• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Catalytic conversion of ethyl lactate to 1,2-propanediol over CuO☆

    2016-05-29 10:58:10SongZhangZhibaoHuoDezhangRenJiangLuoJunFuLuLiFangmingJin

    Song Zhang,Zhibao Huo,Dezhang Ren,Jiang Luo,Jun Fu,Lu Li,Fangming Jin

    School of Environmental Science and Engineering,The State Key Laboratory of Metal Matrix Composites,Shanghai Jiao Tong University,Shanghai 200240,China

    1.Introduction

    Over the past several decades,consumption of fossil fuels and their limited supply have necessitated areduction in our dependenceon petroleum oil.Biomass as a source for producing high value-added chemicals has attracted much attention due to its excellent properties,such as abundant,renewable,and less pollution.A number of efficient methods in the conversion of biomass to chemicals including various alcohols[1],hydroxymethylfurfural[2]and dimethylfuran[3,4]had been reported.

    1,2-propanediol(1,2-PDO),a bulk commodity chemical that is mainly used for the production of unsaturated polyester resins[5]and as an antifreeze and de-icing agent and in pharmaceuticals,cosmetics,and foods[6],is industrially produced by the hydration of propylene oxide derived from petrochemical resource[7].With reducing fossil fuel reserves,the development of renewable and green synthetic methods for the 1,2-PDO production is necessary[8,9].Recently,the hydrogenation of biomass-derived ethyl lactate to 1,2-PDO using gaseous hydrogen over transition metal catalysts has attracted much interest,which provides an environmental benign alternative to the petroleum-based process for the 1,2-PDO production[10-14].Ethyl lactate can be easily obtained on alarge amount(120000 t·a-1)by the fermentation of renewable sources such as agricultural crops and biomass streams.Several groups had disclosed that Ru-based catalysts were effective in significantly increasing the activity and selectivity for the conversion of ethyl lactate to 1,2-PDO due to their excellent intrinsic activities.The examples include:Ru B/TiO2[11],RuB/-Al2O3and RuB/SBA-15[12],and Ru/SiO2[14].Li et al.reported vapor-phase hydrogenolysis of ethyl lactate to 1,2-PDO over Co/SiO2and Cu/SiO2,and the 1,2-PDO selectivity was in excess of 98%at 90.2%ethyl lactate conversion[13].How ever,these methods suffer from several drawbacks,such as the use of high-pressure gaseous hydrogen which is not easy to obtain at a reduced energy cost;organic solvents;the use of prepared catalysts,such as Ru-based catalysts supported on some additives(boron,tin or iron,etc.)increased the cost of the preparation and separation process;formation of by-products and longer reaction times.Thus,the development of a cleanly and economically synthetic approach of 1,2-PDO from ethyl lactate is of great importance.

    One of the major challenges in the conversion of ethyl lactate to 1,2-PDO is the development of economical hydrogen sources.The previous works showed that the hydrothermal process had a promising potential for environmental benign conversion of biomass into useful chemicals[15-18].Water is not only the most abundant hydrogen resource in the process,but also agreener solvent.Recently,were ported an efficient process for the formation of ethyleneglycol from glycolideover CuOin water,and a high yield of 94%was achieved[19].It occurs to us that the conversion of ethyl lactate to 1,2-PDOmay be implemented in a similar manner.Herein,w e present a highly efficient conversion of ethyl lactate to 1,2-PDO in the presence of CuO in high temperature water(Fig.1).

    2.Experimental

    2.1.Experimental materials

    Fig.1.Previous and current process for the formation of 1,2-PDO.

    Ethyl lactate(>97%)as the initial reactant was purchased from TCI.1,2-PDO(≥99.8%,chromatographic grade,J&K Scientific Ltd.)was used for quantitative analysis.Zn[200 mesh(0.075 mm),Aladdin]was used as the reductant.Ni,Fe,Al,Mn,Mg,Cu O,Al2O3,Cu O,Cu2O,Fe2O3and Fe3O4[200 mesh(0.075 mm),Sinopharm Chemical Reagent Co.,Ltd.]were also used in the experiment.

    2.2.Experimental procedure

    All experiments were carried out in a Te flon-lined stainless steel batch reactor with an internal volume of 30 ml.0.47 mmol ethyl lactate was used in all experiments.The typical procedure for the synthesis of 1,2-PDO was as follow s.First,desired ethyl lactate,reductant,catalyst and ultrapure water were loaded into the reactor.Then,nitrogen was charged into the reactor in order to exclude the effect of air and then the sealed reactor was put into a drying oven,it will take about 20 min to be preheated to the desired temperature.After a desired reaction time,the reactor was quickly moved from the drying oven to cool down.Liquid sample was collected and filtered with a 0.45 μm Syringe Filter.Solid sample was collected and washed with deionized water and ethanol several times to remove impurities and dried in the oven at 50°C for 24 h.The schematic of the reactor system was show n in Fig.2.

