• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Evaluation of substrates for zinc negative electrode in acid PbO2-Zn single flow batteries☆

    2016-05-29 02:10:52JunliPanYuehuaWenJieChengJunqingPanShouliBaiYushengYang

    Junli Pan ,Yuehua Wen *,Jie Cheng Junqing Pan *,Shouli BaiYusheng Yang

    1 State Key Laboratory of Chemical Resource Engineering,Beijing University of Chemical Technology,Beijing 100029,China

    2 Research Institute of Chemical Defence,Beijing 100191,China

    1.Introduction

    Redox flow batteries are a class ofstationary energy storage systems.Different from common secondary batteries employing solid active materials,the active materials of Redox flow batteries are soluble,stored in external reservoir vessel.In normal operation,charged and discharged reactants are circulated through the electrode compartment by pumps.Accordingly,a long cycle life is expected for this rechargeable cell[1].A novelsingle flow battery involving the deposition ofa metallic species has been proposed and developed[2,3],breaking the limit on conventional dual flow batteries with a membrane,which causes spontaneous discharge of different reactive species at anode and cathode.Several systems have been examined including earlier zinc-bromine[4]and zinc-chlorine[5-7],recent soluble lead acid[2,8],zinc-nickel single flow batteries[3],and zinc ion battery[9-12].The flow battery is characterized by charged(ordischarged)products ofatleastone couple deposited on the inert electrode in charge-discharge process.In essence,electrodes themselves serve as an electrical interface and a place for electrode reactions.The nature and form of electrode materials and surfaces play a key role in the charge and discharge efficiencies and cycling stability for Redox flow batteries[6].The effects of substrate electrodeson the formofmetallic deposits and self-discharge rates are ofcritical importance in the design of such systems.

    High specific energy,high negative equilibrium potential,good reversibility,low cost,and environmentalfriendliness are some ofthe outstanding merits of zinc electrodes.Zinc has a wide variety of applications as a negative electrode material in batteries such as zinc-silver,zinc-air,and zinc-nickel batteries[13].However,the working voltage ofthese alkaline zinc-based batteries is less than 2 V.As a well-developed positive electrode,PbO2solid electrode with a high equilibrium potential has been widely studied[14,15]and used in acid lead batteries.The application and developmentofacid lead battery are limited owing to its poorcycling life and low energy density.Thereby,we have developed acidic PbO2-Zn single flow battery with a highest open-circuit voltage of 2.4 V[16,17],with a sulfuric acid solution containing zinc ions as the electrolyte.With concentrated SO42-ions,a large part of hydrogen ions from the ionization of H2SO4are converted to HSO4-ions,so that the concentration of free hydrogen ions is minimized.During charging,the metal ions at the negative electrode move from the solution and deposit onto the inert carbon substrate(Zn2++2e-→Zn),whereas at the positive electrode,oxidation of PbSO4to PbO2occurs at a lead-alloy grid electrode(PbSO4++2H2O-2e-→PbO2+H++.During discharging,reverse process occurs,forming highly soluble products in the acid electrolyte at the zinc electrode.In an acid aqueous solution of zinc sulfate,it is easy to form fine grained,smooth and compact deposits.Thus,the sulfuric acid solution containing zinc ions has been used as electrolyte for electro deposition of zinc[18-20].

    In this paper,we focus on the negative electrode side of acid PbO2-Zn single flow battery and investigate Zn deposition/dissolution process on a number of carbon and lead electrodes.Cyclic voltammetry,potentiostatic current transients and cathode potentiodynamic polarization measurements(lg i-E),as well as galvanostatic charge/discharge cycles are employed in order to evaluate the effectiveness,robustness and potential use of several carbon and lead composite materials in the Redox flow cell.

    2.Experimental

    The lead alloy samplesused in this study were essentially lead materials doped with a minimum amount of other metals with high hydrogen overpotential.The composition of lead grid alloys is listed in Table 1.The main componentadded is Sn,followed by Ca and Zn.5%bismuth and 95%lead were melted and stirred at high temperature,then cooled to room temperature and cut into the electrodes with the volume of 2×2×0.3 cm3.The lead alloy electrodes were obtained.The graphite composite samples were graphite materials doped with a certain amount of polymer resin,which was obtained from Shanghai Heixia carbon product Co.

    For the electrochemical study,a standard 3-electrode configuration was employed,with a graphite and its composite or lead and its alloy(area:1×1 cm2)asworking electrodes,a large lead plate as the counter electrode,and Hg/Hg2SO4as the reference electrode.All potentials are reported with respect to this reference.

    In the cyclic voltammograms,potentiostatic polarization(E-lg i)was carried out at room temperature using a Solartron1280z electrochemical station.The scan rate for all the cyclic voltammograms was 20 mV·s-1between potential limits of-1 and-1.7 V.For the cyclic voltammograms,the 1 mol·L-1H2SO4solution containing 1.25 mol·L-1Zn(II)was employed as the electrolyte.The galvanostatic charge/discharge cycles were conducted in a three-electrode cell at room temperature,and each charge-discharge cycle was discharged to 1 V vs.Hg/Hg2SO4.A graphite and its composite or lead and its alloys(area:2×2 cm2)were used as the working electrodes.Two sheets of PbO2/PbSO4solid electrode(area:4.5×5 cm2)were counter electrodes.An electrode of Hg/Hg2SO4acted as the reference electrode.A Solartron1280z Electrochemical Interface controlled by Corrware software was employed.The morphology of electrodeposits on graphite composite and lead surfaces after cycling experiments was examined using SEM(Cambridge Instruments APollo300).In the experiment,the solution was stirred using a magnetic stirrer.

