the melt pressure of polymer/gas mixture is directly controlled by the back pressure,thus the pressure drop rate of melt is consequently affected by the back pressure.Although the pressure release rate for foaming is same at HB 7%and HB 5%,the nucleation energy barrier under high CO2concentration is lower and the nucleation supersaturation degree can be achieved faster than low CO2concentration,which results in a higher nucleation rate and bubble density under high CO2concentration.Meanwhile,as the bubble nucleation and grow th are the two competitive stages during foaming process,fast nucleation rate means the low bubble grow th rate,that leads to a smaller cell size under high CO2concentration.Thus,comparing the foaming process at HB 7%and LB 5%,both the gas pressure release rate and CO2concentration are much higher for HB 7%,then the bubble density is way larger and the bubble size is much smaller than those foamed at LB 5%under same injection speed and mold temperature.In addition,a certain degree of super saturation of dissolved gas,which is known as nucleation supersaturation degree,should be achieved before the first bubble nucleated during the foaming process.Higher pressure release rate or lower unsaturated degree of the dissolved gas before foaming would accelerate the achievement of nucleation supersaturation degree.Comparing the foaming process at HB 5%and LB 5%,the dissolved CO2under LB 5%in the saturate state as the degree of unsaturated is much lower,while the pressure drop release rate is higher under HB 5%.For foaming injection molding,as the pressure of polymer/gas would immediately reduced once the solution injected to the cavity,the pressure drop rate is relatively high,as a result,the nucleation supersaturation degree can be achieved faster under a high back pressure even then the low one with corresponding small degree of unsaturation.Therefore the setting of back pressure is the key point on controlling the final foam products for the microcellular injection.

    4.1.2.Effect of mold temperature and injection speed

    For each level of dissolved CO2concentration and back pressure,the cell morphology obtained from different injection speeds and mold temperatures were arranged from left to right.Notice that,the bubble size is larger while the bubbles density is lower under high mold temperature and high injection speed.It is due to that the cooling speed of melt under high mold temperature is slower than that under low mold temperature,and then the bubble can more fully grow accordingly.Although the temperature does not directly affect the bubble nucleation at the initial foaming stage,it is easy to be merged for the growing large bubbles under high mold temperature,which leads to a larger bubble size and a lower bubbles density.

    As mentioned above,the pressure drop is very high since the pressure of melt would suddenly drop to ambient.But the injection speed can only affect the speed of the melt pushing forward,and has little effect on the pressure release rate for the melt already injected in to the cavity.However the injection speed obviously affects the fountain flow of polymer melt/bubble mixture.In a fountain flow,the bubble is firstly created at the front,and then pushed towards the w all of the cavity.Under low injection speed,the melt experience longer flow time,the bubbles formed in the fountain flow front will be continuously pushed to the wall and squeezed by the flow,inhibiting the bubble grow th and leading to a smaller bubble size.How ever,under high injection speed,the time of fountain flow is short,the bubble almost nucleated simultaneously at the end of filling.A lot of uniform large bubble would emerge resulting in a large bubble size.Meanwhile,the fountain flow bubble is an unstable flow,it is easy to create lots of thermal unstable site at the interface for cell nucleation,since the difference of CO2concentration and shear strength in different layers of flows.Therefore,foaming with low injection speed would results in a smaller bubble size and higher bubble density.

    4.1.3.Effect of filler content

    The effects of concentration of nano-CaCO3in iPP/nano-CaCO3composites on the cell morphology of foamed composites by micro cellular injection molding are shown in Fig.3.It is clear that,the cell size of composites foam is greatly reduced and the cell density increases by using the nano-CaCO3fillers for all the injection conditions.The cell size decreases with increasing filler loading and the cell density increases accordingly.It demonstrates that the nano-CaCO3is one of the perfect nucleation agents during the foaming process and the number of bubble nucleation can be enhanced by increasing the filler content.In fact,the cell morphologies obtained under HB 7%and HB 5%also show the same filler dependence.

    4.2.Simulation for injection foaming of neat PP

    For neat PP,the shear viscosity of melts accords with Modified cross model and the four model parameters implemented by Moldex 3D database,n, γ*,B and Tb,are 0.2916,24750 Pa,0.2219 Pa·s and 4913 K,respectively.The pre-exponential factor of nucleation rate f0for neat iPP is 3.5×10-25and the correction factor for nucleation activation energy F is 0.014085.Both of that have also been published by Taki[35].Then,microcellular injection molding process of neat iPP has been simulated by Moldex 3D and the bubble morphology in surface layer and corelayer hasbeen predicted in detail wiped off the unfoamed layer.The typical simulated bubble morphology compared with experimental SEM micrograph of microcellular structures in surface layer and core layer for neat PP are show n in Fig.4.And the comparisons of the bubble size and bubble density of injection molded iPP by experimental and Moldex 3D simulated results for trials 1-4 and 9-12 are show n in Figs.5 and 6,respectively.

    Fig.4.Experimental and simulated cell size distribution for neat PP at trail 1 condition,(a)Experimental SEM image,(b)Simulated result by Moldex 3D.

    Fig.5.Comparison of bubble size between the experimental and simulated results for foamed iPP,(A)surface layer;(B)core layer;(C)average.

    Fig.6.Comparison of bubble density between experimental and simulated results for foamed iPP,(A)surface layer;(B)core layer;(C)average.