    2.3.Product analysis

    After the reaction was quenched,solution samples were collected and filtered for GC-MSanalysis(Agilent GC7890A-MS5975C)equipped with an HP INNOWax polyethylene glycol capillary column with dimensions of 30 m × 250 μm × 0.25 μm,and HPLC analysis(Agilent 1260 serials,Vis detector).Details on the conditions of HPLC and GCMS analyses are available elsew here[20].The total residual organic carbon concentration in liquid samples was also measured with a TOC analyzer(Shimadzu TOC-V).The gas product was detected by a thermal conductivity detector(TCD,Agilent Technologies).Thin layer chromatography(TLC)was performed on aluminum-precoated plates of silica gel 60 with an HSGF254 indicator and visualized under UV light or developed by immersion in the solution of 0.6%KMn O4and 6%K2CO3in water.Solid samples were collected and analyzed by an X-ray diffractometer(Shimadzu XRD-6100)to determine the composition and phase purity.

    The yield of 1,2-PDO is calculated as the follow ing equation:

    3.Results and Discussion

    3.1.Catalyst screening

    Fig.2.Schematic of batch reactor system.

    Fig.3.GC-MS spectrum of the liquid sample.

    First of all,aseriesof experimentswerecarried out to investigate the feasibility of ethyl lactate to 1,2-PDO in the presence of 5 mmol Co and 26 mmol Zn with 17%water filling at 250°C for 150 min.The GC-MS image of the liquid product after the reaction clearly show ed that the desired 1,2-PDO was observed(Fig.3).The yield of 37.6%was achieved in the presence of Co(Table 1,entry 1).The solid samples after the reaction were analyzed by XRD[Fig.4(a)],which found that Co still existed in the solid sample,while Zn was oxidized to Zn O,indicating that Zn acted as a reduct ant and Co acted as a catalyst for the conversion of ethyl lactate to 1,2-PDO.Next,w e investigated the performance of other various catalysts,such as CuO,Cu,Fe,MnO2,Zr O2,and Co2O3,and the results were shown in Table 1.The results indicated that CuO,Co and Cu2O exhibited excellent performance for the conversion of ethyl lactate(entries 1,11 and 12),and CuO gave much better results than Co and Cu2O.The yield of 86%was obtained with no surplus initial starting materials observed by thin layer chromatography(TLC)(entry 12).Other catalysts,such as Fe,Cu,Cr,Al2O3,Fe2O3,Ni2O3,Fe3O4,Mn O2,Co2O3,TiO2,ZrO2and Cu Fe2O4were ineffective,and no desired products were observed(entries2-10,13-15).The blank test show ed that no desired 1,2-PDO was obtained,indicating the importance of the combined use of both Zn and CuO in the process(entries 16-18).The XRD of solid samples was show ed in Fig.4(b)when CuO was used as a catalyst.It is noteworthy that Cu rather than CuO was observed in the solid sample,the most likely reason is that CuO was reduced completely to Cu by in situ formed hydrogen by the oxidation of Zn in water[21].In order to con firm this assumption,w e carried out the experiment under the same reaction conditions without the addition of ethyl lactate.Cu was found from XRD,indicating that CuO would be reduced completely to Cu by in situ formed hydrogen during the reaction.

    Fig.4.XRD patterns of the solid samples.

    Next,we investigated the effect of different amounts of CuO with the remaining other conditions unchanged.The results were show n in Fig.5.The yield of 1,2-PDO increased remarkably from 3 to 5 mmol,and then decreased as the amount of CuO was further increased.The decreasing yield may be because more CuO would lead to more cracking products such as propionic acid.It is obvious that 5 mmol Cu O is the most suitable amount.

    3.2.The optimization of the various parameters

    To investigate the effect of the reduct ant on the yield of 1,2-PDO,the reactions of ethyl lactate were carried out in the presence of Cu O at 250°C for 150 min.Table 2 show ed that the desired 1,2-PDO was yielded when Zn and Fe were used,while the other reductants,suchas Mg,Ni,Mn,and Al were ineffective and no desired product was obtained at all.Zn is the most efficient reductant as the yield of 1,2-PDO is86%.Thus,Zn was chosen as are ductant in the following experiments.Next,the amount of Zn was optimized in the presence of CuO at 250°C for 150 min.As show n in Fig.6,the results indicated that the most suitable amount is 26 mmol.But the yield of 1,2-PDO decreased significantly when the amount of Zn exceeded 26 mmol,which demonstrated that too much hydrogen pressure may have negative effects in the conversion of ethyl lactate to 1,2-PDO.

    Table 1 Effect of catalysts on the yield of 1,2-PDO①

    Fig.5.Effect of CuO amount(Zn:26 mmol;time:150 min;temp:250°C;water filling:17%).

    Table 2 Effect of reductants on the yield of 1,2-PDO①

    Fig.6.Effect of Zn amount(CuO:5 mmol;time:150 min;temp:250°C;water filling:17%).

    The change of Zn oxidation to Zn O during the reaction at different times was monitored by XRD.As shown in Fig.4(b),peaks of Zn gradually reduced until it disappeared,whereas peaks of Zn O increased gradually as time increased.How ever,the peak of Cu was also observed,indicating that CuO was reduced gradually as Zn was oxidized to Zn O.These results indicate that ethyl lactate can be converted to 1,2-PDO over CuO by in situ formed hydrogen by the oxidation of Zn in water.