    3.Results and Discussion

    3.1.Electrochemical characterization

    Fig.1 shows the cyclic voltammograms in 1 mol·L-1H2SO4containing 1.25 mol·L-1Zn2+on different substrate electrodes.Some data from Fig.1 are summarized in Table 2.With lead as the substrate electrode,the zinc deposition process was initiated at point A(-1.56 V vs.Hg/Hg2SO4),scanned in the negative direction and reversed at-1.7 V in the positive direction.The current increased sharply to point C,where it was reversed.The current decreased and reached zero at point B,and then became anodic corresponding to the dissolution of deposited zinc.The potential difference between points A and B is a measure of nucleation overpotential(NOP)[21].NOP is regarded as an indicator of the extent of polarization of a cathode,and high NOP values indicate strong polarization of cathode.Point A is referred to as the nucleation potential(Enu),corresponding to the reduction of Zn2+ions.Point B is referred to as the cross-over potential where the current reaches zero,also called as the formal potential.The values of NOP(as shown in Table 2)for other substrates can be determined from the cyclic voltammograms in the same way.It is found that the onset for the zinc deposition process is the lowest on lead substrate and the next is on the graphite composite with relatively large value of NOP,which is up to 68-80 mV.On the contrary,the deposition potential shifts to more positive values for the graphite electrode and two lead alloys.NOP values are also significantly lowered,particularly for the graphite electrode,with the NOP value of 20 mV.This indicates that the cathodic polarization for the zinc deposition on the lead and graphite composite substrates is larger than the other three substrate electrodes.The nextis the graphite composite electrode rather than the two lead alloys.The rate of growth of zinc layer at the lead surface is the slowest among the five electrode materials.This indicates that the zinc deposition-dissolution process from acid sulfate solution is related to the texture and electrochemical features of substrate electrodes.The difference is little in the dissolution potential(Edis)for the zinc dissolution,but the substrates exert great in fluences on the anodic dissolution peak current.Anodic peak current density of zinc on the graphite electrode is much higher than that on the other substrates,corresponding to the smallest value of NOP.The next is the graphite composite electrode.The anodic peak current densities of zinc on the lead and lead alloy substrates are close and the lowest.

    Suppressing H2formation is critical for the zinc deposition process,particularly in the acidic medium.The rate of hydrogen evolution reaction(HER)depends on the overpotential of hydrogen on the substrate electrode for zinc deposition.Fig.2 shows cathodic polarization curves at 10 mV·s-1from the rest potential of the zinc electrode in 1 mol·L-1H2SO4solution with various substrate electrodes.The hydrogen overpotentialis the lowestfor the graphite electrode.The currentof hydrogen evolution increases sharply with scanning in the negative direction.However,the hydrogen overpotential increases to a great extent on the graphite composite electrode.It indicates that the addition of some resin polymer can slow the rate of HER remarkably on graphite.The onsetofhydrogen evolution forthe lead and lead grid alloy is earlier compared to the graphite composite electrode.However,with the potential scanning to a more negative value,the current of hydrogen evolution on the lead and lead grid alloy electrodes increases more slowly than that on the graphite composite electrode.Comparatively,the rate of HER on the lead grid alloy is a bit faster than that on lead.The rate of HER decreases on the lead-Bi alloy compared to the lead and lead grid alloy.Consequently,for raising the hydrogen over-potential for zinc deposition,the graphite composite is the most effective,followed by lead and lead grid alloy.The side reaction of hydrogen evolution on the graphite and Pb-Bi alloy is relatively serious.Moreover,it may suggest that the rate of HER could be slowed down considerably on lead and lead grid alloy for the zinc electro-deposition at a high polarization potential or a high current density.

    lg i-E curves for 1.25 mol·L-1Zn(II)ions in 1 mol·L-1H2SO4at different substrate electrodes are presented in Fig.3.The anodic and cathode Tafel slopes,baand bc,exchange current density,I0,and formal potential,E0,are calculated from lg i vs.E curves,as shown in Table 3.I0is regarded as an indicator of the rate of zinc deposition and dissolution,and high I0values indicate high rate of zinc electrode reaction.The I0value of zinc deposition and dissolution on the graphite composite electrode is lower by one order ofmagnitude compared to other substrate electrodes.Among the lead and its alloys,the I0value on the Pb-Bi alloy is the highest,followed by lead grid alloy and lead.As thehydrogen overpotential increases,the formal potential(E0)for the zinc deposition and dissolution shifts to a more negative value.This corresponds to the features of hydrogen evolution on these substrate electrodes.That is,the lower the hydrogen overpotential,the higher the I0value of zinc deposition and dissolution.Moreover,the cathodic Tafel slope is close to the anodic slope for the graphite composite and lead electrodes,indicative of cathode and anode mixed control.For lead grid and Pb-Bi alloys,the cathodic Tafel slope is greater than the anodic slope.This suggests that the reaction is under cathode control.

    Table 1 Composition of lead alloy

    Fig.1.Cyclic voltammograms of different substrate electrodes in 1.25 mol· L-1 Zn2+in 1 mol·L-1 H2SO4 at 25 °C and a scan rate of 20 mV·s-1(substrate electrode:1—graphite;2—graphite composite;3—Pb;4—Pb-Bi alloy;5—lead grid alloy).

    Table 2 Effect of substrate electrodes on nucleation potential(E nu),nucleation overpotential(NOP)and dissolution peak potential(E dis),anodic peak current density(I ac)during zinc electro-deposition dissolution from acid sulfate solution

    Fig.2.Effect of substrate on hydrogen evolution reaction for zinc deposition in 1 mol·L-1 H2SO4 solution(substrates:1—graphite;2—graphite composite;3—Pb;4—Pb-Bi alloy;5—lead grid alloy;scan rate:10 mV·s-1).

