• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Continuous production of biodiesel from cottonseed oil and methanol using a column reactor packed with calcined sodium silicate base catalyst☆

    2016-05-29 02:10:46XiaGuiSichenChenZhiYun

    Xia Gui,Sichen Chen,Zhi Yun*

    College of Chemistry and Chemical Engineering,Nanjing Tech University,Nanjing 210009,China

    1.Introduction

    In an age of worldwide fossil fuel depletion,global warming and resulting effects,a change from fossil feedstock to renewable resources could considerably contribute to a sustainable and greener future[1-3].As one of the most important renewable resources,vegetable oils have significant advantages in terms of environmental protection due to their unique chemical structures and physical properties.Biodiesel,derived from vegetable oils,bears a large potential for the substitution of fossil diesel.

    Biodiesel is widely produced by chemical transesterification of vegetable oils with methanol or ethanol in the presence of a homogeneous catalyst,such as sulfuric acid or sodium hydroxide[4-9].However,existing biodiesel processes suffer from some serious problems with the use of homogeneous catalysts,such as equipment corrosion,waste effluent treatment,soap formation and catalyst removal,leading to severe economic and environmental penalties[10-14].Therefore,exploring heterogeneous catalysts is becoming more important in chemical and life science industry.

    It is suggested that some supported solid base catalysts(alkali earth oxides,alkali metals or alkali earth salts loaded on metal oxide,etc.)are excellent catalysts for transesterification of triglyceride,but relatively higher temperatures and longer reaction time are required to achieve higher biodieselconversions[15-19].Sodium silicate is an effective heterogeneous base catalyst in biodiesel transesterification from soybean oil.In addition to high catalyst activity,sodium silicate retains the advantages of a supported solid base catalyst,and is often used as a starting materialto synthesize high catalytic activityγ-zeolite,NaY zeolite,NaX zeolite,etc.[20-25].

    In this study,sodium silicate is exploited to catalyze the transesterification of cottonseed oil.The properties of calcined sodium silicate(CSS)are characterized by X-ray diffraction(XRD), field emission scanning electron microscope(FE-SEM)and FT-IR.Transesterification variables are systematically examined.And a new continuous process and apparatus are developed forthe biodieselproduction in the presence of CSS/θ ring solid base catalyst.

    2.Materials and Methods

    2.1.Materials

    Cottonseeds were obtained from Lianyungang(Jiangsu,China).Methanol(>98%)and petroleum ether(60-90 °C)were obtained from Nanjing Huaqingnanfang ChemicalLtd.(Nanjing,China).Sodiumsilicate(AR)was obtained from Shanghai Lingfeng Chemical Ltd.(Shanghai,China).All other chemicalfor analyticalpurpose were obtained from ShanghaiAladdin Reagent Co.,Ltd.(Shanghai,China).All components used in this experiment were analytical reagent(AR)grade.

    2.2.Method

    2.2.1.Catalyst preparation and characterization

    Sodium silicate was directly calcined in a muffle furnace at 100°C to 500°C for 1 h to 5 h.In order to eliminate coarse material,the resulting CSS was triturated and passed through a 120 mesh sieve.XRD was conducted using Cu Kα(λ=0.154 nm)as a radiation source in an automatic X-ray diffractometer(D8-Advance Bruker,GER).The samples were scanned in the range of 2θ =5°-60°at a scanning speed of 2(°)·min-1.Structural examination of the catalyst by FE-SEM was performed on a Hitachi S-4008(Hitachi,JPN)at an accelerated voltage of 20 kV.FT-IR spectra(Nicolet-8700,U.S.)were applied to characterize the structural change of catalysts.

    The composition of reaction mixture was determined by gas chromatographic(GC-2014,Shimadzu,Japan)with a stainless PEG-20 column(2 m×4 mm).To detect the yield of biodiesel,methyl salicylate was used as internal standard and n-hexane as solvent.1 ml biodiesel sample was dissolved into 0.2 ml methyl salicylate and 8 ml n-hexane with vigorous stirring.1 μl of the mixture was injected into the GC.The column temperature was 180°C,the temperatures of injector and detector were 260°C.The flow rates of hydrogen,nitrogen,and air were 40,19,and 300 ml·min-1,respectively.

    The yield of biodiesel Y is calculated as follows.

    where msis the mass of internal standard added to the sample,miis the mass of biodiesel,m is the mass of total sample,Asis the peak area of internal standard,Aiis the peak area of biodiesel,fiis the correction factor of internal standard,and fsis the correction factor of biodiesel.

    2.2.2.Base-catalyzed transesterification

    After being dried at 105°C for 24 h,the industrial grade cottonseeds were milled into fine powder using an electric grinder and sifted through a 60-mesh screen sieve.According to the ISO 659-1988 and GB/T 14489.1-2008/ISO 665:2000 standards,the oil,moisture and free gossypol contents of the milled cottonseed were 35.4 wt%(wet basis),6.9 wt%and 0.94 wt%,respectively.

    The polar solvent phase solution was prepared by mixing citric acid with methanol.Citric acid was used to increase the polarity of methanol solution and prevent mutual dissolution of methanol and petroleum ether in the two-phase solutions.An extracting solvent mixture consisting of polar solvent phase solution and petroleum ether was placed in a 500 mlthree-necked flask equipped with a reflux condenser,a mechanical stirrer and a thermometer.Fifty grams of milled cottonseed powder was added to the flask and extracted with 350 ml twophase extracting solvent at 30 °C and 600 r·min-1for 25 min.

    The extraction mixture was filtered through a Buchner funnel to remove the cottonseed mealfrom the liquid phase.The filtercake was collected and dried at room temperature for 24 h before being extracted with a mixture of petroleum ether and methanol to obtain the residual oil and gossypol from the meals.The filtrate was transferred to a separating funnel and divided into two layers.The upper layer was the oil phase containing the petroleum ether and cottonseed oil,and the lower layer was the methanol phase containing methanol,free fatty acids,gossypol and citric acid.

