• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    In-situ design and construction of lithium-ion battery electrodeson metal substrates with enhanced performances:A brief review☆

    2016-05-29 10:57:46WeixinZhangYingmengZhangZehengYangGongdeChenGuoMaQiangWang

    Weixin Zhang,Yingmeng Zhang,Zeheng Yang,Gongde Chen,Guo Ma,Qiang Wang

    School of Chemistry and Chemical Engineering,Hefei University of Technology,Hefei 230009,China

    Anhui Key Laboratory of Controllable Chemical Reaction and Material Chemical Engineering,Hefei 230009,China

    1.Introduction

    As energy crisis emerges all over the world,building better batteries has become more and more urgent.Rechargeable lithium-ion batteries(LIBs)are promising energy storage candidates for applications in portable electronics,electric vehicles and hybrid electric vehicles.Although LIBs have gained commercial success,they still face challenges in energy storagedensity,cycle life and safety,etc.Traditional commercial graphite as anode materials delivers a theoretical specific capacity of only 372 m A·h·g-1and lower rate performance due to safety concern[1-3],which are obviously far from the expectations for high energy and high power applications in future.Finding potential anode materials with high energy,long stability and good power performance to replace the conventional graphite has long been considered as a big issue.Poizot and co-workers[4]have reported that transition metal oxides can be alternative and promising anode materials for LIBs,because they can exhibit much higher capacity and higher discharge plateau in comparison with graphite,and the formation of Lidendrites can be effectively avoided to improve the safety of LIBs.Especially,nanostructured transition metal oxides such as CoO,CuO and NiO can be fully reduced through their conversion reactions with lithium(MOx+2x Li?M+x Li2O),which are found to be electrochemically reversible[5,6].However,due to the higher surface area of nanostructured materials,more electrolytes will decompose on the surface of the electrodes,leading to the formation of thicker solid-electrolyte interface(SEI) film.This results in poor initial coulombic efficiency,one of the critical parameters for practical utilization of transition metal oxide electrode materials.

    Micro-/nanostructured arrays grown directly on the current collecting substrates present attractive anode candidates for LIBs,which are different from the conventional anodes composed of active materials and additives such as electronic conducting agent(often carbon black)and polymer binder.Such kind of arrays combines the advantages of both nanosized building blocks and the microstructures.The former can improve the electrochemical reaction extent during the charge-discharge process and shorten the lithium ion diffusion pathway and the latter can accommodate the volume expansion during the charge-discharge process[7-10].Meanwhile,the micro-/nanostructured assemblies possess relatively smaller specific surface area than nanostructured materials due to some surfaces and interfaces being fused,which could con fine the excessive SEI formation,and thus reduce its initial capacity loss.On the other hand,the arrays grow ndirectly on the current collecting substrates have good contact with the substrates,which increases the electrical conductivity of the electrode and is helpful to increase their rate performance.Besides,the free space between the arrays can efficiently buffer the significant volume change associated with lithium lithiation and delithiation.

    In this article,w e review and analyze design and construction of lithium-ion battery electrodes on metal substrates with enhanced performances,and reveal that self-assembling hierarchical transition metal oxide films on conducting substrates as electrodes,promise synergetic multi-functionalities to be integrated more readily into larger scale devices.An aqueous solution-based process and a microemulsion-mediated process have been respectively investigated,to control the kinetic and thermodynamic processes for the micro/nanostructured array grow th on metal substrates as current collectors.CuOnanorod arrays and micro-cog arrays have been successfully prepared on Cu foils,respectively.They have been directly used as binder-free electrodes for advanced lithium ion batteries with high energy,high safety and high stability.

    2.Self-assembly of Micro-/nanostructured Cu O Arrays on Copper Substrates as Anodes

    We have reported a bottom-up self-assembly approach to the in situ fabrication of micro-/nanostructured Cu(OH)2arrays on the surface of copper foils(current collectors).These Cu(OH)2arrays can be thermally transformed into a densely packed copper oxide(CuO)array,w ithout changing the architecture,and remaining integrated with the underlying copper substrate.

    2.1.Aqueous solution-based process to CuOnanostructured array on copper substrates

    An aqueous solution-based process[11-15]has been developed to the synthesis of a series of low-dimensional Cu(OH)2nanostructures including nanorod(Fig.1a)and nanotube arrays on copper substrate surfaces.These Cu(OH)2nanostructures are formed by the direct oxidation of copper substrate in NaOH aqueous solution with(NH4)2S2O8as oxidant,at ambient temperature and pressure.Field emission scanning electron microscopy(FESEM)studies of the Cu(OH)2nanorod arrays on copper substrate show a high yield of uniform and ordered nanorods(Fig.1a).The nanorods exhibit highly smooth surfaces with average diameters of 400-600 nm and generally about 10 μm in length(Fig.1a,inset).Post-heat treatment of Cu(OH)2nanorod arrays on copper substrate in N2atmosphere at 180°C make them transformed into CuO nanorod arrays without obvious change of morphology(Fig.1e).

    2.2.Microemulsion-mediated process to Cu O micro-cog hierarchical superstructure

    Furthermore,a microemulsion-mediated process[16]is explored to prepare a surface film comprising dense arrays of Cu(OH)2with a unique complex morphology,cog-like hierarchical superstructure with nano filament substructure.A water-in-oil microemulsion,prepared using isooctane mixtures of sodium bis(2-ethylhexyl)sulfosuccinate(NaAOT)assurfactant and small amounts of aqueousalkalinereaction solution,has been used instead of an aqueous solution-mediated process.The aqueous alkaline solution contains NaOH and ammonia solutions with ammonium persulfate((NH4)2S2O8)as oxidant.The fabrication strategy based on con fined reaction in reverse micelle,rather than bulk reaction in aqueous solution,changes the growth habit of the micro-/nanostructured arrays grow n on the copper substrate.