    Fig.3.lg i-E curves for 1.25 mol?L-1 Zn(II)ions in 1 mol·L-1 H2SO4 solution at different substrate electrodes(substrates:1—lead grid alloy;2—Pb-Bi alloy;3—lead;4—graphite composite;5—graphite).

    3.2.Charging and discharging performance

    To illustrate the effectiveness of these carbon and metal materials as the substrate of negative zinc electrode in acidic PbO2-Zn single flow batteries,the stability of substrate electrodes to repeated zinc deposition and dissolution was examined in a three electrode system under a variety of conditions.Fig.4 shows the coulombic efficiency as a function of cycling number in charging and discharging at various current densities in the range of 10-150 mA·cm-2for 300 s with differentsubstrate electrodes in 1 mol·L-1H2SO4solution containing 1.25 mol·L-1Zn2+ions.The coulombic efficiency(Qeff)and energy efficiency(Eeff)of zinc electrode are important for evaluation of the performance of zinc half cell.The coulombic efficiency refers to the ratio of the discharge capacity to the charge capacity of the battery.The voltage efficiency is the ratio of the average discharge voltage to the average charge voltage of the battery.The energy efficiency is the coulombic efficiency multiplied by voltage efficiency.In general,Qeffis enhanced with increasing current density.When the current density is as low as 10 mA·cm-2,Qeffis less than 80%apart from the graphite composite and lead electrodes.For the graphite composite electrode,at 30 mA·cm-2,Qeffis increased to around 90%.This increase is not significant for current densities greater than 50 mA·cm-2.In contrast,this change forthe graphite electrode is 88%at150 mA·cm-2and 66%-80%at30 mA·cm-2.For the two lead alloys,Qeffis over 90%when the current density is raised to 150 mA·cm-2.For the lead electrode with relatively high hydrogen overpotential,Qeffis not sensitive to current density.As current density increases,Qeffincreases slightly.Qeffis up to 82%at 10 mA·cm-2while it is only about87%at150 mA·cm-2.This corresponds to a competition between the zinc deposition and the corrosion of zinc in acid solution.At high current densities,this dependence of Qeffis due to decreasing competition from the zinc corrosion.The lower the hydrogen overpotential,the more serious the corrosion of zinc.Thus,though the I0value on the graphite composite is one order of magnitude lower than that on the other substrate electrodes,the corrosion is not serious even at the lowestcurrentdensity employed for the graphite composite electrode with the high hydrogen overpotential.

    For the deposition of electrodes,the charge period is also an important factor.Hence,the effect of charging period on the performance of zinc deposition is studied.The current density is fixed at 20 mA·cm-2and the charge time is from 1200 s to 7200 s in 1 mol·L-1H2SO4solution containing 1.25 mol·L-1Zn2+ions.The dependence of Qeffand Eefffor the graphite composite electrode is shown in Fig.5.The deposition time below 5400 s gives high Qeff,~90%.As the deposition time goes to 7200 s,Qeffdecreases sharply at the fourth cycle.And then,as cycling number increases,Qeffreduces continuously from 88%to less than 80%.The decreasing trend of Eeffwith current density is clear when the shortest deposition time of 1200 s gives the highest Eeff,~83%,and the longest deposition time of 7200 s reduces Eeffto~70%.For the deposition time of 7200 s,the variation in Eeffwith cycling numberis great,with the efficiency decreasing from 76%to 66%for 10 cycles.The deposition time of 7200 s simply exacerbates the stability of zinc deposition and dissolution in the acid medium.Therefore,in 1 mol·L-1H2SO4solution,the time of zinc deposition should be less than 5400 s.

    Table 3 Kinetic data of zinc deposition-dissolution at different substrate electrodes in 1 mol·L-1 H2SO4 solution containing 1.25 mol·L-1 Zn2+ions

    Fig.4.Effect of current density on the coulombic efficiency for various substrate electrodes in 1.25 mol·L-1 Zn2+and 1 mol·L-1 H2SO4 at 25 °C(charge time:300 s;substrates:(a)graphite;(b)graphite composite;(c)Pb;(d)Pb-Bi alloy;(e)lead grid alloy).

    Fig.5.Effect of charging time on coulombic efficiency(a)and energy efficiency(b)for the graphite composite in 1.25 mol·L-1 Zn2+and 1 mol·L-1 H2SO4 solution at 25 °C and current density of 20 mA·cm-2.

    Fig.6.Comparison of Q eff and E eff for different substrate electrodes in 1 mol·L-1 H2SO4 and 1.25 mol·L-1 Zn2+solution at 25 °C.Charge time=3600 s at 20 mA·cm-2.Discharge at 20 mA·cm-2.

    Fig.6 shows the charge and discharge performance of different substrate electrodes,at 20 mA·cm-2for 3600 s in 1 mol·L-1H2SO4solution containing 1.25 mol·L-1Zn2+ions.The graphite composite electrode presents the highest coulombic and energy ef ficiencies,~90%and ~80%,respectively.This composite material also exhibits the best stability to cycling,with little deterioration in Qeffand Eeff.This is different from the lead substrate electrode,which degrades substantially with cycling.For the Pb-Bi and lead grid alloys,the coulombic and energy average efficiencies are only 80%and 60%,respectively.