    It is clear that the cell morphology simulated has similar inhomogeneity to experimental result during the microcellular injection molding process which can be generally divided into two layers barring the unfoamed parts,the surface layer and the core layer.That is due to the thermodynamic instability,shear effect and cooling-solidification phenomenon.During the injection foaming process,the polymer melt close to the mold surface is intensively affected by shear effect,so the bubble size on the surface layer of molded samples is smaller with fast cooling rate and short bubble grow th time;while the cell has large size in core layer which maintains a longstanding molten state for grow th and low shear stress.Both of the experimental and simulated bubble morphology show s an obvious stratified structure with bubble size decreasing in sample's thickness direction from center to the surface layer.

    Fig.7.Shear viscosity of iPP/nano-CaCO3 composites versus shear rate,(A)iPP/2.5%nano-CaCO3;(B)iPP/5%nano-CaCO3.

    The figures show that the values of bubble size both in surface layer and core layer,as well as the bubble density,of injection molded iPP by Moldex 3D simulated results are very close to the experimental ones for trials.The average relative deviation between the experimental and simulated results of the bubble size is 5.38%and the one of the bubble density is 9.13%.It indicates that the flow field,the bubble nucleation and the bubble grow th can be integrated w ell in Moldex 3D by using finite volume method.Moldex 3D software with appropriate input parameters can be used to w ell predict the distribution of flow field,bubble size and bubble density during the micro cellular injection molding process.

    4.3.Simulation for injection foaming of iPP/nano-CaCO3 composites

    For iPP/nano-CaCO3composites with different filler contents,the shear viscosity of melts was measured using a TA-ARES rheometer by dynamic frequency sw eep tests under a nitrogen gas purge.The frequency dependences of the shear viscosity for iPP/nano-CaCO3composites at different temperatures are show n in Fig.7.Then,the rheological parameters for modified cross model,n,γ*,B and Tb, fitting by the rheological data can be obtained listed in Table 3.How ever,the pre-exponential factor of nucleation rate f0for iPP/nano-CaCO3composites and the corresponding correction factor for nucleation activation energy F are unknown as the bubble nucleation being the heterogeneous nucleation.The two parameters of nucleation,also show n in Table 3,are established through nonlinear regression of the experimental bubble size and bubble density data for iPP/2.5%nano-CaCO3and iPP/5%nano-CaCO3,respectively.

    Compared to the parameters of homogeneous nucleation for neat PP,the correction factor for nucleation activation energy F for iPP/nano-CaCO3 composites clearly decreases while the preexponential factor of nucleation rate f0increases as the fillercompounded.With the increasing of filler content,the F value decreases further while the f0increases concurrently.That is due to the nano-scale filler,nano-CaCO3is a perfect nucleation agents during the foaming process which can effectively reduce the nucleation activation energy for supercritical carbon dioxide.Also,the form of nucleation changes from homogeneous nucleation to heterogeneous nucleation.Thus,more nano-CaCO3filled into the polymer/gas mixture distinctly leads to easier nucleation for the blow agent.Meanwhile,the bubble size and bubble density are also observably affected correspondingly.

    Table 3 Rheological and nucleation parameters for iPP/nano-CaCO3 composites

    The comparisons of the bubble size and bubble density of injection molded iPP/nano-CaCO3composites by experimental and Moldex 3D simulated results for trials 1-4 and 9-12 are show n in Figs.8 to 11,respectively.The figures also show that the values of bubble size,as w ell as the bubble density,both in surface layer and core layer of microcellular foamed iPP/nano-CaCO3composites simulated by Moldex 3D are basically close to the experimental results for all trials.For iPP/2.5%nano-CaCO3,the average relative deviation between the experimental and simulated results of the bubble size is 3.28%and the one of bubble density is 6.65%,while the ones for iPP/5%nano-CaCO3are 3.05%and 14.3%,respectively.As the average relative deviations are less than 15%,it indicates that the pre-exponential factor of nucleation rate f0and corresponding correction factor for nucleation activation energy F obtained through regression for iPP/nano-CaCO3composites can be used to predict the microcellular injection molding process by Moldex 3D.

    5.Conclusions

    Microcellular injection molding of neat isotactic polypropylene(iPP)and isotactic polypropylene/nano-calcium carbonate composites(iPP/nano-CaCO3)were performed using supercritical carbon dioxide(Sc CO2)as the physical blow ing agent.The influence of filler content and operating conditions on microstructure morphology of molded iPP/nano-CaCO3microcellular samples was studied systematically.The results show that the bubble size of the microcellular samples,as w ell as the bubble density,could be effectively affected by the dissolved CO2concentration and back pressure.A lower nucleation energy barrier and faster super saturation with high nucleation rate will result in a smaller bubble size and higher bubble density under higher CO2concentration.Also,the high pressure drop release rate controlled by setting of back pressure is also a w ay to obtain the small cell size with high bubble density.Besides that,a smaller bubble size and higher bubble density can be achieved at low mold temperature and injection speed results in a smaller bubble size and higher bubble density.Furthermore,the filler,nano-CaCO3,is good for nucleation during the foaming process and the cell size is greatly reduced and the cell density increases with the cooperation of nano-CaCO3fillers.That has a deferred effect on impact crack and enhances the impact strength.

