• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A novel L-vector representation and improvedcosine distance kernel for Text-dependentSpeaker Verification

    2016-05-27 01:42:44LIWeiYOUHanxuZHUJieCHENNing
    關(guān)鍵詞:向量

    LI Wei, YOU Hanxu, ZHU Jie, CHEN Ning

    (1.School of Electronic Information and Electical Engineering,Shanghai Jiao Tong University,Shanghai 200240,China; 2.School of Information Science and Engineering,East China University of Science and Technology,Shanghai 200237,China)

    ?

    A novel L-vector representation and improvedcosine distance kernel for Text-dependentSpeaker Verification

    LI Wei1, YOU Hanxu1, ZHU Jie1, CHEN Ning2

    (1.School of Electronic Information and Electical Engineering,Shanghai Jiao Tong University,Shanghai 200240,China; 2.School of Information Science and Engineering,East China University of Science and Technology,Shanghai 200237,China)

    Abstract:A text-dependent i-vector extraction scheme and a lexicon-based binary vector (L-vector) representation are proposed to improve the performance of text-dependent speaker verification.An utterance used for enrollment or test is represented by these two vectors.An improved cosine distance kernel combining i-vector and L-vector is constructed to discriminate both speaker identity and lexical (or text) diversity with back-end support vector machine(SVM).Experiments are conducted on RSR 2015 Corpus part 1 and part 2.The results indicate that at most 30% improvement can be obtained compared with traditional i-vector baseline.

    Key words:text-dependent speaker verification; i-vector; L-vector; cosine distance kernel

    1Introduction

    In recent years,i-vector based framework has demonstrated state-of-the-art performance in text-independent speaker verification[1].Each utterance either for enrollment or test is projected onto a low rank total factor space,and is represented by a low dimensional identity vector termed i-vector.It is commonly thought that i-vector well captures speaker- and channel- dependent information in an utterance,also it represents a global adaptation in Gaussian Mixture Model (GMM) subspace.However its applicability has not been widely accepted in text-dependent speaker verification[2]mainly due to two reasons.Firstly,i-vector cannot explicitly represent the lexical information of an utterance.Secondly,since the duration of utterance is very short in text-dependent speaker verification,short-term speaker features,like Mel Frequency Cepstrum Coefficient (MFCC) or Perceptual Linear Predictive (PLP),can only activate a subset of total Gaussian components,hence it is not appropriate to globally adapt all the Gaussian components.

    To cope with these two shortcomings,firstly,we propose a text-dependent i-vector extraction scheme,only those Gaussian components with sufficient speaker frames are retained based on this scheme,and i-vector adaptation is performed based on this subset.Secondly,a lexicon-based binary vector termed L-vector is constructed to model the distribution of zero order Baum-Welch statistics,which can capture lexical information in an utterance.Finally,an improved cosine distance kernel is constructed,which combines i-vector and L-vector,to measure the diversity of both speaker identity and lexical (or text) content.

    2Text-dependent i-vector extraction

    Given the speaker frame set of an utterance,we regard corresponding zero order Baum-Welch statisticsNcas a metric to measure how many frames are assigned to each Gaussian component,wherecindexes each Gaussian component.According to[3],extremely short utterance (less than 10 s) leads to an imbalanced distribution of zero order Baum-Welch statistics,we can use 50% of total Gaussian components with highestNcto capture more than 90% speaker frames.In text-dependent speaker verification,enrollment or test utterance is also very short,moreover,scarceNcmay lead to biased estimation of first order Baum-Welch statisticsFc[3],hence it is more appropriate to perform i-vector adaptation within a subset of total Gaussian components.

    In order to select those Gaussian components with highestNc,a threshold function is defined as:

    (1)

    Whereεis an empirically tuned factor to adjust the number of Gaussian components to be retained.By this filter scheme,we can select a subset of Gaussian components with highestNc.In real application,we usually pay more attention to the number of Gaussians in the subset,which we denote byR.The text-dependent i-vector extraction can be written as:

    (2)

    where udenotestheutteranceinvolved,Iistheidentitymatrixasaprior,Tcisthesub-matrixofthec-thblockoftotalfactormatrixT,Tcandmcarethespeaker-andtext-independentcovariancematrixandmeanvectorforc-thGaussiancomponent,CisthenumberoftotalGaussiancomponents.Comparedtotraditionali-vectorextraction[4],theS(c)filteringmechanismensurethatonlythosecomponentsrepresentinglexicalinformationofutteranceinvolveinadaptation.