    The differences in electrochemical performance of substrate electrodes in acidic zinc sulfate solutions are associated with the morphology of deposited Zn.Fig.7 shows the SEM micrographs of the zinc deposits on the electrode surfaces with different charging periods.The conclusion is drawn from the investigations on hydrogen evolution reaction HER for zinc deposition,the charge and discharge performance of zinc electrode,the cyclic voltammograms,the kinetic analysis by Tafel slopes,and the SEM micrographs.For the graphite composite electrode,depositsare more compactwith longerdeposition time,which is associated with high over-H2-potentialand differenttexture and electrochemical features of substrate electrodes.Thus,hydrogen evolution on the composite graphite is effectively suppressed due to the addition of a polymer resin[22].Zinc corrosion is prevented to a certain extent.On the contrary,the zinc deposit is porous and loose with long deposition time for the lead electrode.

    4.Conclusions

    The suitability of carbon and metallic lead materials as substrate electrodes of zinc negative electrode in PbO2-Zn single flow battery was investigated.It showed that the nucleation mechanism of zinc deposition on carbon materials was completely from that on metallic lead materials.No maximum current appeared on the potentiostatic current transients for the zinc deposition on the lead and its alloys.Increasing the overpotential,the progressive nucleation turned to be a 3D-instantaneous nucleation process for the graphite composite.Hydrogen evolution on the graphite composite was effectively suppressed due to the doping ofa polymer resin.The rate of hydrogen evolution reaction on the lead was relatively weak,while on the lead alloys,it became more serious.Although the exchange current density on the graphite composite was lower by one order of magnitude compared to other substrate electrodes,corrosion was notserious even atthe lowest current density.Furthermore,the zinc deposits tended to be more compact with the deposition time prolonged.Zinc galvanostatic charge-discharge cycling on carbon and lead substrates revealed that the graphite composite electrode had no loss in efficiency with cycling,and a drastic reduction was observed for the lead electrode,accompanied by the physical deterioration in the electrode surface.

    Fig.7.SEM micrographs of Zn deposits in 1.25 mol·L-1 Zn2+and 1 mol·L-1 H2SO4 solution at 25 °C for graphite composite after deposition for 300 s(a)and 3600 s(b),lead after deposition for 300 s(c)and 3600 s(d).

    References

    [1]C.Ponce de León,A.Frías-Ferrer,J.González-García,D.A.Szánto,F.C.Walsh,Redox lf ow cells for energy conversion,J.Power Sources 160(2006)716-732.

    [2]A.Hazza,D.Pletcher,R.Wills,A novel flow battery:A lead acid battery based on an electrolyte with soluble lead(ii),Phys.Chem.Chem.Phys.6(2004)1773-1778.

    [3]J.Cheng,L.Zhang,Y.S.Yang,Y.H.Wen,G.P.Cao,X.D.Wang,Preliminary study of single flow zinc-nickel battery,Electrochem.Commun.9(2007)2639-2642.

    [4]T.I.Evans,R.E.White,A review of mathematical modeling of the zinc/bromine flow cell and battery,J.Electrochem.Soc.134(1987)2725-2733.

    [5]D.Loftus,J.Roberts,R.Weaver,S.Leach,L.Nanis,Diffusivity in zinc chloride-potassium chloride electrolyte,J.Electrochem.Soc.130(1983)332-334.

    [6]G.Nikiforidis,L.Berlouis,D.Hall,D.Hodgson,Evaluation of carbon composite materials for the negative electrode in the zinc-cerium redox flow cell,J.Power Sources 206(2012)497-503.

    [7]F.Yu,M.Y.Zhu,X.G.Wang,G.Wang,P.R.Qi,D.Chen,B.Dai,Clean energy and energy storage research—The 2nd international conference on clean energy sciences,Energy Storage Sci.Technol.3(2014)457-470.

    [8]A.Hazza,D.Pletcher,R.Wills,A novel flow battery—A lead acid battery based on an electrolyte with soluble lead(II),J.Power Sources 149(2005)103-111.

    [9]C.Xu,B.Li,H.Du,F.Kang,Energetic zinc ion chemistry:The rechargeable zinc ion battery,Angew.Chem.51(2012)933-935.

    [10]D.Xu,B.Li,C.Wei,Y.B.He,H.Du,X.Chu,X.Qin,Q.H.Yang,F.Kang,Preparation and characterization of MnO2/acid-treated CNT Nanocomposites for energy storage with zinc ions,Electrochim.Acta 133(2014)254-261.

    [11]C.Wei,C.Xu,B.Li,H.Du,F.Kang,Preparation and characterization of manganese dioxides with nano-sized tunnel structures for zinc ion storage,J.Phys.Chem.Solids 73(2012)1487-1491.

    [12]M.H.Alfaruqi,J.Gim,S.Kim,J.Song,J.Jo,S.Kim,V.Mathew,J.Kim,Enhanced reversible divalentzinc storage in a structurally stable α-MnO2nanorod electrode,J.Power Sources 288(2015)320-327.

    [13]J.X.Yu,H.X.Yang,X.P.Ai,X.M.Zhu,A study of calcium zincate as negative electrode materials for secondary batteries,J.Power Sources 103(2001)93-97.

    [14]S.Tong,T.Zhang,C.A.Ma,Oxygen evolution behavior of PTFE-F-PbO2electrode in H2SO4 solution,Chin.J.Chem.Eng.16(2008)885-889.

    [15]X.Hong,R.Zhang,S.Tong,C.A.Ma,Preparation of TiPTFE-F-PbO2electrode with a long life from the sulfamic acid bath and its application in organic degradation,Chin.J.Chem.Eng.19(2011)1033-1038.

    [16]J.Pan,Y.Wen,J.Cheng,J.Pan,Z.Bai,Y.Yang,Zinc deposition and dissolution in sulfuric acid onto a graphite-resin composite electrode as the negative electrode reactions in acidic zinc-based redox flow batteries,J.Appl.Electrochem.43(2013)541-551.