    Fig.8.Comparison of bubble size between the experimental and simulated results for foamed iPP/2.5%nano-CaCO3,(A)surface layer;(B)core layer;(C)average.

    Fig.9.Comparison of bubble density between the experimental and simulated results for foamed iPP/2.5%nano-CaCO3,(A)surface layer;(B)core layer;(C)average.

    Fig.10.Comparison of bubble size between the experimental and simulated results for foamed iPP/5%nano-CaCO3,(A)surface layer;(B)core layer;(C)average.

    By using Moldex 3D,the microcellular injection molding processes of neat iPP were simulated.The simulated results of bubble morphology compared to the experimental ones,indicates that the microcellular injection molding process including the flow field,the bubble nucleation and the bubble grow th can be predicted w ell in Moldex 3D by using finite volume method with experienced parameters.How ever,for iPP/nano-CaCO3composites,the correction factor for nucleation activation energy F decreases as the filler compounded while the pre-exponential factor of nucleation rate f0increases.The values of F and f0,obtained by nonlinear regression on the experimental bubble size and density distribution,are 0.013 and 3.5×10-21for iPP/2.5%nano-CaCO3composites,resp ectively;while the ones are 0.011 and 3.5×10-19for iPP/5%nano-CaCO3composites,respectively.These parameters can be used to predict the microcellular injection molding process for iPP/nano-CaCO3composites by Moldex 3D.

    Fig.11.Comparison of bubble density between the experimental and simulated results for foamed iPP/5%nano-CaCO3,(A)surface layer;(B)core layer;(C)average.

    [1]N.P.Suh,Innovation in polymer processing,Hanser/Gardner Publications,New York,1996.

    [2]D.I.Collais,D.G.Baird,Tensile toughness of microcellular foams of polystyrene,styrene-acrylonitrile copolymer,and polycarbonate,and the effect of dissolved gas on the tensile toughness of the same polymer matrices and microcellular foams,Polym.Eng.Sci.35(1995)1167-1177.

    [3]A.Zhang,Q.Zhang,H.Bai,L.Li,J.Li,Polymeric nanoporous materials fabricated with supercritical CO2and CO2-expanded liquids,Chem.Soc.Rev.43(2014)6938-6953.

    [4]M.Sauceau,J.Fages,A.Common,C.Nikitine,E.Rodier,New challenges in polymer foaming:A review of extrusion processes assisted by supercritical carbon dioxide,Prog.Polym.Sci.36(2011)749-766.

    [5]M.Yuan,L.S.Turng,Microstructure and mechanical properties of microcellular injection molded polyamide-6 nanocomposites,Polymer 46(2005)7273-7292.

    [6]J.C.Feng,M.C.Chen,Z.T.Huang,Assessment of efficacy of trivalent lanthanum complex as surface modifier of calcium carbonate,J.Appl.Polym.Sci.82(2001)1339-1345.

    [7]J.Zhang,Q.J.Ding,N.L.Zhou,Studies on crystal morphology and crystallization kinetics of polypropylene filled with CaCO3of different size and size distribution,J.Appl.Polym.Sci.101(2006)2437-2444.

    [8]T.Labour,C.Gauthier,R.Séguéla,Influence of the β crystalline phase on the mechanical properties of unfilled and CaCO3- filled polypropylene.I.Structural and mechanical characterisation,Polymer 42(2001)7127-7135.

    [9]C.M.Chan,J.Wu,J.X.Li,Polypropylene/calcium carbonate nanocomposites,Polymer 43(2002)2981-2992.

    [10]J.Ding,W.H.Ma,F.J.Song,Q.Zhong,Effect of nano-calcium carbonate on microcellular foaming of polypropylene,J.Mater.Sci.48(2013)2504-2511.

    [11]J.Ding,J.N.Shangguan,W.H.Ma,Q.Zhong,Foaming behavior of microcellular foam polypropylene/modified nano calcium carbonate composites,J.Appl.Polym.Sci.128(2013)3639-3651.

    [12]Martini-Vvedensky,J.E.,Suh,N.P.,Waldman F.A.,“Saturation with inert gas,depressurization,and quick-cooling”,U.S.Patent 4,473,665(1984).

    [13]J.Xu,D.Pierick,Microcellular foam processing in reciprocating screw injection molding machine,J.Injection Molding Technol.5(2001)152-159.

    [14]L.J.Lee,C.Zeng,X.Cao,Polymer nanocomposite foams,Compos.Sci.Technol.65(2005)2344-2363.

    [15]S.Hw ang,P.P.Hsu,J.Yeh,C.Hu,K.Chang,Effect of organoclay on the mechanical/thermal properties of microcellular injection molded polystyrene-clay nanocomposites,Int.Commun.Heat Mass Transfer 36(2009)799-805.

    [16]G.Q.Zheng,Q.Li,J.B.Chen,C.Y.Shen,W.Yang,M.B.Yang,Gas-assisted injection molded polypropylene/glass fiber composite:Foaming structure and tensile strength,Polym.-Plast.Technol.Eng.48(2009)170-176.

    [17]J.F.Gómez-Gómez,D.Arencón,M.A.Sánchez-Soto,A.B.Martínez,Influence of the injection moulding parameters on the microstructure and thermal properties of microcellular polyethylene terephthalate glycol foams,J.Cell.Plast.49(2012)47-63.