    FESEM studies of the Cu(OH)2film show a high yield of unusual cogshaped particles with average widths of 4-6 μm(Fig.1b).Each cogshaped particle consists of a packed radial array of biconvex plates,which are highly uniform in size and quasi-rectangular in shape(Fig.1c).These plates are spatially arranged in a spoke-like pattern to produce segmented spherical disks(Fig.1c).The top and bottom faces of the micro-cogsarehighly textured.View ed from the side,the individual blades comprise an oriented array of 5-10 nm wide nanofilamentlike domains running parallel to the vertical(radial)axis of the microcog superstructure(Fig.1d).Similarly,post-heat treatment of Cu(OH)2microcog arrays on copper substrate in N2atmosphere results in CuO micro-cog arrays with similar morphology to their precursor's(Fig.1f-1h).The structural evolution from orthorhombic Cu(OH)2to monoclinic CuO is studied by X-ray diffraction(XRD)(Fig.1i).

    The obtained Cu O micro-/nanostructured arrays on copper substrates are directly used as anodes to evaluate their lithium storage properties in LIBs.Galvanostatic discharge-charge curves recorded at a current density of 0.05 C(1 C=600 m A·g-1)show three sloping potential ranges at 2-1.5,1.25-1.0 and 1.0-0 V for the first discharge cycle(Fig.1j).The data is consistent with cyclic voltammogram(CV)curves that show three reduction peaks at 1.74,0.87 and 0.70 V(Fig.1l).Multi discharge plateaus indicate that multi-step electrochemical reactions may occur during the discharge-charge process.The plateaus correspond to the formation of an intermediate composite CuII1-xCuIxO1-x/2(0≤x≤0.4)solid-solution phase,the phasetrans formation into a Cu2Ophase and the further decomposition of Cu2Ointo Cu and Li2O,respectively[17].The initial discharge capacity of the Cu O micro-cog film electrode at a rate of 0.05 C is 1052 m A·h·g-1,with a reversible capacity of 810 m A·h·g-1(Fig.1j,1m).The reversible capacity is higher than the reversible capacity(646 m A·h·g-1)for negative electrodes consisting of CuO nanorod arrays(Fig.1m),and also larger than the theoretical capacity of 674 m A·h·g-1based on a maximum uptake of 2Li/Cu O.The extra capacity is attributed to the long slope below 0.75 V,which represents reversible formation and decomposition of a polymeric gel-like film on the surface of the particles.In contrast,an electrode prepared from a commercial CuO powder blended with a polymer binder and carbon black paste,show s a lower value for the first discharge capacity(988 m A·h·g-1)and reversible capacity(330 m A·h·g-1)(Fig.1m).The corresponding initial ratios of the irreversible capacity are 23%and 67%for electrode films prepared from the Cu O micro-cog particles and commercial Cu O oxide powder,respectively.These results suggest that side reactions involving electrolyte decomposition are considerably reduced in the presence of the hierarchically assembled Cu O materials,leading to higher columbic efficiency.Significantly,the discharge capacity of the Cu O micro-cog films measured between 2 and 10 discharge-charge cycles shows only a small decrease(4%),compared with a 10%reduction for the Cu O commercial powder investigated under the same conditions.

    Other experiments investigate the rate performance of the Cu O micro-cog film electrode in comparison with the Cu O nanorod film electrode.At a rate of 4 C(1C=600 m A·g-1),the micro-cog films still retain a discharge capacity of 583 m A·h·g-1(Fig.1k,1n).By contrast,the electrodes comprising CuO nanorod films have a reduced discharge capacity of 419 m A·h·g-1at a rate of 3 C,and show hardly any discharge capacity w hen the rate is increased to 4 C.Comparing the discharge capacities at various rates indicates that the Cu O microcog films show much slow er capacity decay than the Cu O nanorod films as the current density increased.

    It can be seen that the speci fic capacities keep increasing with the rate of 0.1 C,0.25 C,0.5 C until having a sudden decrease at rate of 1 C.This increase might be attributed to a reversible formation of the gellike polymer layer resulting from kinetically activated electrolyte degradation,which may not be common but do happen on many anode materials[18-20].Tarascon's group[19,20]found that the nano particle-driven electrolyte reduction leads to the formation of polymeric gel-like film when they investigated the cycling of CoO/Li cells,which is similar to that of Cu O/Li cells in our work.The capacity increases together with the appearance of a maximum in the capacity pro file with increasing cycle numbers.

    The results demonstrate that formation of the hierarchical superstructure considerably improves electrochemical performance compared with the simple structured materials.

    2.3.Cosur fact ant-mediated micro emulsion process to free-standing hierarchical CuO arrays on copper substrate

    Fig.1.(a)FESEM image of the Cu(OH)2 nanorod array grown on acopper substrate.Inset:a higher magnification FESEM image of asingle Cu(OH)2 nanorod.(b)Low magnification FESEM image of Cu(OH)2 micro-cog particles grown on a copper substrate.(c)High magnification FESEM image of microcog-like Cu(OH)2 particles.(d)A higher magnification FESEM image of the side-view of Cu(OH)2 blade-like elements.(e)FESEM image of CuO nanorod array obtained by thermal dehydration of Cu(OH)2 nanorod array.(f-h)FESEM images of CuO films of micro-cog particles obtained by thermal dehydration of Cu(OH)2 films.(f)Low magnification image showing densely packed CuO micro-cogs.(g)A single particle showing retention of the micro-cog morphology.(h)Side-view showing striated CuO blade-like elements within an individual micro-cog superstructure.(i)XRD patterns of Cu(OH)2 and Cu O microcogs on copper substrates.(j-n)Electrochemical properties of Cu O micro-cog films in the voltage range of 0.005-3 V(1 C=600 m A·g-1).(j)Discharge-charge curves cycling at a rate of 0.05 C.(k)Voltage pro files for the first galvanostatic discharge and charge curves at various rates of CuO micro-cog films.(l)CV curves at a scan rate of 0.1 m V·s-1.(m)Specific capacity as a function of cycle number and charging( filled symbols)or discharging(open symbols)for electrodes produced from CuO micro-cog filmsCuO nanorod filmsand CuO commercial powder.(n)Rate performance of CuO micro-cog films.(The average mass of per CuO micro-cog film is 0.8 mg.)Reproduced from Refs.[13]and[16].Copyright 2015 Elsevier and Wiley.