    3Lexicon-basedL-vector

    Althoughourimprovedi-vectorcanberegardedasatext-dependentlocalrepresentationinGMMspace,itaimstodiscriminatespeakeridentityandcannotwelldiscriminatelexicaldiversity.Alexicon-basedbinaryvectortermedL-vectorisconstructedforthispurpose.

    UtilizingthesameS(c)in(1),L-vectorcanbewrittenas:

    (3)

    wherethesubscriptindexesGaussiancomponent,thenumberof1sinLisequaltoR,thedimensionalityofL-vectorisequaltothenumberoftotalGaussiancomponentsC.L-vectorrepresentswhichGaussiancomponentisactivatedgivenatrainingutterance,anditencodeslexicalinformationinutterance.

    4Improvedcosinedistancekernel

    Givenanenrollmentutteranceu1andatestutteranceu2,correspondingspeakermodelsλcanberepresentedas:

    (4)

    Tocalculatethesimilaritybetweenu1andu2,theimprovedcosinedistancekernelcanbewrittenas:

    (5)

    5Experiments and results

    All experiments were carried out on part 1 and part 2 of the Robust Speaker Recognition 2015 (RSR 2015) corpus set[5-6],which is designed for text-dependent speaker recognition with scenario based on fixed pass-phrases (part 1) and fixed commands (part 2).It contains audio recordings from 300 people,which include 143 female and 157 male speakers that are between 17 to 42 years old,and the whole set is divided into background (bkg),development (dev) and evaluation (eval) subsets.Among the 300 people,50 male and 47 female speakers are in the background set,50/47 in the development set and 57/49 in the evaluation set.

    Our experiments applied MFCC (19 order coefficients together with log energy) as short-term speaker feature,with speech/silence segmentation performed according to an energy-based voice activity detection (VAD).The length of Hamming window was 25ms with 10ms shift.The 20-dimensional feature vector was normalized by cepstral mean subtraction (CMS),20 first orderδand 10 second orderδwere appended,equal to a total dimension of 50.

    512 order gender dependent universal background models (UBM) were trained with bkg corpus set.Gender dependent total factor matrixes with rank of 300 were trained with the mixture of bkg and dev corpus sets.In the back-end support vector machine (SVM) classification system,the speaker modelsλextracted from bkg corpus set were used as imposter models to train the SVM system.Linear discriminant analysis (LDA) was applied as channel compensation technique before SVM training.LDA was estimated with the mixture of bkg and dev corpus sets.In our experiments,the optimal LDA dimension is 260.The eval set was used to evaluate system performance.Evaluations on part 1 and part 2 were independent and corpus sets between part 1 and part 2 were not overlapped.Two types of trials,i.e.CLIENT-wrong (given that the test utterance is spoken by the target user with wrong pass-phrase) and IMP-true (given that the test utterance is spoken by an imposter with the correct pass-phrase) of the evaluations described in[6]were used in our experiment.As we have mentioned in the previous section,the only parameter has to be empirically tuned in our system isR,Rranges from 512~350.

    Results were given in terms of equal error rate (EER) and decision cost function (DCF).Table 1 and 2 present the results of traditional text-independent i-vector baseline system and our lexicon-based text-dependent i-vector system.

    The results in both Table 1 and Table 2 show that as the value ofRdecreases from 512~430 (for CLIENT-wrong) or 450 (for IMP-TRUE),the system gains a significant performance improvement.In the CLIENT-wrong trials,best improvement is obtained whenRis set to 430,our lexicon-based text-dependent i-vector system achieves a relative improvement of 26% in part 1 and 28% in part 2 on male trials as well as 30% in part 1 and 20% in part 2 on female trials.In the IMP-TRUE trials,as the lexical contents of target speaker and imposter speaker are identical,our lexicon-based text-dependent i-vector system gains less significant improvement,best improvement is obtained whenRis set to 450,which achieves a relative improvement of 9.7% in part 1 and 9.5% in part 2 on male trials as well as 15% in part 1 and 10.9% in part 2 on female trials.In real application,settingRto 430 can obtain a global optimal performance in our text-dependent i-vector system.