    The effect of temperatures from 100 to 250°C on the yields of 1,2-PDO was investigated.As show n in Fig.7,the reaction did not take place at 100°C and no desired 1,2-PDO was observed.The yield of 1,2-PDOim proved gradually as there action temperature increased gradually from 100 °C to 150 °C,and then remarkably increased from 150 to 250°C.The results indicated that high temperature contributed to the conversion of ethyl lactate to 1,2-PDO.How ever,the temperature was limited to 250°Cdue to the limiting temperature of the Teflon material.

    Fig.7.Effect of the temperature(Zn:26 mmol;CuO:5 mmol;time:150 min;water filling:17%).

    Experiments were performed by changing the reaction time from 1 h to 3 h at 250°C to examine the effect of reaction time on the yield of 1,2-PDO.Fig.8 demonstrated that the yield of 1,2-PDO increased as reaction time increased from 1 h to 2.5 h,and maximum yield was reached w hen reaction time was 2.5 h.How ever,the yield of 1,2-PDO decreased after 2.5 h.This phenomenon may be attributed to the decomposition of produced 1,2-PDO during the reaction.In order to confirm this assumption,an experiment was designed as follow s,1,2-PDO acted as the initial reactant in the presence of 5 mmol Cu and 26 mmol ZnO with 17%water filling at 250°C for 2 h.The HPLC indicated that the initial 120 mmol·L-1concentration of 1,2-PDO was decreased to 100 mmol·L-1,and XRD analysis show ed that Cu and Zn O had not changed.It is obvious that a long reaction time has negative effect on the yield of 1,2-PDO obtained in the presence of Cu and Zn O during the reaction[22].

    Fig.8.Effect of the time(Zn:26 mmol;CuO:5 mmol;temp:250°C;water filling:17%).

    Further study was to optimize suitable water filling from 10%to 45%.Fig.9 indicates that the 1,2-PDO yield first increased significantly when the water filling was changed from 10%to 17%.The yield of 1,2-PDO increased slightly as the water filling increased from 17%to 42%and then decreased after 42%.The optimum water filling was 42%to obtain the highest yield of 93.6%.The decreasing yield at a higher water filling is most likely due to the decomposition of obtained 1,2-PDO with the increase of pressure when water filling increased.

    Fig.9.Effect of water filling(Zn:26 mmol;CuO:5 mmol;time:150 min;temp:250°C).

    Finally,a carbon balance was conducted at the optimized condition by TOC and found that approximately 97.8%ethyl lactate was converted into liquid products.And only H2as the gaseous product was detected.

    3.3.The formation of 1,2-PDO from ethyl lactate using gaseous hydrogen

    The catalytic hydrogenation of ethyl lactate using gaseous hydrogen instead of in situ hydrogen to 1,2-PDO was also investigated.The reaction was carried out in the presence of 5 mmol Cu O,2 MPa H2,42%water filling at 250°C for 2.5 h.Unfortunately,lactic acid rather than 1,2-PDO was obtained,indicating that gaseous hydrogen was ineffective for the 1,2-PDO production from ethyl lactate[Eq.(1)].

    3.4.Mechanistic studies

    Based on the previous and current results,the pathway for the conversion of ethyl lactate to 1,2-PDO over CuO was proposed in Fig.10.First,hydrogen was formed via the oxidation of Zn in water[23,24].The in situ-formed hydrogen was adsorbed on the surface of Cu/CuO/Zn O through the formation of hydrogen bonds.Then,ethyl lactate was also adsorbed on the surface of Cu/Cu O/Zn O by the combination of Cu/CuO/Zn O with carbonylic C and O atoms[25,26].When the hydrogen reacted with ethyl lactate molecules,an intermediate 2-hydroxypropanal was obtained.Furthermore,both the intermediate 2-hydroxypropanal and the hydrogen formed were adsorbed on the surface of Cu/Cu O/Zn O,H was added to C═Oand an intermediatelinked by anα-bond was formed.Finally,the intermediate acquired one more H from the surface of Cu/CuO/ZnO and the desired 1,2-PDO was obtained.

    Fig.10.Proposed pathway for the formation of 1,2-PDO.

    To investigate the possibility of an experimental pathway for the transformation,a validation test for the conversion of intermediate 2-hydroxypropanal to 1,2-PDO was conducted.As a result,intermediate 2-hydroxypropanal was converted completely to 1,2-PDO in 90%yield under optimum conditions[Eq.(2)].This validation process illustrates that the proposed pathway is acceptable.

    4.Conclusions

    We developed a highly efficient conversion of biomass-derived ethyl lactate to 1,2-PDO over CuOin high temperature water.CuO catalyst exhibits high catalytic activity for the transformation.A high yield of 93.6%was achieved in the presence of 26 mmol Zn and 5 mmol Cu O with 42%water filling at 250°C for 150 min.The use of gaseous hydrogen was in effective and no desired 1,2-PDO was obtained.This study provided a highly efficient process for the conversion of biomass-derived ethyl lactate to 1,2-PDO.Further study will betaken to develop efficient methods for the conversion of biomass-derived compounds to value-added chemicals.

    [1]G.X.Xu,C.Shao,Z.L.Xiu,Optimizing control of bio-dissimilation process of glycerol to 1,3-propanediol,Chin.J.Chem.Eng.16(2008)128-134.

    [2]R.J.van Putten,J.C.van der Waal,E.de Jong,C.B.Rasrendra,H.J.Heeres,J.G.de Vries,Hydroxymethylfurfural,a versatile platform chemical made from renew able resources,Chem.Rev.133(2013)1499-1597.

