• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    One step synthesis and characterization of copper doped sulfated titania and its enhanced photocatalytic activity in visible light by degradation of methyl orange

    2016-05-29 02:10:37RadhaDeviChekuriSivaRaoTirukkovalluri

    Radha Devi Chekuri,Siva Rao Tirukkovalluri*

    Department of Inorganic and Analytical Chemistry,School of Chemistry,Andhra University,Visakhapatnam,India

    1.Introduction

    15%of the total dye production has been reported from the textile industrialwaste and are rated as the mostpolluting among allindustrial sectors[1].Effluents released from these waste waters contain large amount of azo dyes,which are non-biodegradable,toxic and potential carcinogenic and persistent in nature[2]causing serious problem threatening the environment.Hence more attention has been focused for the degradation of these dye pollutants.For this purpose Advanced Oxidation Processes(AOPs);were preferred.But AOPs oxidize quickly and non-selectively broad range of organic pollutants.Hence some of the methods like sonolysis Fenton Oxidation,and Electrochemicaltreatment,Photochemical treatment method have been preferred[3-5].But they could succeed only to some extent,due to some limitations like generation of hardly oxidizable carboxylic acids,cost effective etc.whereas Heterogeneous Photocatalysis is found to be the most advanced oxidation process suitable and efficient method for the removal of such dyes from industrial waste waters.For this process titania is selected as the best photocatalyst since it is biologically and chemically inert,stable with respect to photo chemical corrosion,insoluble under any drastic conditions and nontoxic[6].However,due to high band gap energy TiO2(Ebg<3.2 eV),it can be excited only by UV light(λ=387 nm)and the high rate of electron-hole recombination,within nanoseconds,at TiO2particles which results in less photocatalytic activity in the visible light.Therefore it is more advantageous to modify titania,for it to exhibit high reactivity under visible light(λ > 400 nm),where visible light constitutes about 40-50%of the solar energy,hence doping of titania with metals[7]and nonmetals[8-15]were preferred.A systematic study of metal ion doping in quantum sized TiO2for 21 metalions was performed by Choi etal.,[16].The doping of various transition metal ions into TiO2could shift its optical absorption edge from UVto visible lightrange,buta prominentchange in pure titania was notobserved[17].Umebayashi etal.,[18-20]have succeeded to synthesize S-doped TiO2,which was used as an efficient visible light induced photocatalyst for visible-light catalytic degradation of methylene blue.In order to synthesize a nano-catalyst with higher photo-catalytic activity,restriction of the particle size during its synthesis plays a prominent role and substantially affects the properties of synthesized titania nanomaterials.Minimizing the particle size leads to increase in surface area which results in higher photocatalytic activity.In order to attain this,recently investigations were carried regarding the synthesis of metal doped titania by Surfactant Template method.Though surfactant medium plays a vital role in the synthesis of variety of nanoparticles[21],it involves complicated procedure where the parameters are to be carefully controlled.The photocatalytic efficiency of such titania samples depends on the template selected.Hence in order to synthesize a new nano-photocatalyst with decrease in the particle size and for attainment oflarge surface area,ourprime focus aims atstudy regarding introduction ofsulfate ions i.e.deposition ofsulfate ions on copperdoped titania and to study the corresponding decrease in particle size and presumably with larger active surface area and to investigate its applications towards enhancementin photocatalytic activity.Doping ofcopperinto titania matrix was proposed,for decreasing the band gap energy and to modify the surface properties of titania and to observe the shift of absorption band towards the visible light range.Hence,we preferred synthesizing copper doped sulfated titania and to investigate its photocatalytic efficiency.It is a single step process employing sol-gel method.

    2.Experimental Procedure

    2.1.Materials required

    Titanium tetra-n-butoxide(Ti(O-Bu)4)and copper sulfate were obtained from E.Merck(Germany).Super-dry purified ethanol has been used.All the other chemicals and reagents are of Merck(India)analytical grade.Furnace with maximum temperature limit of 1200°C of V.B.Ceramics India Ltd,have been used for the calcination purpose.

    2.2.Synthesis of copper doped sulfated TiO2

    Titanium tetra-butoxide and copper sulfate were considered as the precursors for titanium and copper respectively.We have taken 40.0 ml of absolute ethanol(100%),7.1 ml of water and 1.1 g of copper sulfate with required percentages 2.0 wt.%-10.0 wt.%were prepared(solution I).Solution II was prepared by taking 20.0 ml of titanium tetra-butoxide in 40.0 ml of absolute alcohol with 3.0 ml of nitric acid was added drop wise under continuous stirring for 30 min.Both the solutions were mixed and vigorously stirred at room temperature until the transparent sol was obtained.Later,the gel was dried at 80°C in an oven for36 h.The catalystpowder was calcined at450°C in a furnace for4 h.The synthesis pattern ofthe catalysthas been shown in Fig.1.Required wt.%ranging from(2.0,5.0 and 10.0)Cu2+-SO42-/TiO2was prepared.The powdered samples were finely grinded.A similar procedure was adopted for the preparation of undoped TiO2.The synthesized catalyst samples were characterized by XRD analysis,UV-Vis DRS,XPS,SEM,TEMand FT-IR.Later,degradation ofMOdye in the presence of visible light region has been carried out.

    Fig.1.Schematic representation of the catalyst preparation.

    2.3.Characterization of photocatalysts

    The XRD patterns were recorded with a PAN Analytical diffractometer at room temperature with a copper(Kα)anode material of wavelength(λ)0.15418 nm,and carbon monochromator were used.The accelerating voltage of 35 kV and emission current of 30 mA were employed.The UV-Visible absorption spectroscopic analysis of the undoped TiO2 and doped TiO2 samples were done by using a UV-Visible spectrophotometer (Hitachi,U-3210).X-ray photo electron spectroscopy(XPS)of the prepared undoped and doped TiO2solid samples were recorded with the PHI quantum ESCA microprobe system,using the AlKα line of a 250 W X-ray tube as a radiation source with the energy of1253.6 eV,16 mA×12.5 kVand a working pressure lowerthan 1×10-8·Nm-2.Scanning electron micrographs(SEM)of the samples were recorded using Phillips XL 30 model.The infrared spectra of the synthesized samples were recorded on Thermo Nicolet Nexus 670 Spectrometer,with resolution of4 cm-1in KBrpellets.For understanding the particle size of doped and un-doped TiO2,TEM measurements were carried out using Tecnai SE20,operated at 120 kV as accelerating voltage.