    [18]H.Y.Mi,X.Jing,J.Peng,L.-S.Turng,X.F.Peng,Influence and prediction of processing parameters on the properties of microcellular injection molded thermoplastic polyurethane based on an orthogonal array test,J.Cell.Plast.49(2013)439-458.

    [19]M.F.Kemmere,T.Meyer,Supercritical carbon dioxide:In polymer reaction engineering,WIELY-VCH,Weinheim,Germany,2005.

    [20]K.T.Okamoto,Microcellular processing,Hanser,Munich,2003.

    [21]D.Li,T.Liu,L.Zhao,Controlling sandwich-structure of PET microcellular foams using coupling of CO2diffusion and induced crystallization,AICHE J.58(2012)2512-2523.

    [22]W.Zhai,H.Wang,J.Yu,Foaming behavior of isotactic polypropylene in supercritical CO2influenced by phase morphology via chain grafting,Polymer 49(2008)3146-3156.

    [23]G.Q.Zheng,W.Yang,M.B.Yang,J.B.Chen,Gas-assisted injection molded polypropylene:The skin-core structure,Polym.Eng.Sci.48(2008)976-986.

    [24]K.F.Zhang,Z.Lu,Analysis of morphology and performance of PP microstructures manufactured by micro injection mold ing,Microsyst.Technol.14(2008)209-214.

    [25]J.S.Kim,G.Guo,K.H.Wang,C.B.Park,F.W.Maine,processing/structure/property relationships for artificial wood made from stretched PP/wood- fiber composites,SPE-ANTEC Paper,Chicago,USA,16-19 May 2004.Paper no.809,2004.

    [26]A.K.Chaudhary,K.Jayaraman,Extrusion of linear polypropylene-clay nanocomposite foams,Polym.Eng.Sci.51(2011)1749-1756.

    [27]K.Taki,T.Yanagimoto,E.Funami,Visual observation of CO2foaming of polypropylene-clay nanocomposites,Polym.Eng.Sci.44(2004)1004-1011.

    [28]C.Wang,S.N.Leung,M.Bussmann,W.T.Zhai,C.B.Park,Numerical investigation of nucleating-agent-enhanced heterogeneous nucleation,Ind.Eng.Chem.Res.49(2010)12783-12792.

    [29]J.S.Colton,N.P.Suh,Nucleation of microcellular foam:Theory and practice,Polym.Eng.Sci.27(1987)500-503.

    [30]S.N.Leung,A.Wong,Q.Guo,Change in the critical nucleation radius and its impact on cell stability during polymeric foaming processes,Chem.Eng.Sci.64(2009)4899-4907.

    [31]C.D.Han,C.-Y.Ma,Rheological properties of mixtures of molten polymer and fluorocarbon blowing agent.I.Mixtures of low-density polyethylene and fluorocarbon blowing agent,J.Appl.Polym.Sci.28(1983)831-850.

    [32]J.H.Han,C.D.Han,A study of bubble nucleation in a mixture of molten polymer and volatile liquid in a shear flow field,Polym.Eng.Sci.28(1988)1616-1627.

    [33]A.C.Papanastasiou,L.E.Scriven,C.W.Macosko,Bubble grow th and collapse in viscoelastic liquids analyzed,J.Non-Newtonian Fluid Mech.16(1984)53-75.

    [34]M.Amon,C.D.Denson,A study of the dynamics of foam grow th:Analysis of the grow th of closely sp aced spherical bubbles,Polym.Eng.Sci.24(1984)1026-1034.

    [35]K.Taki,Experimental and numerical studies on the effects of pressure release rate on number density of bubbles and bubble grow th in a polymeric foaming process,Chem.Eng.Sci.63(2008)3643-3653.

    [36]A.Arefmanesh,S.G.Advani,Diffusion-induced growth of a gas bubble in a viscoelastic fluid,Rheol.Acta 30(1991)274-283.

    [37]Y.Li,Z.Yao,Z.H.Chen,K.Cao,S.L.Qiu,F.J.Zhu,C.C.Zeng,Z.M.Huang,Numerical simulation of polypropylene foaming process assisted by carbon dioxide:Bubble growth dynamics and stability,Chem.Eng.Sci.66(2011)3656-3665.

    [38]T.Y.Shiu,Y.J.Chang,C.T.Huang,Dynamic behavior and experimental validation of cell nucleation and growing mechanism in microcellular injection molding process,SPE-ANTEC papers,Orlando,2012.

    [39]T.C.Chen,C.T.Huang,Y.C.Chiu,W.D.Wang,C.L.Hsu,C.Y.Lin,L.W.Kao,Material saving and product quality improvement with the visualization of hot runner design in injection molding,Int.J.Precis.Eng.Manuf.14(2013)1109-1112.

    [40]X.Sun,L.-S.Turng,E.Dougherty,Artificial neural network-based supercritical fluid dosage control for microcellular injection molding,Adv.Polym.Technol.31(2012)7-19.

    [41]J.Chen,T.Liu,W.K.Yuan,Solubility and diffusivity of CO2in polypropylene/microcalcium carbonate composites,J.Supercrit.Fluids 77(2013)33-43.

    [42]K.Taki,T.Murakami,M.Ohshima,Surface tension of polypropylene and polystyrene in super critical carbon dioxide,A.W.P.P.2002,Singapore,2002.