    [3]Y.Roman-Leshkov,C.J.Barrett,Z.Y.Liu,J.A.Dumesic,Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates,Nature 447(2007)982-985.

    [4]C.S.Zhou,X.J.Yu,H.L.Ma,R.H.He,V.Saritporn,Optimization on the conversion of bamboo shoot shell to levulinic acid with environmentally benign acidic ionic liquid and response surface analysis,Chin.J.Chem.Eng.21(2013)544-550.

    [5]R.K.Saxena,P.Anand,S.Saran,J.Isar,L.Agarwal,Microbial production and applications of 1,2-propanediol,Indian J.Microbiol.50(2010)2-11.

    [6]D.C.Cameron,N.E.Altaras,M.L.Hoffman,A.J.Shaw,Metabolic engineering of propanediol pathways,Biotechnol.Prog.14(1998)116-125.

    [7]E.S.Lipinsky,R.G.Sinclair,Biodegradable materials:state of art and future perspectives,Chem.Eng.Prog.82(1986)26-29.

    [8]A.Corma,S.Iborra,A.Velty,Chemical routes for the transformation of biomass into chemicals,Chem.Rev.38(2007)2411-2502.

    [9]J.H.Clark,The home of cutting-edge research on the development of alternative sustainable technologies,Green Chem.(2006)17-21.

    [10]Z.Han,L.Rong,J.Wu,L.Zhang,Z.Wang,K.Ding,Catalytic hydrogenation of cyclic carbonates:a practical approach from CO2and epoxides to methanol and diols,Ange wandte 51(2012)13041-13045.

    [11]G.Fan,Y.Zhang,Y.Zhou,R.Li,H.Chen,X.Li,Synthesis of ZnO and ZnO2nanoparticles by the oil-in-water microemulsion reaction method,Chem.Lett.37(2008)132-134.

    [12]G.Luo,S.Yan,M.Qiao,J.Zhuang,K.Fan,Effect of tin on Ru-B/γ-Al2O3catalyst for the hydrogenation of ethyl lactate to 1,2-propanediol,Appl.Catal.275(2004)95-102.

    [13]L.Huang,Y.Zhu,H.Zheng,M.Du,Y.Li,Vapor-phase hydrogenolysis of biomassderived lactate to 1,2-propanediol over supported metal catalysts,Appl.Catal.349(2008)204-211.

    [14]J.Feng,W.Xiong,Y.Jia,J.Wang,D.Liu,R.Qin,Hydrogenation of ethyl lactate over ruthenium catalysts in an additive-free catalytic system,React.Kinet.Mech.(2008)89-97.

    [15]N.Akiya,P.E.Savage,Roles of water for chemical reactions in high-temperature water,Chem.Rev.102(2002)2725-2750.

    [16]M.Watanabe,T.Sato,H.Inomata,R.L.Smith,K.Arai,A.Kruse,E.Dinjus,Chemical reactions of C1compounds in near-critical and supercritical water,Chem.Rev.104(2004)5803-5822.

    [17]R.W.Shaw,Y.B.Brill,A.A.Clifford,C.A.Eckert,E.U.Franck,Dissipative hydrodynamics of rigid spherical particles,Chem.Eng.23(2010)23-26.

    [18]W.L.Marshall,E.U.Frank,Ion product of water substance,0-1000°C,1-10,000 bars New International Formulation and its background,J.Phys.Chem.Ref.Data(1981)295-304.

    [19]L.L.Xu,Z.B.Huo,J.Fu,F.M.Jin,Highly efficient conversion of biomass-derived glycolide to ethylene glycol over CuO in water,Chem.Commun.50(2014)6009-6012.

    [20]F.Jin,A.Kishita,T.Moriya,H.Enomoto,Kinetics of oxidation of food wastes with H2O2in supercritical water,Supercrit.Fluids 19(2001)251-262.

    [21]Y.Li,G.Xu,C.Liu,B.Eliasson,B.Xue,Gram-scale synthesis of zinc oxide nanorods in basic ethanol solutions,Energy Fuel 15(2001)299-302.

    [22]D.Larcher,R.Patrice,Preparation of metallic pow ders and alloys in polyol media:a thermodynamic approach,J.Solid State Chem.154(2000)405-411.

    [23]F.L.P.Resende,P.E.Savage,Effect on metal on superficial water gasification of cellulose and lignin,Ind.Eng.Chem.Res.49(2010)2694-2700.

    [24]D.C.Elliott,Catalytic hydrothermal gasification of biomass,Biofuels Bioprod.Biore fin.2(2008)254-265.

    [25]Z.P.Yan,L.Lin,S.Liu,Synthesis of γ-valerolactone by hydrogenation of biomass derived levulinic acid over Ru/C catalyst,Energy Fuel 23(2009)3853-3858.

    [26]A.P.G.Kieboom,F.van Rantwiik,Hydrogenation and Hydrogenolysis in Synthetic Organic Chemistry,Science Press,Beijing,China,1981.295-300.