    A portion of the oil phase obtained,methanol and catalyst prepared were added to a 250-mlthree-necked flask fitted with a reflux condenser,a thermometer and a mechanical stirrer.After 2 h,the product was poured into a separating funnel and allowed to stand for 10 min to form a biphasic mixture.The lower layer was the crude glycerol phase containing glycerol,methanol and soap,while the upper layer was the cottonseed-based biodieselphase containing petroleumether,biodiesel and some unreacted triglyceride.

    Transesterification was carried out under the conditions varied in the following ranges:temperature 30 °C to 70 °C,reaction time 0.5 to 4 h,methanol to oil mass ratio 6:1 to 18:1,and petroleum ether to oil mass ratio 0 to 5:1.The catalysts for transesterification were sodiumsilicate and CSS.The catalyst concentration was expressed as a mass ratio of total cottonseed oil,from 1 wt%to 3 wt%.

    2.2.3.Continuous production of biodiesel using a column reactor packed with CSS base catalyst supported on θ ring

    Continuous transesterification was performed in a packed column reactor at atmospheric pressure.The reactor was composed of a water-jacketed glass column randomly packed with CSS/θ ring solid base catalyst.The preparation of CSS base catalyst supported on θ ring and the scheme of the continuous production of biodiesel from cottonseed oil and methanol are shown in Figs.1 and 2.

    Methanol and cottonseed oil were charged into the system using a plungerpump.The reactantswere mixed and preheated in a mixing column with random packing.The reaction temperature was controlled by a water bath.The sample was purified by reduced pressure distillation to remove excess methanol and water generated during the reaction.The effects of residence time(0.5 to 12 h),reaction temperature(40 °C to 60 °C),methanol/oil velocity ratio(1:6 to 1:3),and tower section ofcolumn reactor(1 to 5)on the conversion to fatty acid methylesters were investigated.Each tower section contained the same quantity of catalysts(4 g).All experiments were repeated 3 times and the standard deviation was never higher than 5%for any point.

    3.Results and Discussion

    3.1.Characterizations of catalyst

    To obtain the optimal calcination conditions,especially calcination temperature and calcination time,CSS were prepared at 100°C,200 °C,300 °C,400 °C and 500 °C for 1-5 h.Their catalytic activity was investigated by transesterification of cottonseed oil with methanol.The effects of calcination temperature and particle size distribution on CSS activity for the transesterification of cottonseed oil are shown in Fig.3.The catalystcalcined at400°C for 2 h gave the bestcatalytic activity and highest biodiesel yield.Guo et al.also reported similar result[22].

    The XRDdiffraction patterns ofsodiumsilicate(Fig.4a)show several characteristic peaks at 2θ≈ 17.6°,18.4°,24.1°,28.3°,30.7°,32.2°and 44.5°,indicating that the structure of sodium silicate is mainly assigned to Na2O·SiO2·9H2O.Calcined at 400 °C for 2 h,most of the combined water molecules will be removed and assigned to anhydrous Na2SiO3(Fig.4b).The calcination treatment enhances the intensity of some diffraction peaks(such as characteristic peaks at 2θ ≈ 17.9°,25.8°,30.4°,35.1°,37.8°,48.5°and 53.2°),and makes the catalyst more regular.The presence of H2O molecules and different structures of sodium silicate before and after calcination may result in different catalytic behaviors in the transesterification of cottonseed oil.

    Images of sodium silicate calcined at 400°C for 2 h taken by FE-SEM show that a large number of agglomerates accumulate on the surface and they are loosely attached(Fig.5).Such structures of CSS are favorable to the entry of triglyceride and methanol due to considerable basic sites in the interior of the solid catalyst.

    The effectofcalcination on the molecular structure ofsodium silicate was analyzed by FT-IR spectroscopy.The IR spectra of sodium silicate and CSS calcined at 400°C for 2 h are shown in Fig.6.The absorption band at 998 cm-1is attributed to the Si-O-Na stretching.After calcination the intensity of Si-O-Na stretching peak is reduced with a lowfrequency shift and a new Si-O-Si stretching peak at 896 cm-1.As the amount of Si-O-Si increases and the structure of catalyst becomes more regular,the absorption intensity for Si-O(at 486 cm-1)and Si-O-Na(at 998 cm-1)becomes weaker.Furthermore,the calcination process dehydrates most of the adsorbed water on the catalyst surface.Therefore,the intensity of water peaks(between 2500 and 3000 cm-1)is reduced with a low-frequency shift.

    Fig.1.Preparation of CSS base catalyst supported on θ ring.

    3.2.Effects of transesterification process variables

    The mass ratio of petroleum ether to cottonseed oil was varied from 0-5:1 to investigate the effect of petroleum ether concentration on the conversion to fatty acid methyl esters.Fig.7 demonstrates the maximum conversion to biodiesel is at a mass ratio of 2:1.However,further dilution(3:1,4:1 and 5:1)results in a rapid decrease of biodiesel yield.These suggest that suitable petroleum ether content could improve the contact area of reactants and solid catalyst,while further dilution will decrease transesterification rate and biodiesel yield.The favorable petroleum ether/cottonseed oil mass ratio is 2:1.

    To evaluate the effectofreaction time on the conversion to biodiesel,methanol petroleum ether and catalyst were added to cottonseed oil and the mixture was heated at 65°C for different reaction time in the range of 0.5 to 4 h.Fig.8 shows that the biodiesel yield increases with reaction time until it reaches a plateau.In this study,the optimum reaction time appears to be 3 h.

    Fig.3.In fluence of calcination temperature and time on biodiesel yield.Temperature 65°C;time 3 h;mole ratio of methanol to oil=12:1;mass ratio of petroleum ether to oil=2:1;ratio of CSS to oil=2 wt%.