    Moreover,a cosurfact ant-mediated microemulsion process[21]is successfully established to the synthesis of free-standing Cu O arrays with hierarchical micro-cog architectures on copper substrates.We carry the previous study forward and n-butanol is introduced as a cosurfactant into an AOT-isooctane-water microemulsion.This significant change results in the grow th of free-standing Cu(OH)2cog-arrays on Cu substrates in a well-aligned manner.And the derived CuO arrays show good contact between the cog-arrays and the current collecting substrates,thus exhibiting better rate performance and enhanced cycling life as anodes in LIBs.

    A large scale coverage of free-standing Cu(OH)2cog-arrays can be seen on the substrate(Fig.2a)and the cog-like structures are densely packed on the Cu foil(Fig.2b).The well-defined assemblies consist of about 10-20 pieces of blade-like elements assembling from the center of the cog(Fig.2c).The assemblies have average heights of over 6 μm and diameters of 1-2 μm,and the thickness of the blade-like elements typically varies from 100-200 nm(Fig.2c).After thermal dehydration at 180°C for 5 h,although a few cracks appear on the blade-like elements,the cog-like hierarchical structure is mostly intact and the Cu O cog-arrays remain over 6 μm in length and 1-2 μm in diameter(Fig.2d-2f).The structural evolution from orthorhombic Cu(OH)2to monoclinic CuO is studied by X-ray diffraction(XRD)(Fig.2g).

    The free-standing CuOcog-arrays on copper substrates are also used as anodes directly in LIBs.The discharge-charge curves at a current density of 1 C(1 C=670 m A·g-1)show three obvious potential plateaus appear at about 2.2-1.8 V,1.2 V and 0.8 V during the first discharge process(Fig.2h).The data is consistent with CV curves that show three reduction peaks centered at 1.86,0.98 and 0.74 V in the first CV curve(Fig.2j).The stable capacity retention at such a high current density over 300 cycles(91.6%at 1 C and 86.9%at 2 C)indicates its excellent cycling stability and good capacity retention(Fig.2k).As expected,the electrode containing hierarchical arrays show s a good rate performance and still exhibits relatively high capacities even at high current rates(Fig.2i,2l).The average capacity decreases from 812 to 754 mA·h·g-1to 720,679 and 635 mA·h·g-1,when the current density increases from 0.1 to 0.5 C to 1,2 and 4 C.When the current density increases further to 5,6,10 and 12 C,the average capacity decreases to 615,589,501 and 466 m A·h·g-1,respectively.Even at a high rate of 15 C,it is remarkable to note that the Cu O micro-cog arrays still retain a very high discharge capacity of about 418 m A·h·g-1(Fig.2l).When reducing the rate from 15 C down to 0.5 C,the reversible capacity increases to 674 m A·h·g-1,suggesting that the CuO cog-array electrode exhibits superior rate capability to the Cu O micro-cog particles described in Fig.1.

    Fig.2.(a)Low magnification FESEM image of hierarchical Cu(OH)2 array film grow n on a copper substrate,(b)High magnification FESEM image of cog-like arrays,(c)Top view of asingle Cu(OH)2 cog.(d-f)FESEM images of CuO free-standing cog-arrays obtained from thermal dehydration of Cu(OH)2 precursors.(g)XRD patterns of Cu(OH)2 and CuO free-standing cogarrays grown on copper substrates.(h-l)Electrochemical performance of CuO cog-array films in the voltage range of 0.01-3 V(1 C=670 m A·g-1).(h)Discharge-charge curves cycling at a rate of 1 C.(i)Voltage pro files for the first galvanostatic discharge and charge curves at various rates.(j)CV curves at a scan rate of 0.1 m V·s-1.(k)Cycling performance at a current density of 1 C(open symbols)and 2 C( filled symbols).(l)Rate cyclability at various rates.(The average mass of per CuO free-standing cog-arrays is 0.7 mg.)

    Such excellent rate performance can probably be attributed to well aligned arrays directly constructed on the copper surface as w ell as the particularly assembled feature of the hierarchical micro-cog architecture.Introduction of n-butanol improves the contact between the active Cu O film of free-standing arrays and the copper collector in comparison with cog particles randomly lying on the copper substrate(Fig.1).This improvement provides efficient transport for electrons among the Cu/Cu O/electrolyte interfaces.Furthermore,the hierarchical and porous CuO arrays can not only provide the efficient transport of lithium ions,but also facilitate the diffusion of electrolyte into the inner region of the material.And the array structure can accelerate the electrochemical reaction kinetics and decrease the polarization of the electrode,by accommodating sufficient space to sustain the volume change associated with lithium insertion and extraction.As a result,fully displayed discharge capacity,excellent cycling stability and enhanced rate performance can be obtained at high rates.

    To investigate more closely the lithium-driven structural and morphological changes,w e studied the Cu O electrode collected from the disassembled cell after discharge-charge testing.Fig.3 presents the FESEM images of the Cu O electrode after 100 discharge-charge cycles at the rate of 1 C[21].We can still identify the largely intact cog-arrays(Fig.3b and c),which are still attached on the current collector(Fig.3a)after repeated phase conversion reactions.The results reveal that the hierarchical structures are stable and can be sustained during cycling.Each free-standing micro-cog is assembled by blade like elements that interconnect and support each other.This construction can more efficiently buffer the significant volume change than the simple-structured arrays during the discharge-charge processes upon lithium insertion and removal.The results discussed above indicate that hierarchical CuO free-standing cog-arrays could possibly tolerate those volume changes,thus leading to the excellent rate capability and capacity retention of the electrode even at high current rates.