    亚洲精品国产av蜜桃| 精品久久蜜臀av无| 国产又色又爽无遮挡免| 黄色怎么调成土黄色| 99国产精品一区二区蜜桃av | 欧美精品亚洲一区二区| 国产福利在线免费观看视频| 精品人妻1区二区| 欧美大码av| 久久精品亚洲av国产电影网| 亚洲伊人色综图| 亚洲第一欧美日韩一区二区三区 | 性少妇av在线| 国产精品免费视频内射| 狠狠婷婷综合久久久久久88av| 黑人欧美特级aaaaaa片| 亚洲精华国产精华精| 巨乳人妻的诱惑在线观看| 欧美国产精品va在线观看不卡| 99香蕉大伊视频| av天堂在线播放| 国产极品粉嫩免费观看在线| 韩国精品一区二区三区| 欧美日韩一级在线毛片| 巨乳人妻的诱惑在线观看| 黄片播放在线免费| 色精品久久人妻99蜜桃| 少妇精品久久久久久久| 99久久99久久久精品蜜桃| 久久久国产成人免费| 女人高潮潮喷娇喘18禁视频| 啦啦啦中文免费视频观看日本| 叶爱在线成人免费视频播放| 国产精品一区二区精品视频观看| 精品国产乱码久久久久久小说| 亚洲成人免费电影在线观看| 国产精品成人在线| 日本欧美视频一区| 午夜激情av网站| 国产片内射在线| 欧美日韩福利视频一区二区| 涩涩av久久男人的天堂| 亚洲av片天天在线观看| 一区在线观看完整版| 91麻豆精品激情在线观看国产 | 亚洲一区二区三区欧美精品| 日本五十路高清| www.精华液| 中文字幕人妻丝袜制服| videos熟女内射| 99久久综合免费| 国产成人一区二区三区免费视频网站| 久久亚洲国产成人精品v| 黄色毛片三级朝国网站| 亚洲人成77777在线视频| 欧美亚洲日本最大视频资源| 国产亚洲欧美精品永久| 久久女婷五月综合色啪小说| 亚洲午夜精品一区,二区,三区| 久久这里只有精品19| 热99久久久久精品小说推荐| 婷婷色av中文字幕| 久久久久久久精品精品| 一区在线观看完整版| 视频区欧美日本亚洲| 脱女人内裤的视频| 老鸭窝网址在线观看| 欧美亚洲日本最大视频资源| 国产97色在线日韩免费| 一二三四社区在线视频社区8| 少妇 在线观看| 亚洲欧洲精品一区二区精品久久久| av网站免费在线观看视频| 蜜桃在线观看..| 深夜精品福利| 精品一区二区三卡| 九色亚洲精品在线播放| 国产免费视频播放在线视频| 多毛熟女@视频| 国产av又大| 国产一卡二卡三卡精品| 午夜两性在线视频| 黑人操中国人逼视频| 亚洲国产av影院在线观看| 狠狠婷婷综合久久久久久88av| 嫩草影视91久久| 国产1区2区3区精品| 亚洲伊人久久精品综合| 狠狠婷婷综合久久久久久88av| 两个人免费观看高清视频| 精品人妻在线不人妻| 免费黄频网站在线观看国产| 久久亚洲精品不卡| 精品少妇黑人巨大在线播放| h视频一区二区三区| 热99久久久久精品小说推荐| 亚洲国产精品999| 精品亚洲成国产av| 嫩草影视91久久| 超碰97精品在线观看| 国产精品久久久久成人av| 2018国产大陆天天弄谢| 夫妻午夜视频| 9色porny在线观看| 人人妻人人添人人爽欧美一区卜| 国产亚洲欧美精品永久| 777米奇影视久久| 久久ye,这里只有精品| 国产免费一区二区三区四区乱码| av有码第一页| 啦啦啦 在线观看视频| 久久中文看片网| 午夜福利乱码中文字幕| 国产亚洲av片在线观看秒播厂| 999精品在线视频| 精品福利观看| 国产精品久久久久久精品电影小说| 看免费av毛片| 多毛熟女@视频| 女人精品久久久久毛片| 人人妻人人澡人人看| 亚洲精品自拍成人| 美女脱内裤让男人舔精品视频| 高清视频免费观看一区二区| 亚洲少妇的诱惑av| 成人国产一区最新在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 在线观看免费视频网站a站| 人妻 亚洲 视频| 国产91精品成人一区二区三区 | a 毛片基地| 99国产精品一区二区三区| 美女国产高潮福利片在线看| 一级黄色大片毛片| 每晚都被弄得嗷嗷叫到高潮| 国产xxxxx性猛交| 亚洲成av片中文字幕在线观看| 母亲3免费完整高清在线观看| 女警被强在线播放| av网站在线播放免费| 成人免费观看视频高清| av视频免费观看在线观看| 女人久久www免费人成看片| 亚洲性夜色夜夜综合| 亚洲黑人精品在线| 操出白浆在线播放| 久久这里只有精品19| 人妻一区二区av| 亚洲久久久国产精品| 午夜福利在线免费观看网站| 欧美成狂野欧美在线观看| 精品国产乱码久久久久久小说| 亚洲第一欧美日韩一区二区三区 | 国产亚洲av片在线观看秒播厂| 午夜免费成人在线视频| 岛国在线观看网站| 亚洲精品av麻豆狂野| 制服人妻中文乱码| 国产精品欧美亚洲77777| 成人国产av品久久久| 中文字幕制服av| 亚洲国产看品久久| 午夜福利免费观看在线| av网站免费在线观看视频| 国产一区二区在线观看av| 久久午夜综合久久蜜桃| 在线观看免费高清a一片| 美女福利国产在线| 一边摸一边抽搐一进一出视频| 飞空精品影院首页| 天天躁狠狠躁夜夜躁狠狠躁| 两个人免费观看高清视频| 久久av网站| 人成视频在线观看免费观看| 十分钟在线观看高清视频www| 少妇猛男粗大的猛烈进出视频| 国产成+人综合+亚洲专区| 91字幕亚洲| 国产真人三级小视频在线观看| 精品人妻在线不人妻| 男女床上黄色一级片免费看| 免费女性裸体啪啪无遮挡网站| 精品熟女少妇八av免费久了| av国产精品久久久久影院| 久久久久网色| 免费在线观看影片大全网站| 亚洲,欧美精品.| 电影成人av| 久久这里只有精品19| 正在播放国产对白刺激| 免费在线观看视频国产中文字幕亚洲 | 国产精品成人在线| 男女之事视频高清在线观看| 99精国产麻豆久久婷婷| 久久人妻熟女aⅴ| 欧美精品人与动牲交sv欧美| 久久性视频一级片| 亚洲人成电影观看| 亚洲熟女精品中文字幕| 国产欧美日韩综合在线一区二区| 亚洲成国产人片在线观看| 欧美一级毛片孕妇| 亚洲精品av麻豆狂野| 五月天丁香电影| 一边摸一边抽搐一进一出视频| 国产精品免费视频内射| 国产亚洲av高清不卡| 热re99久久精品国产66热6| 亚洲国产欧美网| 欧美久久黑人一区二区| 一本久久精品| 亚洲精品中文字幕在线视频| 精品人妻1区二区| 亚洲精品国产精品久久久不卡| 视频在线观看一区二区三区| 美女主播在线视频| 欧美中文综合在线视频| 窝窝影院91人妻| 欧美精品啪啪一区二区三区 | 大码成人一级视频| 91精品伊人久久大香线蕉| 欧美日韩av久久| 日本五十路高清| 一区二区日韩欧美中文字幕| 色94色欧美一区二区| 久久久久国内视频| 日本撒尿小便嘘嘘汇集6| 国产高清videossex| 99国产精品99久久久久| 欧美日韩精品网址| 亚洲全国av大片| 美女中出高潮动态图| 十八禁网站免费在线| 欧美xxⅹ黑人| 亚洲伊人久久精品综合| 久久99热这里只频精品6学生| 一边摸一边做爽爽视频免费| 亚洲第一av免费看| 国产精品av久久久久免费| 热99re8久久精品国产| 脱女人内裤的视频| 麻豆乱淫一区二区| 久久精品aⅴ一区二区三区四区| 人妻一区二区av| 最近最新免费中文字幕在线| 国产国语露脸激情在线看| 欧美少妇被猛烈插入视频| 超碰成人久久| videos熟女内射| 日韩三级视频一区二区三区| 最新的欧美精品一区二区| 国产精品欧美亚洲77777| 人妻人人澡人人爽人人| 狠狠精品人妻久久久久久综合| 久久国产精品男人的天堂亚洲| 90打野战视频偷拍视频| 免费看十八禁软件| 日韩中文字幕视频在线看片| 真人做人爱边吃奶动态| 动漫黄色视频在线观看| 久久天堂一区二区三区四区| 少妇裸体淫交视频免费看高清 | 久久久久久亚洲精品国产蜜桃av| 亚洲avbb在线观看| 亚洲av片天天在线观看| 精品亚洲乱码少妇综合久久| 少妇粗大呻吟视频| 97精品久久久久久久久久精品| 伊人久久大香线蕉亚洲五| 美女午夜性视频免费| 欧美激情极品国产一区二区三区| 日本a在线网址| 欧美人与性动交α欧美精品济南到| 老司机午夜福利在线观看视频 | 亚洲精品粉嫩美女一区| 午夜福利免费观看在线| 色精品久久人妻99蜜桃| 极品人妻少妇av视频| 亚洲欧洲精品一区二区精品久久久| 99国产精品99久久久久| 国产精品1区2区在线观看. | 十八禁网站免费在线| 欧美精品一区二区免费开放| 50天的宝宝边吃奶边哭怎么回事| 一区二区三区激情视频| 日韩视频在线欧美| 久久精品国产亚洲av高清一级| 日本vs欧美在线观看视频| 搡老乐熟女国产| 精品福利观看| 国产91精品成人一区二区三区 | 99国产精品免费福利视频| 国产福利在线免费观看视频| 日韩一卡2卡3卡4卡2021年| 青青草视频在线视频观看| 曰老女人黄片| 波多野结衣av一区二区av| 91av网站免费观看| 亚洲国产欧美在线一区| 又黄又粗又硬又大视频| 精品一品国产午夜福利视频| 亚洲欧美精品自产自拍| 大码成人一级视频| 久久久久网色| 天天影视国产精品| 国产精品久久久久久人妻精品电影 | 国产精品一区二区精品视频观看| 国产成人欧美| 免费高清在线观看日韩| 丰满迷人的少妇在线观看| 国产男人的电影天堂91| 亚洲国产欧美一区二区综合| 日日爽夜夜爽网站| 国产真人三级小视频在线观看| 超色免费av| 日日夜夜操网爽| 婷婷成人精品国产| 日韩,欧美,国产一区二区三区| 国产精品免费大片| 黑人巨大精品欧美一区二区蜜桃| 高清黄色对白视频在线免费看| 高潮久久久久久久久久久不卡| 精品亚洲成国产av| 欧美在线一区亚洲| 亚洲情色 制服丝袜| av线在线观看网站| 久久久久久久久久久久大奶| 国产精品一区二区免费欧美 | 一级,二级,三级黄色视频| 亚洲国产精品一区三区| 一区二区三区激情视频| 51午夜福利影视在线观看| 真人做人爱边吃奶动态| 中文字幕人妻丝袜一区二区| 久久久精品94久久精品| 亚洲自偷自拍图片 自拍| h视频一区二区三区| 成人国语在线视频| 一边摸一边做爽爽视频免费| 成人亚洲精品一区在线观看| 少妇人妻久久综合中文| 国产亚洲一区二区精品| 亚洲七黄色美女视频| 色视频在线一区二区三区| 欧美97在线视频| 久久久国产成人免费| 亚洲欧美精品综合一区二区三区| 欧美日本中文国产一区发布| 国产极品粉嫩免费观看在线| 侵犯人妻中文字幕一二三四区| 欧美激情极品国产一区二区三区| 精品久久蜜臀av无| 午夜精品国产一区二区电影| a在线观看视频网站| 精品久久久精品久久久| 人妻一区二区av| 成年女人毛片免费观看观看9 | cao死你这个sao货| 国产精品久久久久久人妻精品电影 | 久久久欧美国产精品| 国产精品 国内视频| 丰满人妻熟妇乱又伦精品不卡| 欧美激情久久久久久爽电影 | 成年女人毛片免费观看观看9 | 天天影视国产精品| 人成视频在线观看免费观看| 欧美大码av| 日韩 亚洲 欧美在线| kizo精华| 久久香蕉激情| 丰满少妇做爰视频| 两个人免费观看高清视频| 一进一出抽搐动态| 老司机深夜福利视频在线观看 | 精品熟女少妇八av免费久了| 免费一级毛片在线播放高清视频 | 欧美日韩福利视频一区二区| 久久99热这里只频精品6学生| 欧美+亚洲+日韩+国产| 久久亚洲国产成人精品v| 亚洲av国产av综合av卡| 亚洲情色 制服丝袜| 每晚都被弄得嗷嗷叫到高潮| 亚洲精品粉嫩美女一区| 国产一区二区在线观看av| 女人爽到高潮嗷嗷叫在线视频| 在线观看人妻少妇| 亚洲av电影在线进入| 国产男女内射视频| 建设人人有责人人尽责人人享有的| 亚洲,欧美精品.| 久久久国产成人免费| 啦啦啦视频在线资源免费观看| 亚洲成人免费av在线播放| 满18在线观看网站| 男女国产视频网站| 欧美日韩黄片免| 国产精品自产拍在线观看55亚洲 | av天堂在线播放| 交换朋友夫妻互换小说| 正在播放国产对白刺激| 久久久久久免费高清国产稀缺| 日韩视频一区二区在线观看| 各种免费的搞黄视频| 国产精品免费视频内射| 美女高潮到喷水免费观看| av片东京热男人的天堂| 91九色精品人成在线观看| 日韩 欧美 亚洲 中文字幕| 十八禁人妻一区二区| 亚洲精品久久午夜乱码| 新久久久久国产一级毛片| 人成视频在线观看免费观看| 两个人看的免费小视频| 在线观看人妻少妇| 一级片免费观看大全| 中文字幕最新亚洲高清| 欧美日韩亚洲高清精品| 久久精品国产亚洲av高清一级| 成人国产av品久久久| 高清av免费在线| 丝袜脚勾引网站| 午夜福利,免费看| 亚洲国产av新网站| 岛国在线观看网站| 亚洲精品国产av蜜桃| 国产一区二区三区综合在线观看| 少妇人妻久久综合中文| 亚洲午夜精品一区,二区,三区| 在线精品无人区一区二区三| 日韩一卡2卡3卡4卡2021年| 久久久久网色| 人人妻人人爽人人添夜夜欢视频| 一本—道久久a久久精品蜜桃钙片| 亚洲精品一卡2卡三卡4卡5卡 | 久久九九热精品免费| 国产区一区二久久| 精品福利观看| 国产在线视频一区二区| 18禁裸乳无遮挡动漫免费视频| 日韩 亚洲 欧美在线| 美女高潮到喷水免费观看| 韩国精品一区二区三区| 老熟女久久久| 亚洲av日韩精品久久久久久密| 麻豆国产av国片精品| www日本在线高清视频| 亚洲精品粉嫩美女一区| 丰满人妻熟妇乱又伦精品不卡| 精品亚洲乱码少妇综合久久| 丝袜人妻中文字幕| 黑人操中国人逼视频| 日本精品一区二区三区蜜桃| 免费不卡黄色视频| 999精品在线视频| 大型av网站在线播放| 国产1区2区3区精品| 久久狼人影院| 波多野结衣一区麻豆| a级毛片黄视频| 