    Fig.2.Scheme ofthe continuous production ofbiodiesel.1—column reactor;2—random packing;3—waterbath;4—globe valve;5—biodieseltank;6—check valve;7—plunger pump;8—methanol tank;9—cottonseed oil tank;10—return condenser.

    Fig.4.XRD diffraction patterns of sodium silicate before and after calcination.

    Fig.5.FE-SEM of CSS.

    Sodiumsilicate and CCS in the range of1%-3%ofcrude cottonseed oil were used as catalyst to investigate the effect of catalyst content on transesterification of cottonseed oil.Fig.9 shows that the yield of biodiesel first increases with catalyst content,and then increases little as the content increases from 2 wt%to 3 wt%.The biodiesel yield is 98.9%at 2.0 wt%of CSS to cottonseed oil mass ratio,which is chosen for optimization of transesterification.

    Fig.6.FT-IR spectra of catalyst.(a)Sodium silicate;(b)CSS,calcined at 400°C for 2 h.

    Fig.7.In fluence of petroleum ether/cottonseed oil mass ratio on biodiesel yield.Temperature 65°C;time 3 h;mole ratio of methanol to oil=12:1;ratio of catalyst to oil=2.0 wt%.

    Fig.8.'In fluence of reaction time on biodiesel yield.Temperature 65°C;mole ratio of methanol to oil=12:1;mass ratio of petroleum ether to oil=2:1;ratio of catalyst to oil=2.0 wt%.

    Fig.9.'In fluence of catalyst/cottonseed oil mass ratio on biodiesel yield.Temperature 65°C;time 3 h;mole ratio of methanol to oil=12:1;mass ratio of petroleum ether to oil=2:1.

    To examine the effect of temperature on transesterification,several runs were conducted for 3 h at different temperatures in the range of 30-70°C.The yield of biodiesel catalyzed by CSS increased with the temperature,reaching nearly 100%at 60 to 70°C(Fig.10).However,the yield of biodiesel catalyzed by sodium silicate decreased obviously at 70°C.This demonstrates that the catalytic activity of sodium silicate decreases due to some qualitative changes,such as melting of sodium silicate and loss of alkaline groups.Considering the biodiesel yield and energy economy,it is appropriate to choose 65°C as the reaction temperature for the transesterification of cottonseed oil.

    The transesterification with methanol/oil molar ratio of 6:1 to 12:1(Fig.11)indicates that the conversion of cottonseed oil to biodiesel increases rapidly with the mole ratio,reaching 98.9 wt%at the mole ratio of 12:1 catalyzed by CSS.Further increasing mole ratio to 18:1,the conversion increases gradually to 99.3 wt%.Phan and Phan[26]and Shu et al.[27]also observed similar trend.In addition,stable emulsions may form at higher content of methanol(18:1),leading to complicated separation and purification of biodiesel.At the end of transesterification,the excess methanol was recovered by a vacuum distillatory and recycled in latter reactions.

    Fig.10.In fluence of reaction time on biodiesel yield.Time 3 h;mole ratio of methanol to oil=12:1;mass ratio of petroleum ether to oil=2:1;ratio of catalyst to oil=2.0 wt%.

    Fig.11.In fluence of methanol/cottonseed oil molar ratio on biodiesel yield.Temperature 65°C;time 3 h;mass ratio of petroleum ether to oil=2:1;ratio of catalyst to oil=2.0 wt%.

    The reusability of sodium silicate and CSS was checked without any further purification and activation.Solid catalyst was collected after adding fresh reactants.The yield ofbiodiesel,determined after each catalystcollection,wasemployed to evaluate the reusability(Fig.12).With CSS,the cottonseed oil conversions maintained higher than 80%in 7 consecutive runs,while the yield with sodium silicate decreases apparently after 2 consecutive runs.

    3.3.Effect of operating variables for continuous production

    The number of tower section is associated with the residence time and the amount of catalyst in continuous transesterification.The yield of biodiesel is greatly dependent on the number of tower sections(Fig.13).For the reaction in one tower section,the biodiesel yield reached a plateau at 35.8%in about 1 h.The maximum yield increased rapidly from 35.8%to 98.9%with the increase of tower sections.It demonstrates that more catalystprovides longer reaction time and more active sites to promote the reaction between cottonseed oil and methanol at a given flow rate.

    Fig.12.In fluence of repetition time on biodiesel yield.Temperature 65°C;time 3 h;mass ratio ofpetroleum ether to oil=2:1;mole ratio ofmethanolto oil=12:1;ratio ofcatalyst to oil=2.0 wt%.

    Fig.13.In fluence of tower sections on biodieselyield.Temperature 55°C;methanolphase velocity=1 ml·min-1;oil phase velocity=3 ml·min-1;each tower section containing 4 g catalysts.

    Fig.14.In fluence of reaction temperature on biodiesel yield.Five tower sections containing catalyst 20 g;methanol phase velocity=1 ml·min-1;oil phase velocity=3 ml·min-1.

    Fig.14 shows the effect of reaction temperature on transesterification by the percentage of cottonseed oil converted to fatty acid methyl esters.The yield of biodiesel increased obviously from 83.9%to 98.8%as reaction temperature increased from 45 °C to 60 °C,because for an endothermic reaction,higher temperature will accelerate the rate of reaction.To preventa decline in the transesterification activity caused by methanolevaporation at higher temperature,the range of optimal reaction temperature may vary from 50 °C to 60 °C,depending upon the oils used[28-30].Moreover,unexpected and uncontrollable liquid back-up flooding was also observed at 60 °C after 2 h heating,so 55 °C was chosen as the favorable reaction temperature in this study.

    For the effect of methanol/oil velocity ratio from 1/6 to 1/3,Fig.15 shows that the yield of biodiesel rapidly increases with the velocity ratio.As a reversible reaction,the biodiesel yield can be improved by introducing an excess amountofreactantmethanolto change the equilibrium.At the ratio less than 1/4,the velocity ratio of methanol/oil has a significant effect on the catalytic activity in the early stage of reaction.The increase in transesterification becomes slower as the velocity ratio increase to 1/6.Therefore,the ratio of methanol/waste oil of 1/6 with 99.1%yield is preferable.