    2.4.Photocatalytic activity of the catalyst—Degradation of MO

    The photocatalytic degradation of MO dye was carried out in the presence of visible light in the photocatalytic reactor.The required amount of catalyst was suspended in 100 ml of standard aqueous solution in a 150 ml Pyrex glass vessel.The mixture was stirred for 45 min in the dark to reach adsorption equilibrium.Later,the suspensions were then irradiated under visible light(wavelength range 400-800 nm)using a UV filtered Osram high pressure mercury vapour lamp with power 400 W and 35,000 lm.The distance between the light and the reaction vessel was 20 cm.The experiments were performed at room temperature and at regular intervals,5 ml of the aliquots was taken by 0.45 μm millipore syringe filter and for the measurement of absorbance and were analyzed,the quantitative determination of MO was performed by measuring the absorption of solution at a wave length of 464 nm with a Milton Roy Spectronic 1201,UV-Vis spectrophotometer.The extent of MO photo catalytic degradation was calculated using a calibrated relationship between the measured absorbance and its concentration.MO cannot be photodegraded in the absence of the catalyst under the same irradiation conditions.

    Degradation=(A0-At)/A0×100%

    where

    A0initial absorbance of dye solution

    Atabsorbance of dye solution at time t.

    3.Results and Discussion

    3.1.X-ray diffraction studies

    Fig.2.XRDpatterns of(a)undoped TiO2(b)2.0,(c)5.0,and(d)10.0 wt.%ofCu2+-SO42-/TiO2,and precursor gel powder heat treated at 450°C for 4 h.

    The XRDpatterns for both doped and undoped TiO2powder samples were represented in Fig.2(a)to 2(d).All the samples were reported to be in the anatase phase.(JCPDS File number:21-1272).From this we can conclude that the Cu2+ions and SO42-ions in TiO2did not in fluence the crystal patterns of TiO2particle.The d spacing and hkl values at different 2θ were recorded.The ionic radius of Cu2+(0.073 nm)is closerto thatofTi4+(0.068 nm);so itiseasierfor Cu2+ionsto be incorporated into the matrix as substituents of TiO2without causing much crystalline distortion whereas ionic radius of sulfate ions is much larger in size and hence cannot be substituted by replacing oxygen ofTiO2and hence deposition of sulfate ions on the titania surface is the only favorable condition.It was found that the crystallinity could be improved by increasing the percentage doping of Cu2+.The(101)plane of anatase peaks of the Cu2+-SO42-/TiO2sample slightly shifts to higher values of 2θ in comparison with that of undoped TiO2.The average crystallite size of prepared catalyst was calculated from the broadening of the Full Width at Half Maximum(FWHM)peak by using Scherrer's equation ranging from 7 to 12 nm.The tendency for the formation of smaller TiO2crystalline nanoparticles has been confirmed.

    3.2.UV-visible diffusion reflectance spectroscopy

    Fig.3.UV-Visible absorption spectra of(a)undoped TiO2(b)2.0 wt.%ofCu2+-SO42-/TiO2 and(c)5.0 wt.%of Cu2+-SO42-/TiO2.

    Fig.3 represents the UV-Visible absorption spectra of 2.0 wt.%,5.0 wt.%Cu2+-SO42-/TiO2and undoped TiO2.From the spectrum of pure TiO2there is a broad intense absorption band observed at 380 nm which is due to charge-transfer from the valence band(mainly formed by 2p orbital of the oxide anions)to the conduction band(mainly formed by 3d t2gorbitalofthe Ti4+cations)[22].Thus undoped TiO2doesn't respond to visible light whereas in the copper doped sulfated TiO2there is a shift noticed towards the higher wavelength region(red shift)i.e.visible region ataround 500 to 700 nm.From this we can conclude that there is a contact between TiO2and Cu2+grains and this leads to the enhancement in the photocatalytic activity of catalysts in visible light and it is confirmed from the later investigations.The absorption peak for 5.0 wt.%of the prepared catalyst,is noticed at greater shift than that of 2.0 wt.%of Cu2+-SO42-/TiO2,i.e.at 600 nm from which we can say that,with increase in percentage of doping of copper in the TiO2lattice,there is increase in absorbance towards higher visible region.Due to absorption towards visible region there is an increase in the number of photo generated electrons and holes which leads to the enhancement in the photocatalytic activity of the TiO2.Lettmann et al.[23]reported that there is good relation between lightabsorption properties and the photocatalytic activities.

    3.3.X-ray photoelectron spectroscopic study

    From High resolution XPS analysis we can find out the detailed chemical state information of Cu 2p,S 2p,O 1s,and Ti 2p.Fig.4(a)shows the high resolution spectra of Ti 2p,O 1s of the undoped TiO2.From Fig.4(b)and(c)Cu 2p3/2and Cu 2p1/2peaks were located at binding energies of 934.599 eV and 954.781 eV respectively,and they belong to the compound of CuO[24,25]and shake-up peaks are also observed which are characteristic is for Cu2+that bonds with oxygen atoms.The binding energies of Ti 2p3/2and Ti 2p1/2were found to be 459.029 eV and 464.616 eV these binding energies belongs to Ti4+[26].Fig.4(c)shows the high resolution XPS Spectra of the S 2p region where peaks around 169.843 eV can be attributed to SO42-,where sulfur atoms are present in the state of+6 oxidation state.From Fig.4(a),the Ti 2p and O 1s peaks of copper doped sulfated TiO2samples are slightly shifted toward lower binding energy,which is due to incorporation of Cu2+ions into TiO2lattice.From the high resolution XPS spectra of the S 2p region a peak around 170 ev is observed[27].From this we can say that sulfur atoms are in the state of S6+,the absence of the peaksataround 160-163 eV,indicate thatthere isno Ti-S bond.Anionic sulfate doping cannotbe carried outsince SO42-has a significantly largerionic radius compared to thatofO2-(0.122nm).Hence doping ofsulfate ions is not proved to be successful.The most favorable condition is surface deposition of Ti4+by SO42-ions.So from the XPS we can finally conclude that the existence of sulfuris+6 oxidation state and copper is in+2 oxidation state.This may be the reason for the activation of the synthesized nano photo catalyst in the presence of visible light.The XPS observations were consistent with EDS.

    3.4.Scanning electron microscopic study

    Fig.5(a)and(b)depicts the SEM micrographs of pure TiO2powder and 5.0 wt.%Cu2+-SO42-/TiO2.The SEM-image of the pure TiO2appears as large blocks of the coarse material.In a catalyst of 5.0 wt.%,the nanoparticles are found to be uniform and spherical particles,with reduction in the particle size in the range of 7-12 nm.SEM indicates the change in the morphology of the nanoparticles,where the particles are of rough nature with increase in surface area as shown in Table 1.This is possible due to the restriction in the further growth of particles size,where there is no agglomeration of the particles;may be due to the sulfate deposition on the surface of copper doped titania which is confirmed from XRD.