    3.Full Cell Construction Based on Cu O Nanorod Array Film Anode and Spinel LiNi0.5Mn1.5O4 Cathode Materials

    Lithium-ion batteries with advanced performance are required to meet the needs for next generation power batteries.A new full cell has been successfully assembled based on CuO nanorod array anode and spinel LiNi0.5Mn1.5O4cathode materials(acquired from BASF SE),as show n in Fig.4[22].Different from the conventional prelithiation of transition metal oxides anodes[23],a CuO-limited full cell has been assembled directly by adjusting the positive/negative capacity ratio of 1.2:1,which could deliver a discharge capacity of 660 mA·h·g-1with estimated energy density of about 217 W·h·kg-1at 0.1 C rate.The Cu O/LiNi0.5Mn1.5O4full cell exhibits good cycle stability(w ith capacity retention of 84%at 0.5 C over 100 cycles)and superior rate capability(about 240 m A·h·g-1at a high rate of 10 C),which mainly resulted from Cu O arrays directly constructed on copper substrate and the hierarchical structure of LiNi0.5Mn1.5O4materials.The innovation in electrode engineering and full cell matching may shed new light upon constructing high energy,high rate capability and high safety full cells.

    Fig.4.A lithium-ion full cell assembled based on CuO nanorod array anode and spinel LiNi0.5Mn1.5O4 cathode materials.

    4.Conclusions

    We review ed our efforts on developing a bottom-up selfassembly strategy to the preparation of micro/nanostructured Cu O arrays on copper substrates as efficient lithium-ion battery electrodes.This solution-based chemical approach features mildness,scalability,and process simplicity,and holds function-oriented potential for lithium-ion batteries through controlling the nucleation/grow th,and thus the composition,crystal structure,size,and morphology of the arrays.This facile and mild chemical method can be extended to prepare other transition metal oxide arrays on corresponding metal substrates,for example,NiO arrays on nickel foil or nickel foam substrates.These ordered arrays on metal substrates can be used directly as binder-free anodes without the conventional electrode fabrication process related with powder materials.The innovation in electrode engineering facilitates better electric contact between the current collector and active materials,and provides enhanced accommodation of strains which resulted from lithium ion lithiation/delithiation,thus reducing the contact resistance between the current collector and active materials,and enhancing the power density and rate performance in LIBs.

    The growth of metal oxide arrays on conductive substrates(that can be employed directly ascurrent collectors)has show n great potential in improving the transport pathway of electrons and enhancing the stability of the nanostructure,but further effort is still highly required.There is still a huge space to exploit more scalable strategies for growing other potential micro-/nanostructured metal oxide array electrodes for LIBs.It is know n that the current LIB system is not limited only by the performance of the anode.The idea using ordered arrays directly grow n on current collectors to improve the transport pathways of electrons as well as to enhance the electrochemical reaction kinetics can be possibly applied to cathode materials.It is hopeful to expect a great progress of the cycling life and rate performance of LIBs,if electrode materials can be systematically investigated in combination with the improvement in electrolyte and membrane.

    [1]J.R.Dahn,T.Zheng,Y.H.Liu,J.S.Xue,Mechanisms for lithium insertion in carbonaceous materials,Science 270(1995)590-593.

    [2]H.L.Wang,Y.Yang,Y.Y.Liang,J.T.Robinson,Y.G.Li,A.Jackson,Y.Cui,H.J.Dai,Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability,Nano Lett.11(2011)2644-2647.

    [3]Y.H.Xu,Q.Liu,Y.J.Zhu,Y.H.Liu,A.Langrock,M.R.Zachariah,C.S.Wang,Uniform nano-Sn/C composite anod es for lithium ion batteries,Nano Lett.13(2013)470-474.

    [4]P.Poizot,S.Laruelle,S.Grugeon,L.Dupont,J.M.Tarascon,Nano-sized transition metal oxides as negative-electrode materials for lithium-ion batteries,Nature 407(2000)496-499.

    [5]H.Li,P.Balaya,J.Maier,Li-storage via heterogeneous reaction in selected binary metal fluorides and oxides,J.Electrochem.Soc.151(2004)A1878-A1885.

    [6]F.Badway,I.Plitz,S.Grugeon,S.Laruelle,M.Dolle,A.S.Gozdz,J.M.Tarascon,Metal oxides as negative electrode materials in Li-ion cells,Electrochem.Solid-State Lett.5(2002)A115-A118.

    [7]P.L.Taberna,S.Mitra,P.Poizot,P.Simon,J.M.Tarascon,High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications,Nat.Mater.5(2006)567-573.

    [8]C.K.Chan,H.Peng,G.Liu,K.Mcilwrath,X.F.Zhang,R.A.Huggins,Y.Cui,Highperformance lithium battery anodes using silicon nanow ires,Nat.Nanotechnol.3(2008)31-35.

    [9]F.S.Ke,L.Huang,B.Zhang,G.Z.Wei,L.J.Xue,J.T.Li,S.G.Sun,Nanoarchitectured Fe3O4array electrode and its excellent lithium storage performance,Electrochim.Acta 78(2012)585-591.

    [10]Q.Q.Xiong,X.H.Xia,J.P.Tu,J.Chen,Y.Q.Zhang,D.Zhou,C.D.Gu,X.L.Wang,Hierarchical Fe2O3@Co3O4nanowire array anode for high-performance lithium-ion batteries,J.Power Sources 240(2013)344-350.

    [11]W.X.Zhang,S.H.Yang,In situ fabrication of inorganic nanow ire arrays grown from and aligned on metal substrates,Acc.Chem.Res.42(2009)1617-1627.

    [12]J.Xu,W.X.Zhang,Z.H.Yang,S.H.Yang,Lithography inside Cu(OH)2nanorods:a general route to controllable synthesis of the arrays of copper chalcogenide nanotubes with double walls,Inorg.Chem.47(2008)699-704.

    [13]W.X.Zhang,J.Xu,Z.H.Yang,S.X.Ding,Mesoscale organization of Cu7S4nanow ires:formation of novel sheath-like nanotube array,Chem.Phys.Lett.434(2007)256-259.

    [14]W.X.Zhang,X.G.Wen,S.H.Yang,Y.Berta,Z.L.Wang,Single crystalline scroll-type nanotube arrays of copper hydroxide synthesized at room temperature,Adv.Mater.15(2003)822-825.