    [17]P.K.Leung,Q.Xu,T.S.Zhao,High-potential zinc-lead dioxide rechargeable cells,Electrochim.Acta 79(2012)117-125.

    [18]B.C.Tripathy,S.C.Das,P.Singh,G.T.Hefter,V.N.Misra,Zinc electrowinning from acidic sulphate solutions part IV:Effects of per fluorocarboxylic acids,J.Electroanal.Chem.565(2004)49-56.

    [19]C.Cachet,R.Wiart,In fluence of a per fluorinated surfactant on the mechanism of zinc deposition in acidic electrolytes,Electrochim.Acta 44(1999)4743-4751.

    [20]S.Han,B.Qiu,Z.Wei,Y.Xia,Z.Liu,Surface structuralconversion and electrochemical enhancement by heat treatment of chemical pre-delithiation processed lithium-rich layered cathode material,J.Power Sources 268(2014)683-691.

    [21]Q.B.Zhang,Y.Hua,Effect of Mn2+ions on the electrodeposition of zinc from acidic sulphate solutions,Hydrometallurgy 99(2009)249-254.

    [22]A.E.Alvarez,D.R.Salinas,Nucleation and growth of Zn on HOPG in the presence of gelatine as additive,J.Electroanal.Chem.566(2004)393-400.