    亚洲成色77777| 亚洲欧美精品自产自拍| 日韩av不卡免费在线播放| 又大又黄又爽视频免费| 国产精品久久久久久av不卡| a级毛色黄片| 久久精品熟女亚洲av麻豆精品| 大陆偷拍与自拍| 成人黄色视频免费在线看| 久久ye,这里只有精品| 中文字幕精品免费在线观看视频 | 日韩中字成人| 成人影院久久| 青春草国产在线视频| 久久精品aⅴ一区二区三区四区 | 18在线观看网站| 少妇的逼好多水| 夜夜骑夜夜射夜夜干| 久久久久久久大尺度免费视频| 80岁老熟妇乱子伦牲交| 久久久久久久久久久久大奶| 91久久精品国产一区二区三区| 老司机影院成人| 国产乱人偷精品视频| 精品人妻熟女毛片av久久网站| 婷婷色麻豆天堂久久| 777米奇影视久久| 亚洲婷婷狠狠爱综合网| 又黄又爽又刺激的免费视频.| 性高湖久久久久久久久免费观看| 日韩av在线免费看完整版不卡| 日韩大片免费观看网站| 99久久精品国产国产毛片| 亚洲成人一二三区av| 自线自在国产av| 麻豆乱淫一区二区| 婷婷色麻豆天堂久久| 亚洲精品乱码久久久久久按摩| 免费在线观看黄色视频的| 一级毛片 在线播放| 26uuu在线亚洲综合色| 国产欧美另类精品又又久久亚洲欧美| √禁漫天堂资源中文www| 久久精品久久精品一区二区三区| 亚洲欧美中文字幕日韩二区| 人妻少妇偷人精品九色| 国产亚洲一区二区精品| 老熟女久久久| 精品亚洲乱码少妇综合久久| 精品人妻一区二区三区麻豆| videos熟女内射| 国产色婷婷99| 免费在线观看完整版高清| 亚洲成人av在线免费| videosex国产| 国产福利在线免费观看视频| 91国产中文字幕| 国产熟女午夜一区二区三区| 成人18禁在线播放| 亚洲色图综合在线观看| 激情在线观看视频在线高清 | 亚洲精华国产精华精| 精品久久久久久电影网| 50天的宝宝边吃奶边哭怎么回事| 中文字幕精品免费在线观看视频| 老汉色∧v一级毛片| 黄色女人牲交| 欧美日韩乱码在线| 久久久国产成人免费| 高清av免费在线| 午夜91福利影院| 国产无遮挡羞羞视频在线观看| 国产欧美日韩一区二区三区在线| 老汉色∧v一级毛片| 日韩 欧美 亚洲 中文字幕| 国产亚洲欧美在线一区二区| 一区二区三区精品91| 91麻豆av在线| 久久午夜综合久久蜜桃| 午夜福利影视在线免费观看| 手机成人av网站| 一进一出抽搐gif免费好疼 | 免费看a级黄色片| 日韩欧美一区二区三区在线观看 | 精品午夜福利视频在线观看一区| 久久人人爽av亚洲精品天堂| 无限看片的www在线观看| 动漫黄色视频在线观看| 久久国产乱子伦精品免费另类| 99热只有精品国产| 欧美激情高清一区二区三区| 18在线观看网站| 欧美成人免费av一区二区三区 | 新久久久久国产一级毛片| 99精国产麻豆久久婷婷| 国产精品免费大片| 一区二区三区激情视频| 色94色欧美一区二区| 亚洲人成伊人成综合网2020| 不卡av一区二区三区| 国产真人三级小视频在线观看| 母亲3免费完整高清在线观看| 欧美国产精品一级二级三级| 国产无遮挡羞羞视频在线观看| 亚洲熟妇熟女久久| 国产成人免费观看mmmm| 9191精品国产免费久久| av欧美777| a级毛片在线看网站| 欧美精品av麻豆av| 国产精品综合久久久久久久免费 | 久久精品国产a三级三级三级| 大陆偷拍与自拍| 久久久久国产一级毛片高清牌| 岛国在线观看网站| 精品乱码久久久久久99久播| 一进一出抽搐动态| 午夜激情av网站| 亚洲精品一二三| 嫁个100分男人电影在线观看| 国产在线精品亚洲第一网站| 精品人妻1区二区| 狠狠婷婷综合久久久久久88av| 精品午夜福利视频在线观看一区| 不卡一级毛片| 成人免费观看视频高清| 亚洲免费av在线视频| 高清欧美精品videossex| 亚洲国产精品sss在线观看 | 国产精品秋霞免费鲁丝片| 中文字幕精品免费在线观看视频| 精品乱码久久久久久99久播| 女人精品久久久久毛片| 美女国产高潮福利片在线看| 国产高清激情床上av| 又大又爽又粗| 国产成人精品久久二区二区免费| 搡老岳熟女国产| 狠狠狠狠99中文字幕| 老司机福利观看| 亚洲熟女毛片儿| 涩涩av久久男人的天堂| 日韩视频一区二区在线观看| 在线av久久热| 亚洲熟女毛片儿| 日韩熟女老妇一区二区性免费视频| 99热国产这里只有精品6| 国产在线精品亚洲第一网站| 国产精品亚洲一级av第二区| 国产精品亚洲一级av第二区| 中文字幕av电影在线播放| 