    Fig.15.In fluence of methanol/cottonseed oil velocity ratio on biodiesel yield.Five tower sections containing catalyst 20 g;temperature 55 °C;oil phase velocity 3 ml·min-1;methanol phase velocity=0.5,0.75 or 1 ml·min-1.

    4.Conclusions

    A novel solid base catalyst with good activity for transesterification was prepared by calcination.Sodium silicate calcined at 400°C for 2 h exhibited much higher catalytic activity and stability for biodiesel conversion.The maximum biodiesel yield was achieved with 2 wt%of calcined sodium silicate(CSS),mole ratio of methanol to cottonseed oil 12:1,and reaction temperature of 65°C for 3.0 h.However,a considerable loss in catalytic activity was observed when the catalyst was recycled for more than 7 times.

    Considering technologicaland economic feasibility,CSS base catalyst supported on θ ring was prepared for continuous biodiesel production.The transesterification of cottonseed oil was performed in a column reactor packed CSS/θ ring solid base catalyst.A maximum biodiesel yield of99.1%was achieved at55°C.The results indicate thatthis new continuous biodiesel production process and apparatus have good potential for utilization and commercialization ofcottonseed with an inexpensive and easily available solid base catalyst.

    References

    [1]A.F.Faria-Machado,M.A.da Silva,M.G.A.Vieira,M.M.Beppu,Epoxidation of modified natural plasticizer obtained from rice fatty acids and application on polyvinylchloride films,J.Appl.Polym.Sci.127(5)(2013)3543-3549.

    [2]H.C.Erythropel,M.Maric,D.G.Cooper,Designing green plasticizers:In fluence of molecular geometry on biodegradation and plasticization properties,Chemosphere 86(2012)759-766.

    [3]U.Biermann,W.Friedt,S.Lang,W.Luhs,G.Machmuller,J.O.Metzger,M.R.Klaas,H.J.Schafer,M.P.Schneider,New syntheses with oils and fats as renewable raw materials for the chemical industry,Angew.Chem.Int.Ed.39(2000)2206-2224.

    [4]F.R.Ma,M.A.Hanna,Biodiesel production:A review,Bioresour.Technol.70(1999)1-15.

    [5]A.Kawashima,K.Matsubara,K.Honda,Development of heterogeneous base catalysts for biodiesel production,Bioresour.Technol.99(2008)3439-3443.

    [6]M.J.Ramos,A.Casas,L.Rodriguez,R.Romero,A.Perez,Transesterification of sunlf ower oil over zeolites using different metal loading:A case ofleaching and agglomeration studies,Appl.Catal.A Gen.346(2008)79-85.

    [7]C.V.McNeff,L.C.McNeff,B.Yan,D.T.Nowlan,M.Rasmussen,A.E.Gyberg,B.J.Krohn,R.L.Fedie,T.R.Hoye,A continuous catalytic system for biodiesel production,Appl.Catal.A Gen.343(2008)39-48.

    [8]'E.Leclercq,A.Finiels,C.Moreau,Transesterification of rapeseed oil in the presence of basic zeolites and related solid catalysts,J.Am.Oil Chem.Soc.78(2001)1161-1165.

    [9]P.P.Joaquín,D.Isabel,M.Federico,S.Enrique,Selective synthesis of fatty monoglycerides by using functionalised mesoporous catalysts,Appl.Catal.A Gen.254(2003)173-188.

    [10]D.E.Lopez,J.G.Goodwin,D.A.Bruce,E.Lotero,Transesterification of triacetin with methanol on solid acid and base catalysts,Appl.Catal.A Gen.295(2005)97-105.

    [11]M.D.Machado,P.J.Perez,E.Sastre,D.Cardoso,Selective synthesis of glycerol monolaurate with zeolitic molecular sieves,Appl.Catal.A Gen.203(2000)321-328.

    [12]H.Kishida,F.M.Jin,Z.Y.Zhou,T.Moriya,H.Enomoto,Conversion of glycerin into lactic acid by alkaline hydrothermal reaction,Chem.Lett.34(2005)1560-1561.

    [13]X.Deng,Z.Fang,Y.H.Liu,C.L.Yu,Production of biodiesel from Jatropha oil catalyzed by nanosized solid basic catalyst,Energy 36(2011)777-784.

    [14]C.W.Wang,X.Gui,Z.Yun,Esterification of lauric and oleic acids with methanol over oxidized and sulfonated activated carbon catalyst,React.Kinet.Mech.Catal.113(2014)211-223.

    [15]L.C.Meher,M.G.Kulkarni,A.K.Dalai,S.N.Naik,Transesterification of karanja(Pongamia pinnata)oil by solid basic catalysts,J.Lipid Sci.Technol.108(2006)389-397.

    [16]H.P.Zhu,Z.B.Wu,Y.X.Chen,P.Zhang,S.J.Duan,X.H.Liu,Preparation of biodiesel catalyzed by solid super base of calciumoxide and its re fining process,Chin.J.Catal.27(2006)391-396.

    [17]X.J.Liu,H.Y.He,Y.J.Wang,S.L.Zhu,X.Piao,Transesterification of soybean oil to biodiesel using CaO as a solid base catalyst,Fuel 87(2008)216-221.

    [18]X.J.Liu,X.L.Piao,Y.J.Wang,S.L.Zhu,H.Y.He,Calcium methoxide as a solid base catalyst for the transesterification of soybean oil to biodiesel with methanol,Fuel 87(2008)1076-1082.

    [19]W.L.Xie,H.Peng,L.G.Chen,Calcined Mg-Al hydrotalcites as solid base cata or methanolysis of soybean oil,J.Mol.Catal.A Chem.246(2006)24-32.