    熟女少妇亚洲综合色aaa.| 国产亚洲最大av| 中国三级夫妇交换| 中文字幕最新亚洲高清| 九色亚洲精品在线播放| 一区福利在线观看| 大话2 男鬼变身卡| 精品午夜福利在线看| 国精品久久久久久国模美| 亚洲三区欧美一区| 搡老岳熟女国产| 国产精品.久久久| 国产黄频视频在线观看| 亚洲情色 制服丝袜| 国产精品免费视频内射| 午夜福利视频在线观看免费| 大陆偷拍与自拍| 亚洲精品视频女| 亚洲免费av在线视频| 久久 成人 亚洲| 在线观看www视频免费| 成人午夜精彩视频在线观看| 国产一区二区激情短视频 | 97人妻天天添夜夜摸| 国产成人免费无遮挡视频| 国产99久久九九免费精品| 99久久99久久久精品蜜桃| 啦啦啦视频在线资源免费观看| 成人漫画全彩无遮挡| 亚洲情色 制服丝袜| 无遮挡黄片免费观看| 日韩视频在线欧美| 在线观看免费视频网站a站| 国产一卡二卡三卡精品 | 亚洲av中文av极速乱| 免费观看人在逋| 黄片小视频在线播放| 男女午夜视频在线观看| 精品人妻一区二区三区麻豆| 超碰97精品在线观看| 看免费av毛片| 一边摸一边抽搐一进一出视频| 自线自在国产av| 久久久国产欧美日韩av| av视频免费观看在线观看| 色94色欧美一区二区| 在线看a的网站| 久久久久精品久久久久真实原创| 久久这里只有精品19| 亚洲av男天堂| 欧美精品一区二区免费开放| 成人三级做爰电影| 国产成人a∨麻豆精品| av在线播放精品| 老司机亚洲免费影院| 曰老女人黄片| 丁香六月天网| 久久精品国产亚洲av涩爱| 欧美最新免费一区二区三区| 亚洲精品自拍成人| 99热网站在线观看| 男女高潮啪啪啪动态图| 久久精品久久精品一区二区三区| 黑人猛操日本美女一级片| 啦啦啦在线免费观看视频4| 国语对白做爰xxxⅹ性视频网站| 曰老女人黄片| 成年av动漫网址| 青春草国产在线视频| 亚洲三区欧美一区| 老司机亚洲免费影院| 黄色怎么调成土黄色| av一本久久久久| 国产人伦9x9x在线观看| 亚洲精品久久午夜乱码| 水蜜桃什么品种好| 超碰97精品在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 男女床上黄色一级片免费看| 国产成人精品久久二区二区91 | 午夜老司机福利片| 操出白浆在线播放| xxx大片免费视频| 国产成人av激情在线播放| 国产在视频线精品| 一边摸一边做爽爽视频免费| 伊人久久大香线蕉亚洲五| 亚洲人成网站在线观看播放| 亚洲欧美一区二区三区黑人| 久久久精品94久久精品| 999精品在线视频| 国产精品二区激情视频| 免费观看a级毛片全部| 日本爱情动作片www.在线观看| 中文字幕精品免费在线观看视频| 久久久久久人妻| 蜜桃在线观看..| 女性生殖器流出的白浆| 一级毛片 在线播放| av电影中文网址| 日本91视频免费播放| 精品国产露脸久久av麻豆| 色婷婷av一区二区三区视频| 久久久久网色| 欧美变态另类bdsm刘玥| 国产精品无大码| 天美传媒精品一区二区| av在线app专区| av网站在线播放免费| 2021少妇久久久久久久久久久| 新久久久久国产一级毛片| 黑丝袜美女国产一区| 免费不卡黄色视频| 亚洲四区av| av线在线观看网站| 久久久欧美国产精品| 男女床上黄色一级片免费看| 看十八女毛片水多多多| 天天躁夜夜躁狠狠久久av| 久久久久精品久久久久真实原创| svipshipincom国产片| 精品久久久精品久久久| 精品亚洲成a人片在线观看| 中文字幕另类日韩欧美亚洲嫩草| 国产精品免费大片| 免费黄色在线免费观看| 日韩熟女老妇一区二区性免费视频| 久久久精品国产亚洲av高清涩受| 欧美 亚洲 国产 日韩一| 国产日韩欧美在线精品| 中文欧美无线码| 久久久久久久精品精品| 在线观看人妻少妇| 国产精品 国内视频| 国产片内射在线| 国产精品国产三级国产专区5o| 国产伦理片在线播放av一区| 亚洲国产av新网站| 美女国产高潮福利片在线看| 亚洲久久久国产精品| 久久久久精品久久久久真实原创| 国产老妇伦熟女老妇高清| 成年动漫av网址| 交换朋友夫妻互换小说| 搡老乐熟女国产| 建设人人有责人人尽责人人享有的| 欧美老熟妇乱子伦牲交| 波多野结衣一区麻豆| av国产精品久久久久影院| 伊人久久大香线蕉亚洲五| 国产av码专区亚洲av| 最新在线观看一区二区三区 | 最近的中文字幕免费完整| 久久久欧美国产精品| 久久精品亚洲av国产电影网| 观看美女的网站| 18禁观看日本| 电影成人av| 久久影院123| 999精品在线视频| 久久女婷五月综合色啪小说| 夫妻午夜视频| 成年av动漫网址| 国产伦人伦偷精品视频| 久久久精品94久久精品| 老熟女久久久| 最新的欧美精品一区二区| 成年女人毛片免费观看观看9 | 日韩人妻精品一区2区三区| 亚洲视频免费观看视频| 中文字幕人妻丝袜一区二区 | 久久精品国产综合久久久| 在线观看www视频免费| 亚洲人成网站在线观看播放| 少妇被粗大猛烈的视频| 亚洲四区av| 亚洲欧美成人精品一区二区| 日韩大片免费观看网站| 丰满饥渴人妻一区二区三| 五月开心婷婷网| 爱豆传媒免费全集在线观看| 最近的中文字幕免费完整| 久热爱精品视频在线9| 婷婷色麻豆天堂久久| 丰满乱子伦码专区| 国产精品国产三级国产专区5o| 欧美黄色片欧美黄色片| 91国产中文字幕| 久久ye,这里只有精品| 狂野欧美激情性bbbbbb| 国产精品久久久人人做人人爽| 精品福利永久在线观看| 亚洲精品乱久久久久久| 大片免费播放器 马上看| 麻豆精品久久久久久蜜桃| 伊人久久国产一区二区| 亚洲国产日韩一区二区| 国产精品成人在线| 欧美中文综合在线视频| 热99国产精品久久久久久7| 一区二区日韩欧美中文字幕| 日韩精品有码人妻一区| 免费日韩欧美在线观看| 国产精品二区激情视频| 国产亚洲欧美精品永久| 国产av一区二区精品久久| av免费观看日本| 