    6Conclusion

    We have proposed a lexicon-based local representation algorithm for text-dependenti-vector speaker verification system.A subset of total Gaussian components is selected,which is most relevant to lexicon information.Text-dependent i-vector for either enrollment utterance or test utterance is extracted based on this subset.Moreover,a lexicon-based L-vector is constructed to discriminate lexical diversity.An improved cosine kernel is designed to measure the similarity of both speaker identity and lexical content between two utterances.Experimental results show that at most 30% improvement in EER can be obtained compared to traditional text-independent i-vector system.Given that our system now still highly depend on the empirical valueR,our future work will focus on adaptive approach for tuningRautomatically from speaker data.

    References:

    [1]Dehak N,Kenny P,Dehak R,et al.Front-end factor analysis for speaker verification [J].Audio,Speech,and Language Processing,IEEE Transactions on,2011,19(4):788-798.

    [2]Aronowitz H.Text dependent speaker verification using a small development set[C]//Odyssey.The Speaker and Language Recognition Workshop.ISCA:Singapore,2012.

    [3]Li W,Fu T F,Zhu J,et al.Sparsity Analysis and Compensation fori-Vector Based Speaker Verification[M]//Ronzhin A,Potapova R,Fakotakis N.Speech and Computer.Berlin:Springer International Publishing,2015:381-388.

    [4]Kenny P,Boulianne G,Dumouchel P.Eigenvoice modeling with sparse training data [J].Speech and Audio Processing,IEEE Transactions on,2005,13(3):345-354.

    [5]Larcher A,Lee K A,Ma B,et al.Phonetically-constrained PLDA modeling for text-dependent speaker verification with multiple short utterances[C]//IEEE.Acoustics Speech and Signal Processing (ICASSP) 2013 IEEE International Conference on.IEEE,Vancouer,2013:7673-7677.

    [6]Larcher A,Lee K A,Ma B,et al.RSR2015:Database for Text-Dependent Speaker Verification using Multiple Pass-Phrases[C]//Institute for Information Research.Interspeech.IZR:Singapore,2012.

    (責(zé)任編輯:包震宇)

    一種應(yīng)用于文本相關(guān)說話人確認(rèn)的L-向量表示和改進(jìn)的余弦距離核函數(shù)

    李為1, 游寒旭1, 朱杰1, 陳寧2

    (1.上海交通大學(xué) 電子信息與電氣工程學(xué)院,上海 200240;2.華東理工大學(xué) 信息科學(xué)與工程學(xué)院,上海 200237)

    關(guān)鍵詞:文本相關(guān)說話人識別; i-向量; L-向量; 余弦核函數(shù)

    摘要:提出了一種用于文本相關(guān)說說話人確認(rèn)技術(shù)的i-向量提取方法和L-向量表示.一段用于注冊或識別的語音可以用i-向量和L-向量聯(lián)合表示.同時(shí)提出了一種改進(jìn)的用于支持向量機(jī)(SVM)后端分類的核函數(shù),改進(jìn)的核函數(shù)可以同時(shí)區(qū)分說話人身份的差異和文本內(nèi)容的差異.在RSR 2015語料集合1和集合2上驗(yàn)證系統(tǒng)的性能,實(shí)驗(yàn)結(jié)果顯示改進(jìn)的算法相對于傳統(tǒng)的i-向量系統(tǒng)的基線能提高至多30%的識別率.

    CLC number:TP 912.3

    Document code:AArticle ID: 1000-5137(2016)02-0243-05

    Received date:2016-02-29

    Foundation item:This work was supported by the National Natural Science Foundation of China (NSFC) under Grant (61271349,61371147,11433002),and Shanghai Jiao Tong University joint research fund for Biomedical Engineering under (YG2012ZD04).