    [20]D.L.Yun,F.Zhen,C.S.Tong,Y.Qing,Co-production of biodiesel and hydrogen from rapeseed and Jatropha oils with sodium silicate and Ni catalysts,Appl.Energy 113(2014)1819-1825.

    [21]G.J.Suppes,K.Bockwinkel,S.Lucasa,J.B.Botts,M.H.Mason,J.A.Heppert,Calcium carbonate catalyzed alcoholysis of fats and oils,J.Am.Oil Chem.Soc.78(2001)139-149.

    [22]F.Guo,Z.G.Peng,J.Y.Dai,Z.L.Xiu,Calcined sodium silicate as solid base catalyst for biodiesel production,Fuel Process.Technol.91(2010)322-328.

    [23]'T.Selvam,B.Bandarapu,Hydrothermal transformation of a layered sodium silicate,kanemite,into zeolite Beta(BEA),Microporous Mesoporous Mater.64(2003)1387-1391.

    [24]V.P.Sokolov,T.N.Shabalina,B.K.Nefedov,In fluence of silica-containing raw material on technology of NaY zeolite manufacture,Chem.Technol.Fuels Oils 23(1987)5-6.

    [25]V.A.Patrikeev,M.L.Pavlov,B.I.Kutepov,R.A.Makhamatkhanov,O.S.Travkina,A.L.Shestopal,Crystallization of X-type zeolite from concentrated sodium silicate and aluminate solutions,Russ.J.Appl.Chem.80(2007)502-504.

    [26]'A.N.Phan,T.M.Phan,Biodiesel production from waste cooking oils,Fuel 87(2008)17-18.

    [27]Q.Shu,Q.Zhang,G.H.Xu,Z.S.Nawaz,D.Z.Wang,J.F.Wang,Synthesis of biodiesel from cottonseed oil and methanol using a carbon-based solid acid catalyst,Fuel Process.Technol.90(2009)1002-1008.

    [28]'C.Samart,P.Sreetongkittikul,C.Sookman,Heterogeneous catalysis of transesterification of soybean oil using KI/mesoporous silica,Fuel Process.Technol.90(2009)922-925.

    [29]J.M.Marchetti,V.U.Miguel,A.F.Errazu,Heterogeneous esterification of oil with high amount of free fatty acids,Fuel 86(2007)906-910.

    [30]B.Achanai,C.Nattawut,L.Vorrada,R.Chao,C.Techit,K.Nanthakrit,Continuous process for biodiesel production in packed bed reactor from waste frying oil using potassium hydroxide supported on jatropha curcas fruitshell as solid catalyst,Appl.Sci.2(2012)641-653.