    3.5.Energy dispersive spectrometry

    It is used to identify the elements that are present in the prepared catalyst.It is done by taking a selective portion of SEM image in the form of peaks of spectrum.Fig.6 indicates,the spectrum of 5.0 wt.%Cu2+-SO42-/TiO2sample.The presence of Cu,S,Ti and O from the synthesized catalyst,were confirmed from EDS.

    Fig.4.(a):XPS of undoped TiO2.(b):XPS of 5.0 wt.%Cu2+-SO42-/TiO2.(c):XPS of 5.0 wt.%Cu2+-SO42-/TiO2.

    3.6.Fourier transform infrared spectroscopy

    Fig.5.(a):SEM images of undoped TiO2.(b):5.0 wt.%Cu2+-SO42-/TiO2.

    Table 1 BET surface area of the prepared samples

    Fig.7(a),(b)indicates the spectra of pure TiO25.0 wt.%,Cu2+-SO42-/TiO2respectively.From Fig.7(a)peaks are observed at 3373.01,2922.25 and 1623.98 cm-1which correspond to the stretching vibrations of the O-H and bending vibrations of the adsorbed water molecules.Similarly from Fig.7(b)bands were noticed at 3383.86 and 1627.52 cm-1.This confirms the presence of hydroxyl ions in the Cu2+-SO42-/TiO2.Below 1000 cm-1region the Ti-O-Ti stretching peak appears at 585 cm-1.The S=O stretching frequencies of SO42-/TiO2are found in 1384.36 cm-1,1123.31 cm-1,and 1066.98 cm-1.This is compared with reported stretching frequencies[28-31]of the three bands at 1385.50 cm-1,1143.39 cm-1and 1055.33 cm-1which show small deviation,this may be due to Cu2+doped substitutionally in the TiO2matrix.The free sulfate ion has tetrahedral symmetry.There is no band at 1105 cm-1,which indicates that no free SO42-exists in the prepared catalyst.All these bands indicate the existence of sulfate ions in the prepared catalyst and these are due to the copper doped sulfated titania,characteristic of chelating bidentate SO42-and uni-dentate SO42-.There are absorption peaks observed at 1384.36 and 1123.31 cm-1and these are related to asymmetric and symmetric stretch of S=O.In SO42-/TiO2there is a peak observed at 1046 cm-1,this is attributed to asymmetric S-O bond[32]In the Cu2+-SO42-/TiO2sample there is a peak observed at 1066.98 cm-1and this may be due to doping of copper and presence of sulfate ions on the surface of TiO2.The structure of SO42-/TiO2is expressed in Fig.8.Due to surface deposition of SO42-,it limits the further growth of the crystallite size and forms nanocrystallites which was confirmed with the XRD data.The anionic sulfate doping i.e.replacementofoxide ion with the sulfate ion is notfavorable,due to larger ionic radius of sulfate ions hence it is surface deposited on the TiO2,and this limits the further growth of crystalline size of TiO2,which forms nanocrystalline particles.

    Fig.6.EDS spectrum of 5.0 wt.%of Cu2+-SO42-/TiO2.

    Fig.7.FT-IR spectra of(a)undoped TiO2,(b)5.0 wt.%Cu2+-SO42-/TiO2.

    3.7.Transmission electron microscopy

    Fig.8.Structure of sulfated TiO2.

    Fig.9(a)and(b)represents the TEM images of un-doped and 5.0 wt.%Cu2+-SO42-doped TiO2respectively.The particle size was found to be 7-12 nm,respectively.From TEM analysis also we can conclude the decrease in the particle size,which was consistent from XRD analysis.This signifies the effect of sulfate deposition on the synthesis of copper doped titania nanophotocatalyst.Similarly sulfate ions tend to form the complex with the surface oxygen of TiO2and this suppresses the further growth of TiO2crystalline particles.Hence higher rate of photocatalytic activity was observed from the later studies.

    3.8.Evaluation of photocatalytic activity of the catalyst

    Experiments were carried out to find the optimum conditions of various parameters like effect of dosage,dopant concentration,pH of the solution,and concentration of the dye were studied in detail.

    3.8.1.Effect of dopant concentration

    A set of experiments were carried out using 2.0 wt.%,5.0 wt.%,and 10.0 wt.%of Cu2+-SO42-/TiO2by maintaining other conditions like pHand dye concentration constant.Itis compared with thatofundoped TiO2for the degradation of MO,under visible light irradiation.It was found that 5.0 wt.%of copper doped sulfated titania has shown maximum enhancementin the photocatalytic activity.Thus 5.0 wt.%appears to be an optimal dopant concentration.

    Fig.9.(a):TEM image of undoped TiO2.(b):TEM image of 5.0 wt.%of Cu2+-SO42-/TiO2 sample.

    The results of the experiments were presented in Fig.10.The results from this figure indicated that rate of degradation of MO increased at 5.0 wt.%of copper doped sulfated Titania.It is observed that in the case of 10.0 wt.%of copper doped TiO2,the photo reactivity decreases.With increase in copper wt.%,copper is deposited on TiO2,instead of doping.The observed rate constant for effect of dopant concentration is 11.55×10-2·min-1and further doping became detrimental.

    Fig.10.Effect of dopant concentration on the degradation of MO.

    3.8.2.Effect of pH

    To understand the optimum pH of the solution experiments were carried out by varying the pH from 1 to 3 and the results are presented in Fig.11.Results from this figure reveal that at pH 1.5,the rate of degradation of MO is high,the rate increases at high acidic pH due to the amphoteric behavior of titanium dioxide and the change of the surface charge properties of TiO2with the changes of pH values[33]around its point of zero charge pH(pzc)according to the following reactions:

    Fig.11.Effect of pH on the degradation of MO.

    MO being an anionic dye,having electronegative centers(S and O),hence maximum adsorption on the catalyst surface takes place at a lower pH.This is an important step for the photo-oxidation to take place.The observed rate at a pH value of 1.5 is 7.6×10-2min-1.

    3.8.3.Effect of catalyst dosage

    Experiments were performed by varying the concentrations of Cu2+-SO42-/TiO2from 0.1 to 0.3 g in 100 ml aqueous solution of MO dye at pH of 1.5.Fig.12 represents the effect of catalyst dosage.It is observed that the rate of degradation increases linearly with increase in the amount of catalyst up to 0.5 g,and then decreases(leveling off).With the increase of catalyst amount,the number of photons and the number of MO molecules adsorbed are increased.With increase in the number of catalyst particles,it leads to increase in photocatalytic efficiency.