    Corresponding author:ZHU Jie,School of Electronic Information and Electical Engineering,Shanghai Jiao Tong University,No.800,Dongchuan Rd.,Shanghai 200240,China,E-mail:zhujie@sjtu.edu.cn

    猜你喜歡
    向量
    空間向量的應(yīng)用A卷
    空間向量的應(yīng)用B卷
    向量應(yīng)用及小結(jié)復(fù)習(xí)A卷
    向量的分解
    向量的共線
    向量的平行與垂直
    聚焦“向量與三角”創(chuàng)新題
    一道向量題的多解與多變
    向量垂直在解析幾何中的應(yīng)用
    向量五種“變身” 玩轉(zhuǎn)圓錐曲線
    97超级碰碰碰精品色视频在线观看| 亚洲一区二区三区不卡视频| 一个人看视频在线观看www免费| 国产精品综合久久久久久久免费| 88av欧美| 欧美xxxx黑人xx丫x性爽| 免费看日本二区| 看黄色毛片网站| 国产一区二区三区视频了| 亚洲片人在线观看| 国产精品久久久久久人妻精品电影| 在线看三级毛片| 丁香六月欧美| 91字幕亚洲| 男女床上黄色一级片免费看| 亚洲av免费高清在线观看| 亚洲第一电影网av| 亚洲av二区三区四区| 久久国产乱子免费精品| 51午夜福利影视在线观看| 精品人妻熟女av久视频| 脱女人内裤的视频| ponron亚洲| 国产成年人精品一区二区| 18美女黄网站色大片免费观看| 校园春色视频在线观看| 波野结衣二区三区在线| 久久精品国产清高在天天线| 久久午夜福利片| 99热这里只有精品一区| 国内精品一区二区在线观看| 最新中文字幕久久久久| 天美传媒精品一区二区| 欧洲精品卡2卡3卡4卡5卡区| 亚洲经典国产精华液单 | 中文字幕免费在线视频6| 欧美+日韩+精品| av天堂在线播放| 亚洲无线在线观看| 成年免费大片在线观看| 欧美日韩瑟瑟在线播放| 国产伦精品一区二区三区视频9| 日日干狠狠操夜夜爽| 成人鲁丝片一二三区免费| 99久久99久久久精品蜜桃| 好男人电影高清在线观看| 九色成人免费人妻av| 午夜精品在线福利| 淫妇啪啪啪对白视频| 女同久久另类99精品国产91| 美女黄网站色视频| av女优亚洲男人天堂| 欧美一级a爱片免费观看看| 亚洲第一区二区三区不卡| 在线免费观看的www视频| www.www免费av| 99久久成人亚洲精品观看| 一级黄色大片毛片| 亚洲国产欧洲综合997久久,| 51国产日韩欧美| 真人做人爱边吃奶动态| 无遮挡黄片免费观看| 美女xxoo啪啪120秒动态图 | 免费高清视频大片| 国产视频内射| 757午夜福利合集在线观看| 美女大奶头视频| 搡老妇女老女人老熟妇| 亚洲精品乱码久久久v下载方式| 白带黄色成豆腐渣| 丰满人妻一区二区三区视频av| 久久久久国内视频| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 极品教师在线免费播放| 亚洲久久久久久中文字幕| 亚洲av二区三区四区| 99久久精品热视频| 国产欧美日韩一区二区精品| 在线国产一区二区在线| 深夜a级毛片| 69人妻影院| 成年女人毛片免费观看观看9| 一个人看视频在线观看www免费| 精华霜和精华液先用哪个| 成人午夜高清在线视频| 内地一区二区视频在线| 免费av不卡在线播放| 黄色女人牲交| 一本一本综合久久| 亚洲成av人片在线播放无| 午夜免费成人在线视频| 欧美zozozo另类| 国产精品永久免费网站| 我的老师免费观看完整版| АⅤ资源中文在线天堂| 夜夜夜夜夜久久久久| 久久精品国产亚洲av涩爱 | 亚洲在线自拍视频| 国产精品影院久久| 69人妻影院| 亚洲七黄色美女视频| 蜜桃亚洲精品一区二区三区| 国产老妇女一区| 美女黄网站色视频| 免费在线观看亚洲国产| 伦理电影大哥的女人| 