    av天堂久久9| 久久毛片免费看一区二区三区| 五月天丁香电影| 午夜免费鲁丝| 国产亚洲最大av| 亚洲天堂av无毛| 亚洲精品视频女| 欧美97在线视频| videos熟女内射| 精品人妻熟女av久视频| 精品少妇内射三级| 一本久久精品| 大码成人一级视频| 国产高清国产精品国产三级| 国产在视频线精品| 黄色视频在线播放观看不卡| 在现免费观看毛片| 久久ye,这里只有精品| 国产欧美另类精品又又久久亚洲欧美| 国产熟女午夜一区二区三区 | 妹子高潮喷水视频| a 毛片基地| 一本大道久久a久久精品| 国产精品久久久久久精品电影小说| 99九九在线精品视频 | 国产探花极品一区二区| 亚洲国产成人一精品久久久| 美女cb高潮喷水在线观看| 精品一区在线观看国产| 97在线视频观看| 亚洲欧洲精品一区二区精品久久久 | 国产视频首页在线观看| 97超视频在线观看视频| 观看av在线不卡| 日韩伦理黄色片| 国产精品国产三级国产av玫瑰| 美女国产视频在线观看| 国产 一区精品| 亚洲精品日韩在线中文字幕| 午夜福利网站1000一区二区三区| 熟女电影av网| 性高湖久久久久久久久免费观看| 在线播放无遮挡| av专区在线播放| 欧美一级a爱片免费观看看| 亚洲国产毛片av蜜桃av| 人妻一区二区av| 人妻制服诱惑在线中文字幕| 国产成人freesex在线| 国产色爽女视频免费观看| 日日啪夜夜爽| 97在线人人人人妻| 日韩 亚洲 欧美在线| 51国产日韩欧美| 亚洲不卡免费看| 午夜影院在线不卡| 欧美成人午夜免费资源| 秋霞伦理黄片| 大香蕉久久网| 久久热精品热| 亚洲国产精品专区欧美| 97在线视频观看| 嫩草影院入口| 欧美精品亚洲一区二区| 九九爱精品视频在线观看| 人人妻人人看人人澡| 亚洲成色77777| 久久99精品国语久久久| 亚洲av福利一区| 久久韩国三级中文字幕| 丝袜喷水一区| 男女边摸边吃奶| 国产亚洲最大av| 建设人人有责人人尽责人人享有的| 蜜桃在线观看..| 只有这里有精品99| av国产精品久久久久影院| 欧美成人精品欧美一级黄| 岛国毛片在线播放| 亚洲av.av天堂| 六月丁香七月| 欧美精品亚洲一区二区| 三级国产精品片| 女性被躁到高潮视频| 插逼视频在线观看| 欧美日本中文国产一区发布| av福利片在线观看| 日本av免费视频播放| 国产亚洲午夜精品一区二区久久| 久久午夜福利片| 国产无遮挡羞羞视频在线观看| 两个人免费观看高清视频 | 久久久久人妻精品一区果冻| 一本一本综合久久| 黑人巨大精品欧美一区二区蜜桃 | 王馨瑶露胸无遮挡在线观看| 亚洲欧美一区二区三区国产| 又爽又黄a免费视频| 成年女人在线观看亚洲视频| 国产在线免费精品| 夜夜看夜夜爽夜夜摸| 亚洲精品日韩在线中文字幕| 草草在线视频免费看| 在线观看三级黄色| 有码 亚洲区| 午夜福利视频精品| 人妻少妇偷人精品九色| 久久久久久人妻| 精品亚洲成a人片在线观看| 乱码一卡2卡4卡精品| 亚洲无线观看免费| 亚洲精品久久久久久婷婷小说| 一级毛片久久久久久久久女| 十八禁高潮呻吟视频 | 下体分泌物呈黄色| 国产一区二区三区综合在线观看 | 只有这里有精品99| av国产精品久久久久影院| 乱人伦中国视频| 欧美日韩一区二区视频在线观看视频在线| 夫妻午夜视频| 久久久久久人妻| 日本免费在线观看一区| 美女xxoo啪啪120秒动态图| 久热久热在线精品观看| 中文字幕人妻丝袜制服| 成人18禁高潮啪啪吃奶动态图 | 久久久a久久爽久久v久久| 人妻夜夜爽99麻豆av| 精品一区在线观看国产| 亚洲精品一区蜜桃| 亚洲精品久久久久久婷婷小说| 久久青草综合色| av在线app专区| 亚洲av日韩在线播放| 91久久精品国产一区二区三区| 亚洲av综合色区一区| 成人亚洲精品一区在线观看| 国产男女内射视频| 欧美日韩亚洲高清精品| 国产成人精品久久久久久| 日韩强制内射视频| 亚洲精品国产av蜜桃| 精品国产一区二区三区久久久樱花| 久久人人爽人人爽人人片va| 极品教师在线视频| 在线看a的网站| 国产精品一区二区在线不卡| 伊人久久国产一区二区| 免费人妻精品一区二区三区视频| 精品少妇内射三级| kizo精华| 免费不卡的大黄色大毛片视频在线观看| 国产精品一区www在线观看| 伦精品一区二区三区| 亚洲av成人精品一二三区| 国产精品熟女久久久久浪| 国产精品不卡视频一区二区| 最新中文字幕久久久久| 日韩亚洲欧美综合| 伦理电影大哥的女人| 国产精品国产三级国产av玫瑰| 国产中年淑女户外野战色| 日本黄色日本黄色录像| 成人国产av品久久久| 99久久人妻综合| 边亲边吃奶的免费视频| 在线观看美女被高潮喷水网站| 高清在线视频一区二区三区| 国产精品偷伦视频观看了| av卡一久久| 国产成人精品一,二区| 汤姆久久久久久久影院中文字幕| 热re99久久国产66热| 日韩精品免费视频一区二区三区 | 欧美激情极品国产一区二区三区 | 亚洲伊人久久精品综合| a级毛色黄片| 久久久久久久久久人人人人人人| 亚洲欧洲精品一区二区精品久久久 | 少妇猛男粗大的猛烈进出视频| 免费黄频网站在线观看国产| 国产一区二区三区av在线| 成人无遮挡网站| a级一级毛片免费在线观看| 久久精品国产自在天天线| av不卡在线播放| 91精品一卡2卡3卡4卡| 又大又黄又爽视频免费| 少妇人妻精品综合一区二区| 你懂的网址亚洲精品在线观看| 激情五月婷婷亚洲| av在线老鸭窝| 日韩精品有码人妻一区| a级毛色黄片| 人体艺术视频欧美日本| 亚洲精品久久午夜乱码| 欧美一级a爱片免费观看看| 深夜a级毛片| 日本欧美国产在线视频| 黄色日韩在线| 观看美女的网站| 国产高清三级在线| 日韩伦理黄色片| 国产亚洲精品久久久com| 中文字幕人妻熟人妻熟丝袜美| 色5月婷婷丁香| av网站免费在线观看视频| 