    Fig.12.Effect of catalyst dosage on the degradation of MO.

    From Fig.12,beyond 0.5 g,there is a decrease in the photo catalytic process,i.e.the rate levels off.This may be due to increased concentrations of catalyst,although more areas are available for constant MO molecules to absorb the number of substrate molecules present in the solution remains the same,but the solution turbidity increases and it interferes the penetration of light and also cause scattering of radiation.Hence at a certain level presence of catalyst in excess amount may not involve in catalysis and thus the rate levels off.The observed rate constant at catalyst dosage 0.2 g is 13.0×10-2min-1.

    3.8.4.Effect of initial dye concentration

    A set of experiments were conducted varying the concentration of MO from 1.0 to 10.0 mg·L-1at a constant Cu2+-SO42-/TiO2loading of 0.2 g and a solution pH of 1.5.The results from the graphical representation are given in Fig.13,which indicates that the degradation rate increases with increase in dye concentration to an extent of 10.0 mg·L-1and a further increase leads to decrease in the rate of degradation,this is due to the screening effect at concentrations higher than 10 mg·L-1.The observed rate at initial dye concentration of 5 ppm is 15.33×10-2·min-1.With the increase in the concentration of the dye the probability of the reaction between the dye and the oxidizing species increases,there is enhancement in the photocatalytic degradation process.Furthermore,the generation of·OH radicals is constant for a given quantity of the catalyst and hence the available·OH radicals are insufficient for MO degradation at higher concentrations.High concentration dyes start covering the surface of the photocatalyst as a blanket from light intensity thus 5×10-6mg·L-1of the MO dye concentration has been found to be the optimum condition.

    Fig.13.Effect of MO dye concentration on the degradation of MO.

    3.8.5.Photocatalytic mechanism

    Fromthe experimentalresults the following mechanism is proposed for the photocatalytic reactions of Cu2+-SO42-/TiO2.

    These trapped electrons can be subsequently scavenged by molecular oxygen,which is adsorbed on the TiO2surface,to generate the superoxide radical,and this in turn produce hydrogen peroxide(H2O2),hydroperoxy(HO2·)and hydroxyl(·OH)radicals[34,35].

    (1)The positive holes in the valence band act as good oxidizing agents available for degradation of pollutants in the solution

    Where “Red”is the pollutant an electron donor(reductant).

    Thus the dye pollutant MO is attacked by the hydroxyl radicals formed both by trapped electrons and hole in the VB as given in the above equations,to generate organic radicals or other intermediates.

    4.Conclusions

    In our present investigation,we have been successfully synthesized the copper doped sulfated titania as nanophotocatalyst with different 2.0 wt.%-10.0 wt.%,and theirphotocatalytic activity wasstudied by degradation ofMO,a modelazo dye pollutantundervisible lightirradiation.It was found that the transition metal copper ions were doped into the TiO2lattice which reduced the band gap energy ofTiO2.By the introduction of nonmetal sulfate ions on the surface of the TiO2limited the further growth of the particle size and thus forming nanocrystalline titania powders which was confirmed with the XRD and TEM data.From XRD data it is observed that all the samples were shown to be in anatase phase.Sulfation(i.e.deposition of sulfate ions,on the surface of TiO2)has hindered further growth of crystalline size of the synthesized catalyst.This is possible due to the surface deposition of sulfate ions,where there is restriction of the particle size with large surface area has been observed.The agglomeration of the particles has been minimized due to repulsion of similarly charged sulphated species which are deposited on copper doped titanianano particles.This finally leads to enhancement in the photocatalitic activity.The SEM analysis has shown the change in morphology of the titania particles which is due to copper doping of sulfated titania.It was found that the prepared sample showed increased photocatalytic activity in the degradation of MO,in the presence of visible light.

    The observed rate constant at optimum concentrations of various parameters such as effect of dopant concentration(5.0 wt.%),effect of pH(pH of 1.5),catalyst dosage(0.2 g)and initial dye concentration(5 mg·L-1)is 15.33×10-2min-1are the optimal conditions for better degradation of MO dye.Finally from this study we can conclude that by the introduction of transition metal like copper(copper ions)being substituted into the TiO2matrix and sulfation of the copper doped sulfated nano titania catalyst which can effectively shift the absorption ofTiO2from UVto Visible region and controlthe selective crystallization of anatase phase of TiO2;which minimizes band gap energy and facilitating for high degradation of dye pollutant in the visible light.

    References

    [1]R.J.Reid,Soc.Dyers Colour.112(1996)103-105.

    [2]H.Zollinger(Ed.),Color Chemistry—Synthesis,Properties and Applications of Organic Dyes and Pigments,2nd revised ed.VCH pubs,New York 1991,pp.3144-3149.

    [3]A.Francony,C.Petrier,Ultrason.Sonochem.3(1996)S77-S82.

    [4]P.Theron,P.Pichat,C.Petrier,C.Guillard,Water Sci.Technol.44(2001)263-270.

    [5]C.Pulgarian,J.Kiwi,Chimia 50(1996)50-55.

    [6]J.Engweiler,J.Harf,A.Baiker,WOx/TiO2 catalysts prepared by grafting of tungsten alkoxides,morphological properties and catalytic behavior in the selective reduction of NO by NH3,J.Catal.159(1996)259-269.

    [7]V.Brezova,A.Blazkova,L.Karpinsky,J.Groskova,B.Havlinova,V.Jorik,M.Eeppen,J.Photochem.Photobiol.A Chem.109(1997)177-183.

    [8]H.Irie,Y.Watanabe,K.Hashimoto,Carbon-doped anatase TiO2powders as a visiblelight sentisive photocatalyst,Chem.Lett.32(2003)772-773.

    [9]X.Liu,Z.Liu,J.Zheng,X.Yan,D.Chen,S.Li,W.Chu,Characteristics of N-doped TiO2nanotube arrays by N2-plasma for visible light driven photocatalysis,J.Alloys Compd.509(2011)9970-9976.

    [10]Y.Zhao,X.Qiu,C.Burda,The effects of sintering on the photocatalytic activity of N-doped TiO2nanoparticles,Chem.Mater.20(2008)2629-2636.

    [11]C.Cantau,T.Pigot,J.C.Dupin,S.Lacombe,N-doped TiO2by low temperature synthesis;stability,J.Photochem.Photobiol.A Chem.216(2010)201-208.

    [12]X.Wu,D.Wu,Li,Optical investigation on sulphur doping effects in titanium dioxide nanoparticles,Appl.Phys.A:Mater.Sci.Process.97(2009)243-248.