国产精品一区二区免费欧美| 久久影院123| 黑人操中国人逼视频| 亚洲国产欧美日韩在线播放| 久久国产精品男人的天堂亚洲| 视频区欧美日本亚洲| 久久久久久久精品吃奶| 99久久精品国产亚洲精品| 在线国产一区二区在线| 麻豆乱淫一区二区| 午夜福利一区二区在线看| 欧美日韩亚洲综合一区二区三区_| 精品熟女少妇八av免费久了| 50天的宝宝边吃奶边哭怎么回事| 成年版毛片免费区| 精品久久久久久,| 久久久水蜜桃国产精品网| 国产黄色免费在线视频| 国产亚洲欧美精品永久| 国产在视频线精品| 极品少妇高潮喷水抽搐| 国产午夜精品久久久久久| 老鸭窝网址在线观看| 大片电影免费在线观看免费| 免费在线观看视频国产中文字幕亚洲| 真人做人爱边吃奶动态| 国产亚洲精品久久久久久毛片 | 制服诱惑二区| 国产精品一区二区免费欧美| 中文亚洲av片在线观看爽 | 久久久久久亚洲精品国产蜜桃av| 一级毛片女人18水好多| 国产亚洲精品久久久久久毛片 | 免费av中文字幕在线| 久久久久国产精品人妻aⅴ院 | 色婷婷av一区二区三区视频| 亚洲中文日韩欧美视频| 国产精品综合久久久久久久免费 | 91麻豆av在线| 久久精品亚洲精品国产色婷小说| 亚洲伊人色综图| 91成年电影在线观看| 日韩有码中文字幕| 一级毛片精品| 午夜视频精品福利| 一区福利在线观看| 美女高潮喷水抽搐中文字幕| 免费人成视频x8x8入口观看| 亚洲成国产人片在线观看| 啦啦啦在线免费观看视频4| 国产一区二区三区视频了| 午夜福利,免费看| 又大又爽又粗| 国产日韩一区二区三区精品不卡| 建设人人有责人人尽责人人享有的| 国产免费av片在线观看野外av| 亚洲五月天丁香| 亚洲avbb在线观看| 岛国在线观看网站| av在线播放免费不卡| 欧美在线一区亚洲| 一级片'在线观看视频| 免费日韩欧美在线观看| 精品视频人人做人人爽| 成在线人永久免费视频| 99精品久久久久人妻精品| 一级毛片精品| 亚洲av成人不卡在线观看播放网| 大香蕉久久网| 免费在线观看黄色视频的| 99精品在免费线老司机午夜| 午夜精品国产一区二区电影| 啦啦啦 在线观看视频| 免费观看a级毛片全部| 91老司机精品| 一进一出抽搐gif免费好疼 | 精品福利永久在线观看| 成人18禁在线播放| 中文亚洲av片在线观看爽 | 精品少妇久久久久久888优播| 超碰97精品在线观看| 国产一区二区三区综合在线观看| 国产熟女午夜一区二区三区| 黄色怎么调成土黄色| 丝袜美腿诱惑在线| 波多野结衣一区麻豆| 成年女人毛片免费观看观看9 | 国产精品免费视频内射| 男女床上黄色一级片免费看| 黄色片一级片一级黄色片| 啦啦啦视频在线资源免费观看| 国产日韩欧美亚洲二区| 亚洲五月天丁香| 亚洲在线自拍视频| 亚洲专区中文字幕在线| 国产一区二区三区综合在线观看| 免费在线观看黄色视频的| 色综合婷婷激情| videos熟女内射| 大型av网站在线播放| 黄色丝袜av网址大全| 久久久精品区二区三区| 岛国毛片在线播放| 午夜老司机福利片| 天天躁日日躁夜夜躁夜夜| 国产在线观看jvid| 免费人成视频x8x8入口观看| 搡老乐熟女国产| 精品国产超薄肉色丝袜足j| 91精品三级在线观看| 午夜老司机福利片| 中文字幕精品免费在线观看视频| 亚洲精品久久成人aⅴ小说| 久久久久久久精品吃奶| 制服人妻中文乱码| 国产精品久久久久久精品古装| 日韩熟女老妇一区二区性免费视频| 女人精品久久久久毛片| 手机成人av网站| 亚洲av美国av| 精品熟女少妇八av免费久了| 女人爽到高潮嗷嗷叫在线视频| tube8黄色片| 夜夜爽天天搞| 黑人欧美特级aaaaaa片| 手机成人av网站| 高清在线国产一区| 水蜜桃什么品种好| 黄色女人牲交| 男人的好看免费观看在线视频 | 成年人黄色毛片网站| av国产精品久久久久影院| 大型黄色视频在线免费观看| 叶爱在线成人免费视频播放| 国产亚洲欧美精品永久| 亚洲欧美激情在线| 欧美激情极品国产一区二区三区| 国产成人av教育| 日韩免费高清中文字幕av| 国产不卡一卡二| 丝袜人妻中文字幕| 50天的宝宝边吃奶边哭怎么回事| 日韩免费av在线播放| 久久国产精品大桥未久av| 久久这里只有精品19| 又黄又爽又免费观看的视频| 日韩制服丝袜自拍偷拍| 成在线人永久免费视频| 国产精品免费大片| 老司机在亚洲福利影院| 宅男免费午夜| 欧美人与性动交α欧美精品济南到| 久久国产亚洲av麻豆专区| tube8黄色片| 