欧美激情高清一区二区三区| 啦啦啦在线免费观看视频4| 在线观看一区二区三区激情| 成人黄色视频免费在线看| 亚洲午夜精品一区,二区,三区| 免费观看av网站的网址| 午夜福利视频精品| 久久久精品免费免费高清| 国产极品粉嫩免费观看在线| 97精品久久久久久久久久精品| 大陆偷拍与自拍| 欧美精品av麻豆av| 新久久久久国产一级毛片| 免费观看a级毛片全部| a级毛片黄视频| 精品国产乱码久久久久久男人| 国产成人av激情在线播放| 日韩精品免费视频一区二区三区| 男人操女人黄网站| 亚洲精品第二区| 丝袜美腿诱惑在线| 亚洲 欧美一区二区三区| 欧美变态另类bdsm刘玥| 桃花免费在线播放| 每晚都被弄得嗷嗷叫到高潮| 高清黄色对白视频在线免费看| 国产1区2区3区精品| 亚洲成人国产一区在线观看| 最新在线观看一区二区三区| 中文字幕制服av| 大香蕉久久成人网| 在线 av 中文字幕| 天天添夜夜摸| 黄色毛片三级朝国网站| 国产91精品成人一区二区三区 | 一区二区av电影网| 国产精品国产三级国产专区5o| 亚洲欧美一区二区三区黑人| 亚洲成人手机| 亚洲国产欧美日韩在线播放| 国产成人影院久久av| 两性午夜刺激爽爽歪歪视频在线观看 | 高清黄色对白视频在线免费看| 啦啦啦中文免费视频观看日本| 久久亚洲精品不卡| 日本av免费视频播放| 另类精品久久| 一级片免费观看大全| 亚洲精品av麻豆狂野| 久久精品aⅴ一区二区三区四区| 国产区一区二久久| 12—13女人毛片做爰片一| 亚洲一区二区三区欧美精品| 99热全是精品| 欧美精品一区二区大全| 亚洲专区国产一区二区| 免费看十八禁软件| 久久人人爽人人片av| 亚洲精品日韩在线中文字幕| 国产精品99久久99久久久不卡| 国产免费现黄频在线看| xxxhd国产人妻xxx| 亚洲视频免费观看视频| 久久久国产一区二区| 天天躁夜夜躁狠狠躁躁| 亚洲精品久久久久久婷婷小说| 亚洲专区字幕在线| 免费在线观看完整版高清| 午夜久久久在线观看| 少妇精品久久久久久久| 一进一出抽搐动态| 国产精品一二三区在线看| 亚洲黑人精品在线| 亚洲精品国产av成人精品| 日韩熟女老妇一区二区性免费视频| 中文字幕最新亚洲高清| 国产又爽黄色视频| 99久久国产精品久久久| 热re99久久精品国产66热6| 永久免费av网站大全| 国产免费一区二区三区四区乱码| 一二三四社区在线视频社区8| 亚洲av电影在线观看一区二区三区| 日本欧美视频一区| 欧美一级毛片孕妇| 欧美av亚洲av综合av国产av| 一进一出抽搐动态| 悠悠久久av| 免费高清在线观看视频在线观看| 欧美激情久久久久久爽电影 | 我要看黄色一级片免费的| 国产一区二区三区在线臀色熟女 | 在线十欧美十亚洲十日本专区| 国产有黄有色有爽视频| 伦理电影免费视频| 在线观看一区二区三区激情| 两人在一起打扑克的视频| 自线自在国产av| 三级毛片av免费| www.自偷自拍.com| 两人在一起打扑克的视频| 涩涩av久久男人的天堂| 桃花免费在线播放| 精品人妻一区二区三区麻豆| 免费不卡黄色视频| av在线老鸭窝| 性少妇av在线| 91成人精品电影| 亚洲精品乱久久久久久| 国产精品影院久久| 99热网站在线观看| 97在线人人人人妻| 日本wwww免费看| 午夜精品国产一区二区电影| 99香蕉大伊视频| 啦啦啦啦在线视频资源| 久久免费观看电影| 国产老妇伦熟女老妇高清| 国产伦人伦偷精品视频| 精品高清国产在线一区| 黄色视频不卡| 看免费av毛片| www.999成人在线观看| 我的亚洲天堂| 欧美激情 高清一区二区三区| 亚洲欧洲精品一区二区精品久久久| 一区福利在线观看| 国产精品免费大片| h视频一区二区三区| 国产男女内射视频| 成年动漫av网址| 日本猛色少妇xxxxx猛交久久| 亚洲国产看品久久| 日韩中文字幕视频在线看片| 91成人精品电影| 最新在线观看一区二区三区| 精品亚洲成a人片在线观看| 色婷婷av一区二区三区视频| 99国产极品粉嫩在线观看| bbb黄色大片| 韩国精品一区二区三区| 99精品久久久久人妻精品| 国产成人欧美| 精品国产乱码久久久久久小说| 国产欧美日韩一区二区三区在线| 亚洲人成电影免费在线| 亚洲全国av大片| 亚洲国产av影院在线观看| 久久精品国产a三级三级三级| 国产国语露脸激情在线看| 亚洲 国产 在线| 首页视频小说图片口味搜索| 亚洲国产看品久久| 日本猛色少妇xxxxx猛交久久| 久久精品aⅴ一区二区三区四区|