    [13]T.Ohno,M.Akiyoshi,T.Umebayashi,K.Asai,T.Mitsui,M.Matsumura,Appl.Catal.A Gen.265(2004)115-121.

    [14]Y.Lu,L.Yu,H.Liu,Y.Feng,Preparation,characterization of P-doped TiO2nanoparticles and their excellent photocatalytic properties under the solar light irradiation,J.Alloys Compd.488(2009)314-319.

    [15]D.Huang,S.Liao,S.Quan,L.Liu,Z.He,J.Wan,W.Zhou,Preparation of anatase F doped TiO2sol and its performance for photodegradation of formaldehyde,J.Mater.Sci.42(2007)8193-8202.

    [16]W.Choi,A.Termin,M.R.Hoffmann,The role of metal ion dopants in quantum-sized TiO2:Correlation between photoreactivity and charge carrier recombination dynamics,J.Phys.Chem.98(51)(1994)13669-13679.

    [17]J.C.S.Wu,C.H.Chen,A visible-light response vanadium-doped titania nanocatalyst by sol-gel method,J.Photochem.Photobiol.A Chem.163(3)(2004)509-515.

    [18]T.Umebayashi,T.Yamaki,H.Itoh,K.Asai,Band gap narrowing of titanium dioxide by sulfur doping,J.Appl.Phys.Lett.81(2002)454-456.

    [19]T.Umebayashi,T.Yamaki,S.Tanala,K.Asai,Visible light-induced degradation of methylene blue on S-doped TiO2,J.Chem.Lett.32(4)(2003)330-331.

    [20]T.Umebayashi,T.Yamaki,S.Yamamoto,A.Miyashita,S.Tanala,T.Sumita,K.Asai,Sulfur-doping of rutile-titanium dioxide by ion implantation:Photocurrent spectroscopy and first-principles band calculation studies,J.Appl.Phys.93(2003)5156-5160.

    [21]S.R.Yoganarasimhan,C.N.R.Rao,Trans.Faraday Soc.58(1962)1579-1589.

    [22]M.A.Fox,M.T.Dulay,Chem.Rev.93(1993)341-357.

    [23]C.Lettmann,K.Hildenbrand,H.Kisch,W.Macyk,W.F.Maier,Appl.Catal.B Environ.32(2001)215-227.

    [24]I.H.Tseng,J.C.S.Wu,H.Y.Chou,Effects of sol-gel procedures on the photo catalysis of/Cu/TiO2in CO2photo reduction,J.Catal.221(2004)432-440.

    [25]S.Xu,J.Ng,X.Zhang,H.Bai,D.D.Sun,Fabrication and comparison of highly efficient Cu incorporated TiO2photocatalyst for hydrogen generation from water,Hydrogen Energy 35(11)(2010)5254-5261.

    [26]H.J.Choi,M.Kang,Hydrogen production from methanol/water decomposition in a liquid photosystem using the anatase structure of Cu loaded TiO2,J.Hydrogen Energy 32(2007)3841-3848.

    [27]M.Kitano,K.Funatsu,M.Matsuoka,M.Ueshima,M.Anpo,Preparation of nitrogensubstituted TiO2thin film photocatalysts by the radio frequency magnetron sputtering deposition method and their photocatalytic reactivity under visible light irradiation,J.Phys.Chem.B 110(2006)25266-25272.

    [28]T.Yamaguchi,Recent progress in solid superacid,Appl.Catal.61(1990)16-19.

    [29]M.Hino,K.Arata,Polymerization of ethyl and methyl vinyl ethers catalyzed by iron oxide treated with sulfate ion synthesis of stereospecific,J.Chem.Lett.7(1980)963-966.

    [30]Y.Wang,C.Chn,J.Luo,et al.,Studies on the acidity,structures and crystalline phases of SO42-/TiO2,PO43-/TiO2,BO33-/TiO2solid acids,Chinese,Struct.Chem.18(3)(1990)175-181.

    [31]Y.Xu,L.Wang,Q.Zhang,S.Zheng,X.Li,C.Hung,Correlation between photo activity and photo physics of sulfated TiO2photo catalyst,J.Mater.Chem.Phys.92(2005)470-474.

    [32]L.K.Noda,R.M.Aleida,L.F.D.Probst,N.S.Crocalves,Characterization of sulfated TiO2prepared by the sol-gel method and its catalytic activity in the n-hexane isomerization reaction,J.Mol.Catal.A Chem.225(1)(2005)39-46.

    [33]G.Marci,Augugliarov,A.Bianco Prevot,E.Baiocchic,Garcia-Lopez,Loddov,L.Palmisano,M.Pramauroe Schiavella,Ann.Chim.Soc.Chim.Ital.93(2003)639-645.

    [34]T.Wu,G.Liu,J.Zhao,H.Hidaka,N.Serpone,Phys.Chem.B 103(1991)4862-4867.

    [35]T.Wu,T.Lin,J.Zhao,H.Hidaka,N.Serpone,Environ.Sci.Technol.33(1999)1379-1387.

    (Please refer to the online version for the color figures)