丝袜人妻中文字幕| 在线观看免费高清a一片| 精品久久久久久,| 丝袜人妻中文字幕| 成人精品一区二区免费| 99re在线观看精品视频| 国产色视频综合| 丝袜美足系列| 两个人免费观看高清视频| 免费观看a级毛片全部| 亚洲一区二区三区不卡视频| 国产xxxxx性猛交| 欧美日韩成人在线一区二区| 精品国内亚洲2022精品成人 | 人人澡人人妻人| 女性被躁到高潮视频| 久久久久精品人妻al黑| 国产成人精品在线电影| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品1区2区在线观看. | 黄色视频不卡| 中文字幕最新亚洲高清| av中文乱码字幕在线| 亚洲人成电影观看| av电影中文网址| 亚洲片人在线观看| 免费观看a级毛片全部| 亚洲专区字幕在线| 99re6热这里在线精品视频| 久久久久国产一级毛片高清牌| 成人国产一区最新在线观看| 免费人成视频x8x8入口观看| 91在线观看av| 99在线人妻在线中文字幕 | 热99久久久久精品小说推荐| 日本vs欧美在线观看视频| 精品福利观看| 国产男女超爽视频在线观看| 国产男女内射视频| 韩国精品一区二区三区| 日韩人妻精品一区2区三区| 成人精品一区二区免费| 国产主播在线观看一区二区| 中国美女看黄片| 最新在线观看一区二区三区| 青草久久国产| 一区二区三区国产精品乱码| 一区二区日韩欧美中文字幕| 在线观看日韩欧美| 老司机亚洲免费影院| 男女床上黄色一级片免费看| 18禁裸乳无遮挡动漫免费视频| 建设人人有责人人尽责人人享有的| 精品国产一区二区三区久久久樱花| 久久午夜综合久久蜜桃| 精品亚洲成国产av| 嫁个100分男人电影在线观看| av电影中文网址| 欧美黑人欧美精品刺激| 亚洲欧美激情综合另类| 欧美成人午夜精品| 日韩欧美免费精品| 人人妻人人添人人爽欧美一区卜| tube8黄色片| 69精品国产乱码久久久| 岛国在线观看网站| 国产亚洲欧美在线一区二区| 免费av中文字幕在线| 精品人妻1区二区| 中文欧美无线码| 欧美不卡视频在线免费观看 | 不卡一级毛片| 男女下面插进去视频免费观看| 丁香六月欧美| 热99久久久久精品小说推荐| 久久久久久亚洲精品国产蜜桃av| 丝袜在线中文字幕| 免费在线观看完整版高清| 777米奇影视久久| 飞空精品影院首页| 91av网站免费观看| 人妻丰满熟妇av一区二区三区 | 天天操日日干夜夜撸| 国产成人免费无遮挡视频| 自线自在国产av| 丝袜人妻中文字幕| 男人的好看免费观看在线视频 | 亚洲九九香蕉| 国产精品永久免费网站| 精品亚洲成a人片在线观看| 制服诱惑二区| 九色亚洲精品在线播放| 欧美日韩亚洲综合一区二区三区_| 黄色a级毛片大全视频| 亚洲片人在线观看| av片东京热男人的天堂| 精品国产亚洲在线| 亚洲av欧美aⅴ国产| 韩国av一区二区三区四区| 亚洲精品美女久久久久99蜜臀| 中出人妻视频一区二区| ponron亚洲| 中国美女看黄片| 欧美性长视频在线观看| videosex国产| 精品一区二区三区av网在线观看| 国产亚洲精品第一综合不卡| 成人手机av| 免费日韩欧美在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 性少妇av在线| 黄色 视频免费看| 这个男人来自地球电影免费观看| 美国免费a级毛片| 亚洲中文av在线| 欧美久久黑人一区二区| 久热这里只有精品99| 亚洲精品乱久久久久久| 嫩草影视91久久| 亚洲色图 男人天堂 中文字幕| 下体分泌物呈黄色| 亚洲性夜色夜夜综合| 高潮久久久久久久久久久不卡| 日韩欧美一区二区三区在线观看 | 亚洲五月色婷婷综合| 亚洲一码二码三码区别大吗| 在线观看舔阴道视频| 人人妻人人爽人人添夜夜欢视频| 人妻久久中文字幕网| 日韩制服丝袜自拍偷拍| 波多野结衣一区麻豆| 中文亚洲av片在线观看爽 | 久久国产精品影院| 在线看a的网站| 国产亚洲欧美精品永久| 欧美亚洲日本最大视频资源| 亚洲av熟女| 天天躁日日躁夜夜躁夜夜| 女性生殖器流出的白浆| 久久久久久久久免费视频了| 国产免费现黄频在线看| 国产精品久久久人人做人人爽| 免费不卡黄色视频| 三上悠亚av全集在线观看| bbb黄色大片| 不卡一级毛片| 久久午夜亚洲精品久久| 午夜两性在线视频| 亚洲精品中文字幕一二三四区| 热re99久久国产66热| 99在线人妻在线中文字幕 | 国产在线一区二区三区精| 