    [15]W.X.Zhang,X.G.Wen,S.H.Yang,Controlled reactionson a copper surface:Synthesis and characterization of nanostructured copper compound films,Inorg.Chem.42(2003)5005-5014.

    [16]W.X.Zhang,M.Li,Q.Wang,G.D.Chen,M.Kong,Z.H.Yang,S.Mann,Hierarchical self-assembly of microscale cog-like superstructures for enhanced performance in lithium-ion batteries,Adv.Funct.Mater.21(2011)3516-3523.

    [17]A.Débart,L.Dupont,P.Poizot,J.B.Leriche,J.M.Tarascon,A transmission electron microscopy study of the reactivity mechanism of tailor-made Cu O particles tow ard lithium,J.Electrochem.Soc.148(2001)A1266-A1274.

    [18]Y.M.Zhang,W.X.Zhang,Z.H.Yang,H.Y.Gu,Q.Zhu,S.H.Yang,M.Li,Self-sustained cycle of hydrolysis and etching at solution/solid interfaces:A general strategy to prepare metal oxide micro-/nanostructured arrays for high-performance electrodes,Angew.Chem.Int.Ed.54(2015)3932-3936.

    [19]S.Grugeon,S.Laruelle,L.Dupont,J.M.Tarascon,An update on the reactivity of nanoparticles Co-based compounds towards Li,Solid State Sci.5(2003)895-904.

    [20]S.Laruelle,S.Grugeon,P.Poizot,M.Dolle,L.Dupont,J.M.Tarascon,On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential,J.Electrochem.Soc.149(2002)A627-A634.

    [21]Y.M.Zhang,W.X.Zhang,M.Li,Z.H.Yang,G.D.Chen,Q.Wang,Cosurfactant mediated microemulsion to free-standing hierarchical CuO arrays on copper substrates as anodes for lithium-ion batteries,J.Mater.Chem.A 1(2013)14368-14374.

    [22]W.X.Zhang,G.Ma,H.Y.Gu,Z.H.Yang,H.Cheng,A new lithium-ion battery:Cu O nanorod array anode versus spinel LiNi0.5Mn1.5O4cathode,J.Power Sources 273(2015)561-565.

    [23]J.Hassoun,F.Croce,I.Hong,B.Scrosati,Lithium-ion battery:Fe2O3anode versus LiFePO4cathode,Electrochem.Commun.13(2011)228-231.