    18禁裸乳无遮挡免费网站照片 | 成年女人毛片免费观看观看9| 国产日韩一区二区三区精品不卡| 日韩精品中文字幕看吧| 嫩草影视91久久| 中文字幕人妻丝袜一区二区| 国产精品久久久久久人妻精品电影| 午夜老司机福利片| 99精品在免费线老司机午夜| 成年版毛片免费区| 国产精品久久久久久亚洲av鲁大| www.999成人在线观看| 1024视频免费在线观看| 亚洲一区高清亚洲精品| 精品久久久久久久人妻蜜臀av | 久久久久久久久久久久大奶| 操美女的视频在线观看| 成人欧美大片| 丝袜在线中文字幕| 免费在线观看完整版高清| 色精品久久人妻99蜜桃| 午夜福利成人在线免费观看| 国产免费男女视频| 免费看a级黄色片| 久久久久久大精品| 69精品国产乱码久久久| 黄片播放在线免费| 久久香蕉精品热| 久久精品aⅴ一区二区三区四区| 亚洲一码二码三码区别大吗| 欧美中文日本在线观看视频| 在线观看舔阴道视频| 亚洲 国产 在线| 19禁男女啪啪无遮挡网站| 桃红色精品国产亚洲av| 黄色丝袜av网址大全| av免费在线观看网站| 99re在线观看精品视频| 免费观看人在逋| 操美女的视频在线观看| 9191精品国产免费久久| 嫩草影视91久久| 久久久国产精品麻豆| 免费在线观看黄色视频的| 精品国内亚洲2022精品成人| 不卡一级毛片| 99精品欧美一区二区三区四区| 91国产中文字幕| 精品久久久久久久久久免费视频| 女同久久另类99精品国产91| 午夜福利一区二区在线看| 亚洲国产欧美一区二区综合| 亚洲avbb在线观看| 99国产精品一区二区三区| 日韩成人在线观看一区二区三区| 极品教师在线免费播放| 桃色一区二区三区在线观看| 在线国产一区二区在线| 自线自在国产av| 国产精品九九99| 午夜精品久久久久久毛片777| 50天的宝宝边吃奶边哭怎么回事| 亚洲熟女毛片儿| 宅男免费午夜| 一本久久中文字幕| 制服人妻中文乱码| 欧美成人午夜精品| 亚洲激情在线av| 午夜免费激情av| 亚洲国产精品久久男人天堂| av免费在线观看网站| 国产蜜桃级精品一区二区三区| 一级,二级,三级黄色视频| 色尼玛亚洲综合影院| 777久久人妻少妇嫩草av网站| 国产高清激情床上av| 日本 欧美在线| 国产精品永久免费网站| 黑人巨大精品欧美一区二区mp4| 久久精品国产清高在天天线| 一本久久中文字幕| 50天的宝宝边吃奶边哭怎么回事| 女人被躁到高潮嗷嗷叫费观| 在线永久观看黄色视频| 久久久国产精品麻豆| 国产精品久久视频播放| av福利片在线| 色av中文字幕| 国产精品亚洲av一区麻豆| 女人被狂操c到高潮| 日本撒尿小便嘘嘘汇集6| 亚洲国产精品久久男人天堂| 国产精品野战在线观看| 国产精品1区2区在线观看.| 日韩精品青青久久久久久| 久久天堂一区二区三区四区| 国产亚洲精品久久久久5区| 成年人黄色毛片网站| 成人亚洲精品av一区二区| 看片在线看免费视频| 一级黄色大片毛片| 亚洲欧美日韩无卡精品| 久久香蕉国产精品| 视频在线观看一区二区三区| 国产aⅴ精品一区二区三区波| 亚洲国产高清在线一区二区三 | or卡值多少钱| 少妇的丰满在线观看| 757午夜福利合集在线观看| 久热这里只有精品99| 亚洲精品久久国产高清桃花| 最近最新中文字幕大全电影3 | 国产三级在线视频| 搡老妇女老女人老熟妇| 亚洲av电影不卡..在线观看| 黑人巨大精品欧美一区二区mp4| 国产精品二区激情视频| 国产精品美女特级片免费视频播放器 | 每晚都被弄得嗷嗷叫到高潮| 久久久久久久午夜电影| 首页视频小说图片口味搜索| 欧美激情久久久久久爽电影 | 波多野结衣巨乳人妻| 涩涩av久久男人的天堂| 男女下面插进去视频免费观看| 成人18禁在线播放| 日本黄色视频三级网站网址| 变态另类丝袜制服| 欧美色欧美亚洲另类二区 | 久久午夜亚洲精品久久| 真人做人爱边吃奶动态| 国产男靠女视频免费网站| 两个人视频免费观看高清| 成人18禁在线播放| 亚洲国产欧美日韩在线播放| 成在线人永久免费视频| 可以免费在线观看a视频的电影网站| 美女国产高潮福利片在线看| 久久中文看片网| 午夜精品久久久久久毛片777| 欧美日本视频| 久久狼人影院| 亚洲五月婷婷丁香| 男男h啪啪无遮挡| 欧美av亚洲av综合av国产av| 一个人观看的视频www高清免费观看 | 中文亚洲av片在线观看爽| 国产一区二区三区综合在线观看| 很黄的视频免费| 欧美日韩瑟瑟在线播放| 久久精品国产清高在天天线| 精品熟女少妇八av免费久了| 一本综合久久免费| 一区二区日韩欧美中文字幕| 亚洲成av人片免费观看| 9191精品国产免费久久| 在线观看免费视频网站a站| 国产精华一区二区三区| 精品高清国产在线一区| 亚洲国产精品sss在线观看| 免费搜索国产男女视频| 国内精品久久久久精免费| 亚洲精品在线观看二区| cao死你这个sao货| 淫妇啪啪啪对白视频| 亚洲少妇的诱惑av| 最近最新免费中文字幕在线| 脱女人内裤的视频| 天天躁狠狠躁夜夜躁狠狠躁| av超薄肉色丝袜交足视频| 脱女人内裤的视频| 亚洲国产精品999在线| 一边摸一边抽搐一进一小说| 日日夜夜操网爽| 亚洲成人精品中文字幕电影| 久久精品成人免费网站| 亚洲第一欧美日韩一区二区三区| 国产精品国产高清国产av| 久久中文看片网| 老司机午夜十八禁免费视频| 亚洲专区国产一区二区| 国产亚洲欧美在线一区二区| 色av中文字幕| 每晚都被弄得嗷嗷叫到高潮| 男女之事视频高清在线观看| 久久影院123| 亚洲av成人不卡在线观看播放网| 老鸭窝网址在线观看| 淫妇啪啪啪对白视频| 色在线成人网| 视频在线观看一区二区三区| 午夜日韩欧美国产| 婷婷六月久久综合丁香| 在线观看免费午夜福利视频| 岛国在线观看网站| 天堂√8在线中文| 久久久久国产一级毛片高清牌| 亚洲欧美日韩另类电影网站| 色综合站精品国产| 女警被强在线播放| 一级毛片女人18水好多| 无遮挡黄片免费观看| 久久久国产精品麻豆| e午夜精品久久久久久久| 久热爱精品视频在线9| 亚洲成人国产一区在线观看| aaaaa片日本免费| 亚洲专区国产一区二区| 国产一区二区三区在线臀色熟女| 级片在线观看| 涩涩av久久男人的天堂| 一区二区三区精品91| 亚洲一区二区三区不卡视频| 亚洲视频免费观看视频| 精品无人区乱码1区二区| 久热爱精品视频在线9| 久久精品人人爽人人爽视色| 国内久久婷婷六月综合欲色啪| 国产精品1区2区在线观看.