亚洲色图 男人天堂 中文字幕| 在线观看免费视频日本深夜| 日韩人妻精品一区2区三区| 在线观看66精品国产| 国产精品久久视频播放| 老司机在亚洲福利影院| 亚洲国产精品一区二区三区在线| 在线观看免费高清a一片| 亚洲av美国av| 国产精品一区二区在线不卡| 新久久久久国产一级毛片| 在线视频色国产色| 久久久国产欧美日韩av| 日韩大码丰满熟妇| 国产精品国产高清国产av | 亚洲精品中文字幕一二三四区| 日本vs欧美在线观看视频| 欧美+亚洲+日韩+国产| 丝袜人妻中文字幕| 欧美日韩国产mv在线观看视频| 五月开心婷婷网| 国产1区2区3区精品| 国产欧美亚洲国产| 制服人妻中文乱码| 免费在线观看完整版高清| 午夜免费鲁丝| 亚洲精品国产精品久久久不卡| 91精品国产国语对白视频| 久久久国产精品麻豆| 91九色精品人成在线观看| 美女高潮喷水抽搐中文字幕| 高潮久久久久久久久久久不卡| 亚洲男人天堂网一区| 我的亚洲天堂| av视频免费观看在线观看| 国产单亲对白刺激| 丝瓜视频免费看黄片| 无人区码免费观看不卡| 乱人伦中国视频| 国产区一区二久久| 国产又爽黄色视频| 欧洲精品卡2卡3卡4卡5卡区| 另类亚洲欧美激情| av天堂久久9| 亚洲精品美女久久久久99蜜臀| 免费一级毛片在线播放高清视频 | 美女国产高潮福利片在线看| 一夜夜www| 午夜91福利影院| 日韩欧美免费精品| 91九色精品人成在线观看| 99国产综合亚洲精品| 王馨瑶露胸无遮挡在线观看| 中文字幕另类日韩欧美亚洲嫩草| 老司机亚洲免费影院| av网站免费在线观看视频| 亚洲色图av天堂| 老鸭窝网址在线观看| 九色亚洲精品在线播放| 国产精品久久视频播放| 变态另类成人亚洲欧美熟女 | 亚洲成人免费av在线播放| av片东京热男人的天堂| 无遮挡黄片免费观看| 亚洲成a人片在线一区二区| 精品亚洲成国产av| 成年女人毛片免费观看观看9 | 中国美女看黄片| 国产亚洲一区二区精品| 亚洲色图 男人天堂 中文字幕| 欧美日韩亚洲高清精品| bbb黄色大片| 日本五十路高清| 夜夜夜夜夜久久久久| videos熟女内射| 777米奇影视久久| 成年动漫av网址| 国产精品 欧美亚洲| 午夜免费观看网址| 国产在线精品亚洲第一网站| 捣出白浆h1v1| 怎么达到女性高潮| 91精品三级在线观看| 丁香六月欧美| 国产精品自产拍在线观看55亚洲 | 国产成人精品久久二区二区91| 亚洲色图av天堂| 桃红色精品国产亚洲av| 悠悠久久av| 免费不卡黄色视频| 成年动漫av网址| 丰满迷人的少妇在线观看| 日韩三级视频一区二区三区| 亚洲成人手机| 人妻一区二区av| 久久精品国产综合久久久| 麻豆av在线久日| 极品少妇高潮喷水抽搐| 国产在线精品亚洲第一网站| а√天堂www在线а√下载 | 精品午夜福利视频在线观看一区| 国产欧美亚洲国产| 欧美精品亚洲一区二区| 极品人妻少妇av视频| 国产av一区二区精品久久| 久久 成人 亚洲| 亚洲av日韩在线播放| 丝袜在线中文字幕| 国产精品久久电影中文字幕 | 亚洲情色 制服丝袜| 极品教师在线免费播放| 国产无遮挡羞羞视频在线观看| 99久久综合精品五月天人人| 国产精品九九99| 久久国产精品影院| 国产97色在线日韩免费| 亚洲精品美女久久久久99蜜臀| 激情在线观看视频在线高清 | 在线观看一区二区三区激情| xxx96com| 亚洲一码二码三码区别大吗| 日韩制服丝袜自拍偷拍| 久久国产精品人妻蜜桃| 亚洲欧美一区二区三区黑人| 精品国产亚洲在线| 久久久国产一区二区| 亚洲男人天堂网一区| 久久久久国产精品人妻aⅴ院 | 国产高清激情床上av| 黑人操中国人逼视频| 欧美乱妇无乱码| 国产成人系列免费观看| 久久人人爽av亚洲精品天堂| 欧美在线一区亚洲| 亚洲精品在线观看二区| 精品一区二区三区av网在线观看| 免费人成视频x8x8入口观看| 十八禁高潮呻吟视频| 高潮久久久久久久久久久不卡| 欧美精品人与动牲交sv欧美| 极品少妇高潮喷水抽搐| 黄色怎么调成土黄色| 亚洲精华国产精华精| 午夜福利视频在线观看免费| xxx96com| 交换朋友夫妻互换小说| 女人高潮潮喷娇喘18禁视频| 亚洲情色 制服丝袜| 亚洲黑人精品在线| 国产日韩欧美亚洲二区| 久久青草综合色| 免费看十八禁软件| 丁香欧美五月| 色综合婷婷激情| 久久午夜亚洲精品久久| 两个人免费观看高清视频| 亚洲自偷自拍图片 自拍| 别揉我奶头~嗯~啊~动态视频|