    色婷婷av一区二区三区视频| 91精品三级在线观看| 亚洲欧美精品综合一区二区三区| 热re99久久国产66热| 国产成人av激情在线播放| 国产成人av激情在线播放| 我的亚洲天堂| 黄色a级毛片大全视频| xxxhd国产人妻xxx| 国产成人欧美在线观看 | 国产亚洲精品一区二区www | 一二三四社区在线视频社区8| 99久久99久久久精品蜜桃| 欧美一级毛片孕妇| 亚洲第一欧美日韩一区二区三区 | 欧美乱码精品一区二区三区| 一级毛片精品| 啦啦啦中文免费视频观看日本| 色视频在线一区二区三区| 欧美久久黑人一区二区| 国产精品 欧美亚洲| 欧美国产精品一级二级三级| 亚洲国产中文字幕在线视频| 国产激情久久老熟女| 中文字幕最新亚洲高清| 欧美国产精品一级二级三级| 黑人猛操日本美女一级片| 成人影院久久| 男女高潮啪啪啪动态图| 多毛熟女@视频| 女人精品久久久久毛片| 久久久久久亚洲精品国产蜜桃av| 欧美黄色淫秽网站| 777米奇影视久久| 午夜成年电影在线免费观看| 最新在线观看一区二区三区| 亚洲成a人片在线一区二区| 一区二区av电影网| 国产区一区二久久| 婷婷丁香在线五月| 777米奇影视久久| 中文字幕色久视频| 大片电影免费在线观看免费| 一级片'在线观看视频| 亚洲综合色网址| 国产激情久久老熟女| 久久人妻av系列| 久久ye,这里只有精品| 制服人妻中文乱码| av天堂久久9| 伦理电影免费视频| 2018国产大陆天天弄谢| 免费不卡黄色视频| 老司机午夜福利在线观看视频 | 亚洲av成人一区二区三| 一区二区三区国产精品乱码| 啦啦啦视频在线资源免费观看| 精品高清国产在线一区| 91九色精品人成在线观看| 久久精品亚洲精品国产色婷小说| 黑人操中国人逼视频| 变态另类成人亚洲欧美熟女 | 成人av一区二区三区在线看| 蜜桃国产av成人99| 热re99久久精品国产66热6| 黄网站色视频无遮挡免费观看| 亚洲欧美日韩另类电影网站| 999久久久精品免费观看国产| 每晚都被弄得嗷嗷叫到高潮| 人人妻,人人澡人人爽秒播| 97在线人人人人妻| 亚洲成人免费av在线播放| 日韩视频在线欧美| 免费少妇av软件| 在线永久观看黄色视频| 美女高潮喷水抽搐中文字幕| 两个人看的免费小视频| 欧美人与性动交α欧美精品济南到| 亚洲av日韩在线播放| 丝袜人妻中文字幕| 如日韩欧美国产精品一区二区三区| 成人黄色视频免费在线看| av片东京热男人的天堂| 多毛熟女@视频| 久久久久精品国产欧美久久久| 9色porny在线观看| 久久国产亚洲av麻豆专区| 一本久久精品| 777久久人妻少妇嫩草av网站| 亚洲中文字幕日韩| 亚洲av成人不卡在线观看播放网| 亚洲精品在线观看二区| 国产野战对白在线观看| 在线观看免费视频网站a站| 高清视频免费观看一区二区| 国产精品二区激情视频| 日本精品一区二区三区蜜桃| 国产欧美日韩精品亚洲av| 久久久水蜜桃国产精品网| 日本精品一区二区三区蜜桃| 国产一区二区激情短视频| 黄频高清免费视频| 久久精品亚洲av国产电影网| 菩萨蛮人人尽说江南好唐韦庄| 色综合欧美亚洲国产小说| 法律面前人人平等表现在哪些方面| 黑人欧美特级aaaaaa片| 啦啦啦视频在线资源免费观看| 久久精品亚洲熟妇少妇任你| 肉色欧美久久久久久久蜜桃| 精品久久久久久久毛片微露脸| 久久性视频一级片| 国产极品粉嫩免费观看在线| 女人精品久久久久毛片| 国产aⅴ精品一区二区三区波| 精品国内亚洲2022精品成人 | 一区在线观看完整版| 欧美日韩视频精品一区| aaaaa片日本免费| 欧美成人免费av一区二区三区 | 久久99一区二区三区| 久久天躁狠狠躁夜夜2o2o| 交换朋友夫妻互换小说| 电影成人av| 免费在线观看黄色视频的| 老司机福利观看| 多毛熟女@视频| 淫妇啪啪啪对白视频| 国产精品电影一区二区三区 | 久久精品亚洲熟妇少妇任你| 97人妻天天添夜夜摸| 每晚都被弄得嗷嗷叫到高潮| 一个人免费看片子| 欧美激情 高清一区二区三区| 久久精品人人爽人人爽视色| 高清黄色对白视频在线免费看| 久久九九热精品免费| 视频区图区小说| 午夜久久久在线观看| 精品国内亚洲2022精品成人 | av网站在线播放免费| 黄色怎么调成土黄色| 欧美日韩国产mv在线观看视频| av不卡在线播放| 侵犯人妻中文字幕一二三四区| 老熟妇仑乱视频hdxx| 巨乳人妻的诱惑在线观看| 精品一区二区三卡| kizo精华| 国产男女超爽视频在线观看| 亚洲一码二码三码区别大吗| 亚洲国产欧美一区二区综合| 国产亚洲精品久久久久5区| 欧美在线一区亚洲| 日本一区二区免费在线视频| 狂野欧美激情性xxxx| 国产一区二区 视频在线| 午夜91福利影院| a级毛片黄视频| 国产高清视频在线播放一区| 男女无遮挡免费网站观看| 午夜福利,免费看| 丝袜美腿诱惑在线| 亚洲熟女精品中文字幕| 一本色道久久久久久精品综合| 人人妻人人添人人爽欧美一区卜| 精品国产国语对白av| 欧美成人午夜精品| www.自偷自拍.com| 波多野结衣av一区二区av| 五月开心婷婷网| 久久精品91无色码中文字幕| 精品国产一区二区久久| 亚洲欧洲日产国产| 精品国产乱子伦一区二区三区| 9191精品国产免费久久| 国产av一区二区精品久久| 亚洲专区国产一区二区| 飞空精品影院首页| 一区二区日韩欧美中文字幕| 叶爱在线成人免费视频播放| 18在线观看网站| 亚洲人成电影免费在线| 国产激情久久老熟女| 国产99久久九九免费精品| 又紧又爽又黄一区二区| 天天躁夜夜躁狠狠躁躁| 久久av网站| 最近最新中文字幕大全免费视频| 国产精品美女特级片免费视频播放器 | 国产av又大| 亚洲人成伊人成综合网2020| 最新美女视频免费是黄的| netflix在线观看网站| 亚洲精品在线美女| 免费看a级黄色片| 国产免费av片在线观看野外av| 国产精品av久久久久免费| 汤姆久久久久久久影院中文字幕| 日本wwww免费看| 国产精品美女特级片免费视频播放器 | 国产精品偷伦视频观看了| 一夜夜www| 欧美亚洲 