久久久久精品久久久久真实原创| 亚洲av电影在线观看一区二区三区| 一级毛片我不卡| 女人被躁到高潮嗷嗷叫费观| 国产在线视频一区二区| 99久久精品国产亚洲精品| 欧美日韩精品网址| 伦理电影大哥的女人| av网站在线播放免费| 久久精品久久久久久久性| 大陆偷拍与自拍| 多毛熟女@视频| 婷婷成人精品国产| 久久99一区二区三区| 成人18禁高潮啪啪吃奶动态图| 九九爱精品视频在线观看| 中文字幕另类日韩欧美亚洲嫩草| 久久久久久久久免费视频了| 人人妻,人人澡人人爽秒播 | 亚洲精品aⅴ在线观看| 日韩成人av中文字幕在线观看| 国产亚洲av片在线观看秒播厂| 人体艺术视频欧美日本| 午夜免费鲁丝| 国产免费又黄又爽又色| 一区在线观看完整版| 热99国产精品久久久久久7| 国产探花极品一区二区| 久久久精品94久久精品| 亚洲第一av免费看| 成人国产麻豆网| 午夜激情av网站| 国产一区二区激情短视频 | 一级毛片 在线播放| 亚洲三区欧美一区| 交换朋友夫妻互换小说| 久久久久久久精品精品| 国产精品国产av在线观看| 视频区图区小说| 一二三四在线观看免费中文在| 看十八女毛片水多多多| 国产成人av激情在线播放| 天天影视国产精品| 精品一区二区免费观看| 婷婷成人精品国产| 最新的欧美精品一区二区| 一区二区三区乱码不卡18| 一本一本久久a久久精品综合妖精| 亚洲av男天堂| 国产欧美日韩一区二区三区在线| 亚洲人成电影观看| 女性被躁到高潮视频| 亚洲中文av在线| 黑人猛操日本美女一级片| 亚洲av在线观看美女高潮| 国产黄色免费在线视频| 在线 av 中文字幕| 色94色欧美一区二区| 精品一区在线观看国产| 新久久久久国产一级毛片| 超色免费av| 精品国产国语对白av| 久久久欧美国产精品| 免费不卡黄色视频| 18禁动态无遮挡网站| 天天操日日干夜夜撸| 精品少妇内射三级| 国产精品二区激情视频| 久久ye,这里只有精品| 天天躁狠狠躁夜夜躁狠狠躁| 最黄视频免费看| 水蜜桃什么品种好| 亚洲av日韩在线播放| 国产成人a∨麻豆精品| 亚洲第一青青草原| www.熟女人妻精品国产| 美女午夜性视频免费| 少妇人妻 视频| 日韩一区二区三区影片| 日韩av不卡免费在线播放| 亚洲成人手机| 国产一区二区激情短视频 | 美女扒开内裤让男人捅视频| 日日啪夜夜爽| 少妇人妻 视频| 97人妻天天添夜夜摸| 黑丝袜美女国产一区| 欧美日韩视频高清一区二区三区二| 无遮挡黄片免费观看| 99精品久久久久人妻精品| 亚洲欧美日韩另类电影网站| 男的添女的下面高潮视频| 9191精品国产免费久久| 看十八女毛片水多多多| 天堂8中文在线网| 青春草视频在线免费观看| 精品一区二区三区四区五区乱码 | 精品亚洲乱码少妇综合久久| 中文字幕人妻熟女乱码| 欧美亚洲日本最大视频资源| 丝袜人妻中文字幕| 777久久人妻少妇嫩草av网站| 天天添夜夜摸| 午夜日韩欧美国产| 亚洲精品美女久久av网站| 夫妻午夜视频| 午夜福利乱码中文字幕| 大片电影免费在线观看免费| 男女午夜视频在线观看| 亚洲伊人久久精品综合| 黄色 视频免费看| 这个男人来自地球电影免费观看 | 欧美亚洲 丝袜 人妻 在线| 一边摸一边抽搐一进一出视频| 99精国产麻豆久久婷婷| 99久久99久久久精品蜜桃| 日本黄色日本黄色录像| 日本av手机在线免费观看| 午夜福利一区二区在线看| 最新在线观看一区二区三区 | 青春草视频在线免费观看| 99热网站在线观看| 亚洲少妇的诱惑av| 日本vs欧美在线观看视频| 久久久久久人人人人人| 视频在线观看一区二区三区| 亚洲精品第二区| 成年美女黄网站色视频大全免费| 国语对白做爰xxxⅹ性视频网站| 女人久久www免费人成看片| 在线观看国产h片| 精品一区二区三卡| 一本—道久久a久久精品蜜桃钙片| 自线自在国产av| av免费观看日本| 天堂俺去俺来也www色官网| 伊人亚洲综合成人网| 亚洲自偷自拍图片 自拍| 久久女婷五月综合色啪小说| 日韩欧美精品免费久久| 伦理电影大哥的女人| 亚洲精品久久午夜乱码| 亚洲,欧美,日韩| 多毛熟女@视频| 久久狼人影院| 2018国产大陆天天弄谢| 欧美在线黄色| 久久久国产一区二区| 国产精品麻豆人妻色哟哟久久| 在线观看免费午夜福利视频| 亚洲专区中文字幕在线 | 亚洲国产精品国产精品| 99久久精品国产亚洲精品| 亚洲图色成人| 国产成人免费观看mmmm| 超碰97精品在线观看| 天天操日日干夜夜撸| 啦啦啦中文免费视频观看日本| 国产日韩欧美亚洲二区| 国产女主播在线喷水免费视频网站| 欧美少妇被猛烈插入视频| 老汉色∧v一级毛片| 大陆偷拍与自拍| 国产精品一区二区精品视频观看| 亚洲久久久国产精品| 各种免费的搞黄视频| 麻豆精品久久久久久蜜桃| 午夜福利在线免费观看网站| www.熟女人妻精品国产| 亚洲专区中文字幕在线 | 中文字幕精品免费在线观看视频| 国产伦理片在线播放av一区| 桃花免费在线播放| 少妇人妻精品综合一区二区| 人人妻人人澡人人爽人人夜夜| 国产人伦9x9x在线观看| 高清在线视频一区二区三区| av片东京热男人的天堂| 国产一区有黄有色的免费视频| 色吧在线观看| 午夜影院在线不卡| 亚洲国产欧美在线一区| 成年动漫av网址| 熟女少妇亚洲综合色aaa.