成人黄色视频免费在线看| 亚洲精品一二三| 成人免费观看视频高清| 国产一区二区在线观看日韩| 激情五月婷婷亚洲| 国产老妇伦熟女老妇高清| 久久久久久久大尺度免费视频| 久久婷婷青草| 国产av码专区亚洲av| 日本wwww免费看| 国语对白做爰xxxⅹ性视频网站| 精品亚洲成a人片在线观看| 中文字幕人妻丝袜制服| 亚洲国产欧美在线一区| 国产淫片久久久久久久久| h视频一区二区三区| av网站免费在线观看视频| 丰满乱子伦码专区| 2021少妇久久久久久久久久久| 丝袜喷水一区| av网站免费在线观看视频| 久久午夜综合久久蜜桃| 啦啦啦啦在线视频资源| 一级爰片在线观看| 欧美日韩一区二区视频在线观看视频在线| 亚洲美女视频黄频| 亚洲av日韩在线播放| 日韩中文字幕视频在线看片| 亚洲国产精品成人久久小说| 欧美高清成人免费视频www| 亚洲精品日韩av片在线观看| 六月丁香七月| 国产色婷婷99| 交换朋友夫妻互换小说| 国产日韩一区二区三区精品不卡 | 天堂8中文在线网| 日韩 亚洲 欧美在线| 在线播放无遮挡| 亚洲欧美精品专区久久| 在线观看免费高清a一片| 十八禁高潮呻吟视频 | 国产精品国产三级国产专区5o| 久久鲁丝午夜福利片| 日韩中文字幕视频在线看片| 在现免费观看毛片| 国产一区有黄有色的免费视频| 久久免费观看电影| 久久综合国产亚洲精品| 免费黄网站久久成人精品| 黄色日韩在线| 欧美少妇被猛烈插入视频| 丝袜在线中文字幕| 亚洲电影在线观看av| 国产精品三级大全| 国产视频内射| 女人久久www免费人成看片| 亚洲av成人精品一二三区| 亚洲欧美日韩卡通动漫| 亚洲国产精品国产精品| 亚洲第一区二区三区不卡| 色婷婷av一区二区三区视频| 日日爽夜夜爽网站| 91成人精品电影| 国产精品久久久久久久电影| 高清av免费在线| 亚洲精品456在线播放app| www.av在线官网国产| 又大又黄又爽视频免费| 国产精品久久久久成人av| 人妻 亚洲 视频| 最黄视频免费看| 在线观看三级黄色| 日韩 亚洲 欧美在线| 99国产精品免费福利视频| 国产成人91sexporn| 亚洲四区av| 另类亚洲欧美激情| 国产黄频视频在线观看| 高清不卡的av网站| 美女中出高潮动态图| 深夜a级毛片| 亚洲精品国产av成人精品| 久久精品熟女亚洲av麻豆精品| 在线观看av片永久免费下载| 日韩成人av中文字幕在线观看| av在线app专区| 亚洲精品乱码久久久久久按摩| 91精品国产国语对白视频| 大又大粗又爽又黄少妇毛片口| 免费高清在线观看视频在线观看| 日日爽夜夜爽网站| 欧美精品高潮呻吟av久久| 亚洲精品,欧美精品| 亚洲婷婷狠狠爱综合网| 亚洲人成网站在线播| 我的老师免费观看完整版| 青春草亚洲视频在线观看| 精品亚洲乱码少妇综合久久| 一级,二级,三级黄色视频| 青青草视频在线视频观看| 香蕉精品网在线| 国产男女超爽视频在线观看| 国产亚洲91精品色在线| 狂野欧美激情性bbbbbb| 三级经典国产精品| 日韩av免费高清视频| 晚上一个人看的免费电影| 国产免费福利视频在线观看| 国产日韩一区二区三区精品不卡 | 亚洲成人手机| 亚洲三级黄色毛片| 亚洲av中文av极速乱| 黄色毛片三级朝国网站 | 大码成人一级视频| 另类精品久久| 成人午夜精彩视频在线观看| 中文字幕人妻丝袜制服| 欧美另类一区| av不卡在线播放| 午夜免费观看性视频| 成人黄色视频免费在线看| 夜夜骑夜夜射夜夜干| 欧美老熟妇乱子伦牲交| 桃花免费在线播放| 韩国高清视频一区二区三区| 国产av码专区亚洲av| 18禁在线播放成人免费| 久久久a久久爽久久v久久| 深夜a级毛片| 欧美 亚洲 国产 日韩一| 少妇被粗大的猛进出69影院 | 亚洲精品第二区| 全区人妻精品视频| 色视频在线一区二区三区| 午夜影院在线不卡| 午夜激情福利司机影院| 欧美高清成人免费视频www| 七月丁香在线播放| 欧美3d第一页| 午夜福利,免费看| 免费不卡的大黄色大毛片视频在线观看| 国产亚洲精品久久久com| 赤兔流量卡办理| 亚洲精品色激情综合| 久久人人爽人人片av| 国产在线免费精品| 国产精品欧美亚洲77777| 中文字幕人妻熟人妻熟丝袜美| 欧美日韩在线观看h| 国产片特级美女逼逼视频| 国产成人精品福利久久| 日韩中文字幕视频在线看片| 纯流量卡能插随身wifi吗| 欧美激情国产日韩精品一区| 日本vs欧美在线观看视频 | 欧美日本中文国产一区发布| 七月丁香在线播放| 亚洲四区av| 黄色一级大片看看| 男女边吃奶边做爰视频| 蜜桃久久精品国产亚洲av| 这个男人来自地球电影免费观看 | 精品久久国产蜜桃| 午夜精品国产一区二区电影| 久久久亚洲精品成人影院| 99久久综合免费| 亚洲欧美成人精品一区二区| 七月丁香在线播放| 国产精品伦人一区二区| 成人毛片a级毛片在线播放| videossex国产| 亚洲国产精品999| 亚洲欧洲日产国产| 日韩成人伦理影院| 天美传媒精品一区二区| 欧美激情极品国产一区二区三区 | 亚洲情色 制服丝袜| 人人妻人人爽人人添夜夜欢视频 | 亚洲人成网站在线观看播放| 久久综合国产亚洲精品| 国产在线免费精品| 插阴视频在线观看视频| 边亲边吃奶的免费视频| 久久精品国产亚洲网站| 69精品国产乱码久久久| 免费黄网站久久成人精品| 国产一区二区在线观看av| 伊人久久国产一区二区| 欧美精品国产亚洲| 97超碰精品成人国产| 99九九线精品视频在线观看视频| 亚洲国产日韩一区二区| 欧美日韩国产mv在线观看视频| 黑丝袜美女国产一区| 中文字幕精品免费在线观看视频 | 国产av精品麻豆| 国语对白做爰xxxⅹ性视频网站| 久久人妻熟女aⅴ| 亚洲国产精品成人久久小说| 纵有疾风起免费观看全集完整版| 午夜91福利影院| 国产探花极品一区二区| 国国产精品蜜臀av免费| 91成人精品电影| 久久国产乱子免费精品| 国产老妇伦熟女老妇高清| 免费看不卡的av| 多毛熟女@视频| 蜜桃在线观看..