| 搡老岳熟女国产| 一进一出抽搐gif免费好疼| 亚洲一区二区三区色噜噜| 黑丝袜美女国产一区| 如日韩欧美国产精品一区二区三区| 黄色丝袜av网址大全| 亚洲人成网站在线播放欧美日韩| 男女床上黄色一级片免费看| 一区二区三区精品91| 亚洲情色 制服丝袜| 日韩精品中文字幕看吧| 国产av一区二区精品久久| 亚洲五月婷婷丁香| 色播在线永久视频| 成人av一区二区三区在线看| 精品人妻在线不人妻| 99国产综合亚洲精品| bbb黄色大片| 在线国产一区二区在线| 亚洲精品一区av在线观看| 国产精品爽爽va在线观看网站 | 女性生殖器流出的白浆| 国产国语露脸激情在线看| netflix在线观看网站| 日韩成人在线观看一区二区三区| 亚洲av熟女| 亚洲国产精品久久男人天堂| 精品少妇一区二区三区视频日本电影| 国产91精品成人一区二区三区| 久9热在线精品视频| 看黄色毛片网站| 久久人人精品亚洲av| 久久精品国产亚洲av高清一级| 亚洲男人的天堂狠狠| 久久香蕉精品热| 啦啦啦 在线观看视频| 三级毛片av免费| 757午夜福利合集在线观看| 国产亚洲欧美在线一区二区| 制服人妻中文乱码| 久久国产精品男人的天堂亚洲| 在线观看日韩欧美| 黄色成人免费大全| 国产伦人伦偷精品视频| 一级毛片精品| 18禁国产床啪视频网站| 色综合欧美亚洲国产小说| 999久久久国产精品视频| 18禁裸乳无遮挡免费网站照片 | 不卡一级毛片| 一级片免费观看大全| 看黄色毛片网站| 中文字幕人妻丝袜一区二区| 日本三级黄在线观看| 欧美日本亚洲视频在线播放| 在线观看日韩欧美| 亚洲成人免费电影在线观看| 99国产精品一区二区蜜桃av| 欧美日本视频| 19禁男女啪啪无遮挡网站| 午夜久久久久精精品| 欧美在线黄色| 性少妇av在线| 老司机靠b影院| 在线观看午夜福利视频| 757午夜福利合集在线观看| 久久久精品欧美日韩精品| 欧美一级a爱片免费观看看 | 99re在线观看精品视频| 日本vs欧美在线观看视频| 欧美日韩黄片免| 欧美成人性av电影在线观看| 亚洲 欧美一区二区三区| 国产高清激情床上av| 亚洲欧美激情综合另类| 亚洲精品在线美女| 亚洲七黄色美女视频| 免费一级毛片在线播放高清视频 | 国产av一区在线观看免费| 乱人伦中国视频| www.www免费av| 国产精品亚洲美女久久久| 一二三四社区在线视频社区8| 可以免费在线观看a视频的电影网站| 12—13女人毛片做爰片一| 夜夜爽天天搞| 99久久99久久久精品蜜桃| 国产91精品成人一区二区三区| 成人国语在线视频| 搞女人的毛片| 18禁观看日本| 久久婷婷成人综合色麻豆| 天天添夜夜摸| 成人三级做爰电影| 久久香蕉精品热| 欧美日韩中文字幕国产精品一区二区三区 | 久久精品国产清高在天天线| 国产成人影院久久av| www.精华液| 色老头精品视频在线观看| 国产高清激情床上av| 亚洲黑人精品在线| 可以免费在线观看a视频的电影网站| 亚洲av片天天在线观看| 涩涩av久久男人的天堂| 久久久久久久精品吃奶| 午夜成年电影在线免费观看| 黄网站色视频无遮挡免费观看| 久久精品影院6| 很黄的视频免费| 欧美精品啪啪一区二区三区| 精品人妻在线不人妻| 真人一进一出gif抽搐免费| 国产亚洲精品综合一区在线观看 | 欧美色视频一区免费| 欧美精品亚洲一区二区| 免费观看人在逋| 99国产精品99久久久久| 国产成年人精品一区二区| 免费久久久久久久精品成人欧美视频| 免费看a级黄色片| 中文字幕人妻熟女乱码| 亚洲电影在线观看av| 男女下面插进去视频免费观看| 国产亚洲精品av在线| 国产欧美日韩精品亚洲av| 精品第一国产精品| 国产一卡二卡三卡精品| 亚洲欧洲精品一区二区精品久久久| 婷婷六月久久综合丁香| 午夜成年电影在线免费观看| 久久亚洲精品不卡| 亚洲国产精品久久男人天堂| 日本 av在线| 欧美另类亚洲清纯唯美| 啦啦啦免费观看视频1| 中出人妻视频一区二区| 啦啦啦免费观看视频1| 久久久久国产一级毛片高清牌| 久久久国产欧美日韩av| 极品人妻少妇av视频| 久久人人97超碰香蕉20202| 国产精品美女特级片免费视频播放器 | 色播亚洲综合网| 又黄又粗又硬又大视频| 日本免费a在线| 久久精品亚洲精品国产色婷小说| 欧美日韩乱码在线| 日韩国内少妇激情av| 免费看美女性在线毛片视频| 中文字幕精品免费在线观看视频| 免费观看人在逋| 亚洲自偷自拍图片 自拍| 日韩欧美免费精品| 亚洲自偷自拍图片 自拍| 免费女性裸体啪啪无遮挡网站| 国产成+人综合+亚洲专区| 香蕉丝袜av| 亚洲自偷自拍图片 自拍| 精品免费久久久久久久清纯| 两性午夜刺激爽爽歪歪视频在线观看 | 91成人精品电影| 操美女的视频在线观看| 亚洲自拍偷在线| 老司机午夜十八禁免费视频| 日韩中文字幕欧美一区二区| 国产av一区二区精品久久| 人人妻人人爽人人添夜夜欢视频| 国产麻豆成人av免费视频| 欧美国产精品va在线观看不卡| 男女做爰动态图高潮gif福利片 | 首页视频小说图片口味搜索| 身体一侧抽搐| 人成视频在线观看免费观看| 亚洲国产欧美网| 深夜精品福利| 亚洲国产中文字幕在线视频| 亚洲伊人色综图| 禁无遮挡网站| 9热在线视频观看99| 成在线人永久免费视频| 国产精品 欧美亚洲| 亚洲精品国产色婷婷电影| 色在线成人网| 非洲黑人性xxxx精品又粗又长| 777久久人妻少妇嫩草av网站| 90打野战视频偷拍视频| 国产97色在线日韩免费| 日韩免费av在线播放| 男女之事视频高清在线观看| 精品国产国语对白av| 亚洲av电影在线进入| 成人精品一区二区免费| 欧美激情极品国产一区二区三区| 