| 国产xxxxx性猛交| 日韩av免费高清视频| 久久婷婷青草| 精品第一国产精品| 久久久久久久大尺度免费视频| 男人操女人黄网站| 狠狠精品人妻久久久久久综合| 在线观看免费午夜福利视频| 女人高潮潮喷娇喘18禁视频| 成年女人毛片免费观看观看9 | 高清视频免费观看一区二区| 国产av国产精品国产| 久久久久久久久久久免费av| 天天躁日日躁夜夜躁夜夜| 中文字幕人妻丝袜制服| 午夜激情av网站| 日韩大码丰满熟妇| 美女视频免费永久观看网站| 欧美日韩成人在线一区二区| 在线亚洲精品国产二区图片欧美| 精品久久久久久电影网| 日本欧美视频一区| 伦理电影免费视频| 久久鲁丝午夜福利片| 热re99久久国产66热| 免费高清在线观看日韩| 亚洲精品日本国产第一区| 欧美精品一区二区大全| 国产精品久久久久久精品电影小说| av网站免费在线观看视频| 一二三四在线观看免费中文在| 欧美日韩成人在线一区二区| 狠狠精品人妻久久久久久综合| 极品人妻少妇av视频| 少妇精品久久久久久久| 国产男女内射视频| 亚洲男人天堂网一区| xxxhd国产人妻xxx| 欧美激情极品国产一区二区三区| 欧美日韩国产mv在线观看视频| 欧美日韩一区二区视频在线观看视频在线| 五月天丁香电影| 亚洲一区二区三区欧美精品| 晚上一个人看的免费电影| 日韩不卡一区二区三区视频在线| 在线观看一区二区三区激情| 中文字幕最新亚洲高清| av有码第一页| 不卡av一区二区三区| 国产精品久久久久久人妻精品电影 | 国产成人系列免费观看| 国产片内射在线| 99国产精品免费福利视频| 男男h啪啪无遮挡| 免费观看av网站的网址| 精品少妇一区二区三区视频日本电影 | 午夜激情久久久久久久| 国产一卡二卡三卡精品 | 日日撸夜夜添| av福利片在线| 国产福利在线免费观看视频| 男女床上黄色一级片免费看| 亚洲欧美成人综合另类久久久| av电影中文网址| 国产精品久久久人人做人人爽| www.av在线官网国产| 操出白浆在线播放| 国产片特级美女逼逼视频| 成人亚洲精品一区在线观看| 国精品久久久久久国模美| 午夜福利,免费看| av国产精品久久久久影院| 成人国语在线视频| 最近中文字幕2019免费版| 老汉色av国产亚洲站长工具| 亚洲精品自拍成人| 中国国产av一级| 亚洲国产精品成人久久小说| 日韩精品免费视频一区二区三区| videosex国产| 国产精品一国产av| 久久久久人妻精品一区果冻| 久久久久久人妻| 久久狼人影院| 欧美亚洲 丝袜 人妻 在线| 亚洲国产欧美日韩在线播放| 岛国毛片在线播放| 丰满迷人的少妇在线观看| 日本欧美视频一区| 国产亚洲欧美精品永久| 国产不卡av网站在线观看| 亚洲国产av新网站| 中文字幕亚洲精品专区| av片东京热男人的天堂| 妹子高潮喷水视频| 亚洲av成人精品一二三区| 国产精品久久久久久精品古装| 国产亚洲精品第一综合不卡| 高清av免费在线| 无遮挡黄片免费观看| 免费久久久久久久精品成人欧美视频| 免费黄频网站在线观看国产| 久久精品久久久久久噜噜老黄| 91成人精品电影| bbb黄色大片| 另类精品久久| 天天躁夜夜躁狠狠久久av| 妹子高潮喷水视频| 一区在线观看完整版| 亚洲伊人色综图| 看非洲黑人一级黄片| 国产亚洲av片在线观看秒播厂| 日本wwww免费看| 欧美在线黄色| 久久久久国产一级毛片高清牌| 免费黄网站久久成人精品| 狂野欧美激情性xxxx| 高清在线视频一区二区三区| 成人三级做爰电影| 日本91视频免费播放| 成人国产麻豆网| 巨乳人妻的诱惑在线观看| 色婷婷av一区二区三区视频| 精品一品国产午夜福利视频| 少妇的丰满在线观看| 国产精品国产av在线观看| 2018国产大陆天天弄谢| 涩涩av久久男人的天堂| av一本久久久久| 成年人免费黄色播放视频| 啦啦啦中文免费视频观看日本| 精品国产露脸久久av麻豆| 久久久久精品国产欧美久久久 | 老司机靠b影院| 黄片无遮挡物在线观看| 我要看黄色一级片免费的| 99精国产麻豆久久婷婷| 在线观看免费高清a一片| 高清视频免费观看一区二区| 久久久久人妻精品一区果冻| 人妻一区二区av| 国产亚洲最大av| 日韩精品免费视频一区二区三区| 天美传媒精品一区二区| 免费观看人在逋| 少妇猛男粗大的猛烈进出视频| 国产成人精品久久久久久| 国产成人欧美在线观看 | 国产精品亚洲av一区麻豆 | 亚洲精品乱久久久久久| 高清在线视频一区二区三区| av天堂久久9| 精品一区二区三卡| 亚洲,一卡二卡三卡| 国产成人精品久久久久久| 久久久久网色| 久久精品久久久久久噜噜老黄| 日韩视频在线欧美| 国产激情久久老熟女| 精品人妻熟女毛片av久久网站| 青青草视频在线视频观看| 国产成人精品福利久久| 亚洲一级一片aⅴ在线观看| 国产成人一区二区在线| 黄片播放在线免费| 国产熟女欧美一区二区| 欧美成人午夜精品| 国产精品偷伦视频观看了| 极品少妇高潮喷水抽搐| 多毛熟女@视频| 少妇被粗大的猛进出69影院| 国产成人a∨麻豆精品| 久久久久久久久久久久大奶| 亚洲专区中文字幕在线 | 丁香六月天网| 亚洲av国产av综合av卡| 丝瓜视频免费看黄片| 国产精品成人在线| 18禁动态无遮挡网站| 久久久国产一区二区| 国产色婷婷99| 日本爱情动作片www.在线观看| 亚洲成人免费av在线播放| 丰满迷人的少妇在线观看| 成年美女黄网站色视频大全免费| 欧美国产精品va在线观看不卡| 欧美日韩视频精品一区| 韩国av在线不卡| 亚洲av男天堂| 老熟女久久久| 黑人欧美特级aaaaaa片| 国产毛片在线视频| 亚洲自偷自拍图片 自拍| 亚洲在久久综合| www日本在线高清视频| 黄频高清免费视频| 国产成人欧美| 少妇人妻 视频| 国产又色又爽无遮挡免| 国产高清国产精品国产三级| 精品一区二区三卡| 汤姆久久久久久久影院中文字幕| 国产成人啪精品午夜网站| svipshipincom国产片| 蜜桃国产av成人99| 欧美精品一区二区大全| 国产男人的电影天堂91| 久久久久网色| 欧美激情极品国产一区二区三区| 国产亚洲午夜精品一区二区久久| 亚洲国产精品国产精品| 久久久精品国产亚洲av高清涩受| 日韩免费高清中文字幕av| 免费少妇av软件| 国产精品亚洲av一区麻豆 | 成人亚洲欧美一区二区av| √禁漫天堂资源中文www| 99久国产av精品国产电影| 51午夜福利影视在线观看| 啦啦啦在线观看免费高清www| 97人妻天天添夜夜摸| 99国产综合亚洲精品| 人人澡人人妻人| 亚洲欧美成人精品一区二区|