丝袜 人妻 在线| 国产国语露脸激情在线看| 欧美日韩亚洲国产一区二区在线观看 | 日韩欧美三级三区| 90打野战视频偷拍视频| 一级片免费观看大全| 热99re8久久精品国产| 免费av中文字幕在线| 亚洲成人手机| 日本黄色视频三级网站网址 | 亚洲少妇的诱惑av| av视频免费观看在线观看| 肉色欧美久久久久久久蜜桃| 视频在线观看一区二区三区| 精品久久蜜臀av无| 日日摸夜夜添夜夜添小说| 中文亚洲av片在线观看爽 | 99久久人妻综合| 精品少妇黑人巨大在线播放| 亚洲av欧美aⅴ国产| 日本vs欧美在线观看视频| xxxhd国产人妻xxx| 又紧又爽又黄一区二区| 新久久久久国产一级毛片| 99国产精品免费福利视频| av超薄肉色丝袜交足视频| 极品人妻少妇av视频| 亚洲av成人一区二区三| 中文字幕制服av| 1024香蕉在线观看| 母亲3免费完整高清在线观看| 狂野欧美激情性xxxx| 精品高清国产在线一区| 女人被躁到高潮嗷嗷叫费观| 精品人妻在线不人妻| 香蕉丝袜av| 无人区码免费观看不卡 | 国产真人三级小视频在线观看| 一本一本久久a久久精品综合妖精| 国内毛片毛片毛片毛片毛片| 高清毛片免费观看视频网站 | 日韩免费高清中文字幕av| 国产视频一区二区在线看| 伊人久久大香线蕉亚洲五| 国产欧美日韩一区二区三| 亚洲一区二区三区欧美精品| 国产人伦9x9x在线观看| 亚洲熟女毛片儿| 国产欧美日韩一区二区三| 男女下面插进去视频免费观看| 国产精品美女特级片免费视频播放器 | 变态另类成人亚洲欧美熟女 | 亚洲专区中文字幕在线| 美女视频免费永久观看网站| 久久久久久久国产电影| 免费少妇av软件| 午夜福利免费观看在线| 精品久久久久久久毛片微露脸| 午夜精品久久久久久毛片777| 日韩有码中文字幕| svipshipincom国产片| 男女下面插进去视频免费观看| 天堂中文最新版在线下载| 久久久久久久久久久久大奶| 老司机午夜十八禁免费视频| 免费在线观看日本一区| 成年版毛片免费区| 日韩欧美国产一区二区入口| 亚洲精品美女久久av网站| 十八禁人妻一区二区| 久久久久视频综合| 国产成人精品久久二区二区免费| 超碰97精品在线观看| av欧美777| 亚洲黑人精品在线| 女警被强在线播放| 最新美女视频免费是黄的| 丰满饥渴人妻一区二区三| 国产不卡av网站在线观看| 麻豆av在线久日| 国产精品欧美亚洲77777| 欧美精品啪啪一区二区三区| 国产精品麻豆人妻色哟哟久久| 99精国产麻豆久久婷婷| 菩萨蛮人人尽说江南好唐韦庄| 久久 成人 亚洲| 纯流量卡能插随身wifi吗| 国产欧美亚洲国产| 国产国语露脸激情在线看| 黄色怎么调成土黄色| 国产亚洲av高清不卡| 国产一卡二卡三卡精品| 国产黄色免费在线视频| 制服人妻中文乱码| 国产精品熟女久久久久浪| 亚洲第一av免费看| 大型av网站在线播放| 日韩大片免费观看网站| 色播在线永久视频| www.自偷自拍.com| 色94色欧美一区二区| 热99re8久久精品国产| 精品少妇内射三级| 999久久久国产精品视频| 90打野战视频偷拍视频| 欧美黄色淫秽网站| 色老头精品视频在线观看| 久久精品熟女亚洲av麻豆精品| 在线看a的网站| 最近最新中文字幕大全电影3 | 亚洲成人免费av在线播放| 90打野战视频偷拍视频| 亚洲色图 男人天堂 中文字幕| 精品国产乱子伦一区二区三区| 久久久久久人人人人人| 女性生殖器流出的白浆| 亚洲国产av新网站| 热re99久久国产66热| 天天影视国产精品| 人成视频在线观看免费观看| 自拍欧美九色日韩亚洲蝌蚪91| 午夜激情av网站| 国产精品国产av在线观看| 十八禁人妻一区二区| 正在播放国产对白刺激| 一级黄色大片毛片| 久久中文看片网| 大香蕉久久成人网| 国产精品一区二区免费欧美| 亚洲欧美激情在线| 在线天堂中文资源库| 18禁黄网站禁片午夜丰满| 精品久久久精品久久久| 欧美+亚洲+日韩+国产| 成在线人永久免费视频| 性少妇av在线| 欧美人与性动交α欧美软件| 一个人免费看片子| 亚洲欧美一区二区三区黑人| 亚洲精品乱久久久久久| 最新美女视频免费是黄的| 中文字幕av电影在线播放| 免费在线观看视频国产中文字幕亚洲| 一级a爱视频在线免费观看| 午夜精品国产一区二区电影| 日韩精品免费视频一区二区三区| 国产精品.久久久| 久久精品国产亚洲av高清一级| 99riav亚洲国产免费| av又黄又爽大尺度在线免费看| 亚洲精品久久午夜乱码| 亚洲va日本ⅴa欧美va伊人久久| 亚洲三区欧美一区| 亚洲成人免费av在线播放| 人妻一区二区av| 51午夜福利影视在线观看| 69精品国产乱码久久久| 午夜久久久在线观看| 国产男女内射视频| 黄色怎么调成土黄色| 一边摸一边做爽爽视频免费| 国产免费av片在线观看野外av| 久久香蕉激情| 久久精品亚洲熟妇少妇任你| 国产不卡av网站在线观看| 亚洲国产av新网站| 欧美精品啪啪一区二区三区| 他把我摸到了高潮在线观看 | 757午夜福利合集在线观看| 午夜福利一区二区在线看| 亚洲人成电影免费在线| 亚洲一区中文字幕在线| 1024香蕉在线观看| 国产极品粉嫩免费观看在线| 免费在线观看视频国产中文字幕亚洲| 久久久精品免费免费高清| 99香蕉大伊视频| 757午夜福利合集在线观看| 美女高潮喷水抽搐中文字幕| 久久这里只有精品19| 成年人午夜在线观看视频| 欧美老熟妇乱子伦牲交| 性少妇av在线| 麻豆乱淫一区二区| 美女高潮到喷水免费观看| 国产男女内射视频| 免费在线观看影片大全网站| 欧美日韩亚洲综合一区二区三区_| 国产精品一区二区在线不卡| 成人国产一区最新在线观看| 国产有黄有色有爽视频| 丰满人妻熟妇乱又伦精品不卡| 黄色 视频免费看| 国产免费福利视频在线观看| 怎么达到女性高潮| 国产精品久久久av美女十八| 1024视频免费在线观看| 大片免费播放器 马上看| 亚洲精品久久成人aⅴ小说| 亚洲人成电影免费在线| 久久久久网色| 欧美日本中文国产一区发布| 亚洲第一欧美日韩一区二区三区 | 久久狼人影院| 国产欧美日韩一区二区精品| 王馨瑶露胸无遮挡在线观看| 精品一品国产午夜福利视频| 别揉我奶头~嗯~啊~动态视频| 欧美 亚洲 国产 日韩一| 高清视频免费观看一区二区| 成人国语在线视频| 精品少妇一区二区三区视频日本电影| 国内毛片毛片毛片毛片毛片| 国产在线精品亚洲第一网站| 国产又爽黄色视频| 精品国产乱码久久久久久小说| 久久亚洲精品不卡| 色在线成人网| 十八禁人妻一区二区| av不卡在线播放| 91精品三级在线观看| 国产单亲对白刺激| 国产高清视频在线播放一区| av网站免费在线观看视频| 久久影院123| 国产日韩欧美在线精品| 免费观看a级毛片全部| 老司机在亚洲福利影院| videosex国产| 欧美大码av| 天天躁狠狠躁夜夜躁狠狠躁| 久久香蕉激情| 国产精品一区二区精品视频观看| 成在线人永久免费视频| 9色porny在线观看| h视频一区二区三区| 桃花免费在线播放| 女人被躁到高潮嗷嗷叫费观| 色精品久久人妻99蜜桃| 精品卡一卡二卡四卡免费| 99精品欧美一区二区三区四区| 亚洲avbb在线观看| 亚洲美女黄片视频| 精品国产乱码久久久久久小说| 黑人巨大精品欧美一区二区mp4| 国产有黄有色有爽视频| 日日爽夜夜爽网站| 国产精品免费一区二区三区在线 | 少妇裸体淫交视频免费看高清 | 最新美女视频免费是黄的| 国产野战对白在线观看| 日韩人妻精品一区2区三区| av电影中文网址| 女人久久www免费人成看片| av天堂久久9| 久久狼人影院| 99久久精品国产亚洲精品| 免费在线观看影片大全网站| 一级,二级,三级黄色视频| 欧美人与性动交α欧美软件| 国产免费现黄频在线看| 丰满迷人的少妇在线观看| 啦啦啦免费观看视频1| 无人区码免费观看不卡 | 桃红色精品国产亚洲av| 超碰成人久久| 91成年电影在线观看| 黄色a级毛片大全视频| av视频免费观看在线观看| 欧美乱妇无乱码| 亚洲欧美日韩另类电影网站| 亚洲国产精品一区二区三区在线| 搡老熟女国产l中国老女人| 国产在线免费精品| 久久热在线av| 80岁老熟妇乱子伦牲交| 婷婷丁香在线五月| 日本五十路高清| av福利片在线| 999久久久精品免费观看国产| 午夜福利在线观看吧| 亚洲色图av天堂| 人妻一区二区av| 大香蕉久久成人网| 精品国产一区二区久久| 天天操日日干夜夜撸| 在线永久观看黄色视频| 日本黄色视频三级网站网址 | 久久人妻福利社区极品人妻图片| 久久天躁狠狠躁夜夜2o2o| 丰满少妇做爰视频| 亚洲av日韩精品久久久久久密| 丰满人妻熟妇乱又伦精品不卡| 男女无遮挡免费网站观看| 99久久精品国产亚洲精品| 午夜精品国产一区二区电影| 如日韩欧美国产精品一区二区三区| 国产精品免费视频内射| cao死你这个sao货| 两性午夜刺激爽爽歪歪视频在线观看 | 少妇 在线观看| 亚洲av第一区精品v没综合| 咕卡用的链子| 国产三级黄色录像| 黄色a级毛片大全视频| 18禁国产床啪视频网站| 老司机福利观看| 国产精品麻豆人妻色哟哟久久| 亚洲成a人片在线一区二区| 乱人伦中国视频| 国产熟女午夜一区二区三区| 丰满饥渴人妻一区二区三| 国产一区二区三区综合在线观看| 制服人妻中文乱码| 久久久欧美国产精品| 欧美精品av麻豆av| a级片在线免费高清观看视频| 国产精品欧美亚洲77777| 一区二区日韩欧美中文字幕| 一本—道久久a久久精品蜜桃钙片| 女人高潮潮喷娇喘18禁视频| bbb黄色大片| 欧美 日韩 精品 国产| 一区在线观看完整版| 建设人人有责人人尽责人人享有的| 亚洲一码二码三码区别大吗| 亚洲专区字幕在线| 国产一区二区三区在线臀色熟女 | 中文字幕另类日韩欧美亚洲嫩草| 黑人操中国人逼视频| 黄色视频,在线免费观看| 一区二区三区乱码不卡18| 国产一区二区三区在线臀色熟女 | 人成视频在线观看免费观看| 欧美精品亚洲一区二区| 久久久久久久精品吃奶| 免费日韩欧美在线观看| 99国产精品一区二区蜜桃av | 九色亚洲精品在线播放| 国产精品久久久久久人妻精品电影 | 每晚都被弄得嗷嗷叫到高潮| 久久久国产成人免费| 亚洲国产欧美日韩在线播放| 久久香蕉激情| 亚洲 国产 在线| 亚洲人成电影免费在线| 欧美+亚洲+日韩+国产| 菩萨蛮人人尽说江南好唐韦庄| 老熟女久久久| 夜夜夜夜夜久久久久| 亚洲国产毛片av蜜桃av| 亚洲综合色网址| 国产淫语在线视频| 色综合欧美亚洲国产小说| 日韩视频在线欧美| 国产精品亚洲av一区麻豆| 天天躁狠狠躁夜夜躁狠狠躁| 狂野欧美激情性xxxx| 99re在线观看精品视频| 午夜激情久久久久久久| 国产又色又爽无遮挡免费看| www.精华液| 精品乱码久久久久久99久播| 啦啦啦在线免费观看视频4| 欧美日本中文国产一区发布| 国产1区2区3区精品| videosex国产| 丰满少妇做爰视频| 黄频高清免费视频| 曰老女人黄片| 男女边摸边吃奶| 久久久精品区二区三区| 波多野结衣一区麻豆| 午夜视频精品福利| 久久久国产成人免费| 嫩草影视91久久| 亚洲成国产人片在线观看| 日韩 欧美 亚洲 中文字幕| 黄色丝袜av网址大全| 免费在线观看完整版高清| 久久青草综合色| 日韩视频一区二区在线观看| 搡老熟女国产l中国老女人| 免费观看人在逋| 成年人午夜在线观看视频| 麻豆av在线久日| 国产精品久久久久久精品古装| 国产精品美女特级片免费视频播放器 | 国产av又大| 欧美日韩亚洲高清精品| 精品久久久久久电影网| 99久久人妻综合| 中文字幕色久视频| 两个人免费观看高清视频| 高清在线国产一区| 亚洲第一青青草原| 丁香六月欧美| 肉色欧美久久久久久久蜜桃| 亚洲精品一卡2卡三卡4卡5卡| 欧美精品一区二区免费开放| 午夜视频精品福利| 国产97色在线日韩免费| 国产不卡一卡二| 久久人妻av系列| 女人久久www免费人成看片| 搡老熟女国产l中国老女人| 男女下面插进去视频免费观看| 国产视频一区二区在线看| 成人黄色视频免费在线看| av线在线观看网站| 久久久久视频综合| 日韩欧美一区二区三区在线观看 |