| 日韩成人av中文字幕在线观看| 岛国毛片在线播放| 亚洲欧美清纯卡通| 一级,二级,三级黄色视频| a级毛色黄片| 69精品国产乱码久久久| 中文在线观看免费www的网站| 大码成人一级视频| 97超碰精品成人国产| 精品少妇久久久久久888优播| 性高湖久久久久久久久免费观看| 高清欧美精品videossex| 男的添女的下面高潮视频| 亚洲精品第二区| 亚洲熟女精品中文字幕| 又爽又黄a免费视频| 亚洲av福利一区| 少妇被粗大的猛进出69影院 | av免费观看日本| 亚洲精品一区蜜桃| 亚洲内射少妇av| 中文资源天堂在线| 啦啦啦视频在线资源免费观看| 成人亚洲欧美一区二区av| 日韩亚洲欧美综合| 国产精品偷伦视频观看了| 纯流量卡能插随身wifi吗| 女人精品久久久久毛片| 人妻 亚洲 视频| 青青草视频在线视频观看| h日本视频在线播放| av不卡在线播放| 亚洲精品自拍成人| 国产欧美日韩一区二区三区在线 | 99久久精品国产国产毛片| 精品人妻偷拍中文字幕| 久热久热在线精品观看| 亚洲一级一片aⅴ在线观看| 日韩欧美一区视频在线观看 | 人人妻人人澡人人爽人人夜夜| 亚洲四区av| 婷婷色麻豆天堂久久| 欧美日韩亚洲高清精品| 桃花免费在线播放| 国产精品国产av在线观看| 免费观看性生交大片5| 99精国产麻豆久久婷婷| 亚洲国产最新在线播放| 国产高清不卡午夜福利| 国产精品嫩草影院av在线观看| freevideosex欧美| 少妇 在线观看| av网站免费在线观看视频| 少妇 在线观看| 久久精品国产自在天天线| 一个人免费看片子| 亚洲av电影在线观看一区二区三区| 亚洲中文av在线| 国产精品嫩草影院av在线观看| 欧美亚洲 丝袜 人妻 在线| 狠狠精品人妻久久久久久综合| 亚洲精品色激情综合| 日韩在线高清观看一区二区三区| 99久久综合免费| 国产精品久久久久久久电影| 一区二区三区乱码不卡18| 人人妻人人澡人人爽人人夜夜| 美女福利国产在线| 国产日韩欧美在线精品| 中文乱码字字幕精品一区二区三区| 国产欧美亚洲国产| 亚洲精品久久午夜乱码| 亚洲国产精品999| 9色porny在线观看| 欧美+日韩+精品| 久久人人爽av亚洲精品天堂| 日韩强制内射视频| 午夜免费观看性视频| 免费久久久久久久精品成人欧美视频 | 在线 av 中文字幕| 高清午夜精品一区二区三区| 性色avwww在线观看| 五月开心婷婷网| 亚洲欧美日韩卡通动漫| 黄色配什么色好看| 好男人视频免费观看在线| 伊人亚洲综合成人网| 丝袜在线中文字幕| 亚洲国产欧美在线一区| 伊人久久精品亚洲午夜| 99久国产av精品国产电影| av播播在线观看一区| 久久精品国产a三级三级三级| 国产精品免费大片| 亚洲中文av在线| av女优亚洲男人天堂| 五月伊人婷婷丁香| 久久狼人影院| 日日摸夜夜添夜夜爱| 国产女主播在线喷水免费视频网站| 国产精品伦人一区二区| 亚洲av福利一区| 免费看光身美女| 老司机亚洲免费影院| 亚洲精品日韩av片在线观看| 黄色欧美视频在线观看| 国产高清有码在线观看视频| 亚洲精品aⅴ在线观看| 91精品国产九色| 亚洲国产欧美在线一区| 国产一区二区三区综合在线观看 | 国产免费一区二区三区四区乱码| 亚洲激情五月婷婷啪啪| 久久精品国产鲁丝片午夜精品| av一本久久久久| 欧美最新免费一区二区三区| 午夜激情福利司机影院| 美女国产视频在线观看| 欧美高清成人免费视频www| av国产久精品久网站免费入址| 国产黄色免费在线视频| 国产在线一区二区三区精| 激情五月婷婷亚洲| 成人亚洲欧美一区二区av| 国产乱来视频区| 十分钟在线观看高清视频www | 国国产精品蜜臀av免费| 国产精品一区二区在线观看99| 免费黄色在线免费观看| 女人精品久久久久毛片| 在线精品无人区一区二区三| 在线 av 中文字幕| 日韩精品有码人妻一区| 国产精品国产av在线观看| 欧美日韩国产mv在线观看视频| 蜜臀久久99精品久久宅男| 日本91视频免费播放| 综合色丁香网| 边亲边吃奶的免费视频| 内地一区二区视频在线| 噜噜噜噜噜久久久久久91| 国产有黄有色有爽视频| 亚洲精品中文字幕在线视频 | 中文在线观看免费www的网站| 偷拍熟女少妇极品色| 制服丝袜香蕉在线| 三上悠亚av全集在线观看 | 九草在线视频观看| 欧美xxxx性猛交bbbb| 亚洲av男天堂| 亚洲在久久综合| 久久久久精品性色| 成人国产麻豆网| 亚洲精品一二三| 久久国内精品自在自线图片| 美女主播在线视频| 成年女人在线观看亚洲视频| 大片免费播放器 马上看| av在线观看视频网站免费| 亚洲国产毛片av蜜桃av| 久久6这里有精品| 亚洲精品亚洲一区二区| 新久久久久国产一级毛片| 色视频在线一区二区三区| 欧美精品一区二区大全| av黄色大香蕉| 校园人妻丝袜中文字幕| 国产永久视频网站| 亚洲精品一区蜜桃| 视频中文字幕在线观看| 天天操日日干夜夜撸| 伊人久久国产一区二区| 午夜免费鲁丝| 在线观看av片永久免费下载| 精品亚洲成a人片在线观看| 日本av手机在线免费观看| 午夜福利网站1000一区二区三区| 久久精品国产a三级三级三级| 免费大片18禁| 国产成人精品无人区| 乱人伦中国视频| 色视频在线一区二区三区| 伊人亚洲综合成人网| 91成人精品电影| 狂野欧美激情性xxxx在线观看| 五月开心婷婷网| 男人爽女人下面视频在线观看| 在线观看免费日韩欧美大片 | 国产成人91sexporn| 又黄又爽又刺激的免费视频.| av天堂久久9| .国产精品久久| 免费黄色在线免费观看| 日本午夜av视频| 简卡轻食公司| 国产极品天堂在线| av黄色大香蕉| 久久午夜综合久久蜜桃|