亚洲欧美精品综合久久99| 亚洲精品在线观看二区| 精品一区二区三区四区五区乱码| 久久久久久免费高清国产稀缺| 久久精品91无色码中文字幕| 怎么达到女性高潮| 一二三四在线观看免费中文在| 国产伦人伦偷精品视频| 中文字幕av电影在线播放| 色综合亚洲欧美另类图片| 亚洲国产中文字幕在线视频| 免费看a级黄色片| 欧美人与性动交α欧美精品济南到| 激情在线观看视频在线高清| 久久人妻福利社区极品人妻图片| 国产99久久九九免费精品| 久久天堂一区二区三区四区| svipshipincom国产片| av中文乱码字幕在线| 后天国语完整版免费观看| 妹子高潮喷水视频| 午夜免费激情av| 女同久久另类99精品国产91| 欧美av亚洲av综合av国产av| 免费高清视频大片| 欧美国产日韩亚洲一区| 日本欧美视频一区| 又大又爽又粗| 国产精品乱码一区二三区的特点 | 中文字幕av电影在线播放| 天天添夜夜摸| 精品福利观看| 午夜精品在线福利| 男女午夜视频在线观看| √禁漫天堂资源中文www| 亚洲男人天堂网一区| 国产精品电影一区二区三区| av在线天堂中文字幕| 欧美激情久久久久久爽电影 | 国产精品影院久久| 校园春色视频在线观看| 黄片小视频在线播放| 99精品在免费线老司机午夜| 日本免费a在线| 黄色成人免费大全| 别揉我奶头~嗯~啊~动态视频| 99国产极品粉嫩在线观看| 成人亚洲精品av一区二区| 国产精品免费一区二区三区在线| 热re99久久国产66热| а√天堂www在线а√下载| 女同久久另类99精品国产91| 18禁黄网站禁片午夜丰满| 国产成人系列免费观看| 久久午夜综合久久蜜桃| 视频区欧美日本亚洲| 亚洲最大成人中文| 嫁个100分男人电影在线观看| 国产99白浆流出| 国产亚洲av高清不卡| 999精品在线视频| 他把我摸到了高潮在线观看| 色尼玛亚洲综合影院| 午夜福利欧美成人| 国产精品久久电影中文字幕| 国产真人三级小视频在线观看| 无人区码免费观看不卡| 日韩精品青青久久久久久| 99香蕉大伊视频| 国产欧美日韩一区二区三区在线| 亚洲一卡2卡3卡4卡5卡精品中文| 国产午夜福利久久久久久| 午夜福利视频1000在线观看 | 一二三四社区在线视频社区8| 黑人欧美特级aaaaaa片| 国产精品免费一区二区三区在线| 9色porny在线观看| 亚洲av美国av| 精品久久久久久久久久免费视频| 国产不卡一卡二| 欧美黄色淫秽网站| 99国产极品粉嫩在线观看| 18禁黄网站禁片午夜丰满| 国产高清视频在线播放一区| 如日韩欧美国产精品一区二区三区| 在线观看www视频免费| 亚洲五月婷婷丁香| 亚洲国产高清在线一区二区三 | 国产精品自产拍在线观看55亚洲| 亚洲av片天天在线观看| 亚洲人成77777在线视频| 久久久久久久久中文| 久久精品人人爽人人爽视色| 精品高清国产在线一区| 90打野战视频偷拍视频| 色综合婷婷激情| 成人亚洲精品一区在线观看| 中文字幕高清在线视频| 亚洲人成77777在线视频| 咕卡用的链子| 黄色视频,在线免费观看| 国产伦一二天堂av在线观看| 精品免费久久久久久久清纯| 欧美激情久久久久久爽电影 | 侵犯人妻中文字幕一二三四区| 亚洲五月天丁香| 国产亚洲精品久久久久久毛片| 欧美成狂野欧美在线观看| 国产野战对白在线观看| 国产日韩一区二区三区精品不卡| 久久中文字幕一级| 动漫黄色视频在线观看| 欧美丝袜亚洲另类 | 精品一品国产午夜福利视频| 久久青草综合色| 国产高清有码在线观看视频 | 麻豆一二三区av精品| 免费搜索国产男女视频| 久久人人97超碰香蕉20202| 午夜成年电影在线免费观看| 午夜福利免费观看在线| 黑人巨大精品欧美一区二区mp4| 在线永久观看黄色视频| 精品午夜福利视频在线观看一区| 亚洲成人精品中文字幕电影| 欧美成人免费av一区二区三区| 亚洲成人精品中文字幕电影| 人妻久久中文字幕网| 一区二区日韩欧美中文字幕| 久久久久精品国产欧美久久久| 18禁国产床啪视频网站| 人人澡人人妻人| 亚洲精品国产精品久久久不卡| 在线国产一区二区在线| 少妇裸体淫交视频免费看高清 | 亚洲熟妇熟女久久| 亚洲精品av麻豆狂野| 国产精品爽爽va在线观看网站 | 亚洲在线自拍视频| 在线天堂中文资源库| 丝袜美足系列| 欧美日韩乱码在线| 精品福利观看| 国产精华一区二区三区| 欧美一区二区精品小视频在线| 很黄的视频免费| 亚洲第一av免费看| 国产激情久久老熟女| 他把我摸到了高潮在线观看| 精品一区二区三区av网在线观看| 女生性感内裤真人,穿戴方法视频| 91在线观看av| 高清黄色对白视频在线免费看| 麻豆成人av在线观看| e午夜精品久久久久久久| 欧美黑人欧美精品刺激| 欧美激情久久久久久爽电影 | av欧美777| 亚洲av片天天在线观看| 91国产中文字幕| 精品国产一区二区三区四区第35| 国产激情欧美一区二区| 午夜福利在线观看吧| 人人妻,人人澡人人爽秒播| 级片在线观看| 久久人妻熟女aⅴ| ponron亚洲| 级片在线观看| 亚洲欧美一区二区三区黑人| 纯流量卡能插随身wifi吗| 黄色丝袜av网址大全| 欧美日韩乱码在线| 一进一出抽搐gif免费好疼| 高清在线国产一区| 国产伦人伦偷精品视频| 18禁观看日本| 国产日韩一区二区三区精品不卡| 狠狠狠狠99中文字幕| 日韩免费av在线播放| av天堂久久9| 国产高清有码在线观看视频 | 中文字幕精品免费在线观看视频| av福利片在线| 18禁国产床啪视频网站| 亚洲国产精品合色在线| 非洲黑人性xxxx精品又粗又长| 欧美黄色片欧美黄色片| 欧美不卡视频在线免费观看 | 操出白浆在线播放| 午夜免费观看网址| 757午夜福利合集在线观看| 精品国产一区二区久久| 男女床上黄色一级片免费看| 国产乱人伦免费视频| 亚洲免费av在线视频| 变态另类丝袜制服| 亚洲人成网站在线播放欧美日韩| 自拍欧美九色日韩亚洲蝌蚪91| 一个人免费在线观看的高清视频| 亚洲精品中文字幕在线视频| 色av中文字幕| 国产精品av久久久久免费|