久久久成人免费电影| 男人的好看免费观看在线视频| 十八禁国产超污无遮挡网站| 嫩草影视91久久| 国内毛片毛片毛片毛片毛片| 天堂影院成人在线观看| 日本免费一区二区三区高清不卡| 最近中文字幕高清免费大全6 | 人妻丰满熟妇av一区二区三区| 12—13女人毛片做爰片一| 丰满乱子伦码专区| 色视频www国产| 人妻制服诱惑在线中文字幕| 久久精品国产亚洲av香蕉五月| 男插女下体视频免费在线播放| 久久久精品大字幕| 少妇人妻一区二区三区视频| 桃红色精品国产亚洲av| 欧美高清成人免费视频www| 日韩欧美精品v在线| 色播亚洲综合网| 级片在线观看| 国产一区二区三区视频了| 久久精品综合一区二区三区| 欧美日韩亚洲国产一区二区在线观看| 国产精品一区二区性色av| 国产精品三级大全| 久久精品国产99精品国产亚洲性色| 黄色配什么色好看| 久久久久久久久大av| 在现免费观看毛片| 老司机深夜福利视频在线观看| 久久精品夜夜夜夜夜久久蜜豆| 性色avwww在线观看| 高潮久久久久久久久久久不卡| 日韩精品青青久久久久久| www.色视频.com| 九九久久精品国产亚洲av麻豆| 国产探花极品一区二区| 亚洲精品一卡2卡三卡4卡5卡| 久久热精品热| 色噜噜av男人的天堂激情| 琪琪午夜伦伦电影理论片6080| 最近最新免费中文字幕在线| 成年免费大片在线观看| 国产欧美日韩精品一区二区| h日本视频在线播放| 午夜福利欧美成人| 国产精品自产拍在线观看55亚洲| 1024手机看黄色片| 精品久久久久久久久久久久久| 免费看光身美女| 久久久久亚洲av毛片大全| 亚洲熟妇中文字幕五十中出| 18禁裸乳无遮挡免费网站照片| 内地一区二区视频在线| 成人av一区二区三区在线看| 91久久精品国产一区二区成人| av在线老鸭窝| 丁香欧美五月| 简卡轻食公司| 麻豆成人av在线观看| 亚洲内射少妇av| 国产69精品久久久久777片| 变态另类成人亚洲欧美熟女| 女生性感内裤真人,穿戴方法视频| 国产精品久久久久久久久免 | 美女黄网站色视频| 非洲黑人性xxxx精品又粗又长| 又黄又爽又免费观看的视频| 精品久久久久久久久av| www.熟女人妻精品国产| 最好的美女福利视频网| 成年人黄色毛片网站| 人人妻人人看人人澡| 少妇被粗大猛烈的视频| 免费观看的影片在线观看| 一卡2卡三卡四卡精品乱码亚洲| 中文亚洲av片在线观看爽| 久久精品夜夜夜夜夜久久蜜豆| 性色av乱码一区二区三区2| 乱码一卡2卡4卡精品| 99国产极品粉嫩在线观看| 日本 欧美在线| 亚洲av中文字字幕乱码综合| 免费电影在线观看免费观看| 夜夜夜夜夜久久久久| 在线观看免费视频日本深夜| 少妇裸体淫交视频免费看高清| 国产在视频线在精品| 午夜福利高清视频| 欧美激情在线99| 99精品在免费线老司机午夜| 国产蜜桃级精品一区二区三区| 成人av在线播放网站| 两性午夜刺激爽爽歪歪视频在线观看| 国产三级黄色录像| 久久国产精品人妻蜜桃| 男女下面进入的视频免费午夜| 久久久国产成人免费| 亚洲欧美日韩东京热| 亚洲18禁久久av| 亚洲精品456在线播放app | 国产私拍福利视频在线观看| 国产v大片淫在线免费观看| 身体一侧抽搐| 亚洲精华国产精华精| 丁香六月欧美| 欧美黄色片欧美黄色片| 校园春色视频在线观看| 午夜影院日韩av| 美女cb高潮喷水在线观看| 欧美日韩国产亚洲二区| 国产成人福利小说| 中文字幕人妻熟人妻熟丝袜美| 国产精品影院久久| 一级作爱视频免费观看| 午夜两性在线视频| 亚洲黑人精品在线| 欧美高清成人免费视频www| 亚洲av.av天堂| 夜夜夜夜夜久久久久| 亚洲电影在线观看av| 一夜夜www| 国产色婷婷99| 亚洲av.av天堂| 国产亚洲欧美98| 国产午夜福利久久久久久| 51午夜福利影视在线观看| av专区在线播放| 久久精品国产亚洲av香蕉五月| 亚洲人成伊人成综合网2020| 91久久精品电影网| 丝袜美腿在线中文| 亚洲,欧美,日韩| 色吧在线观看| 午夜福利免费观看在线| 亚洲av美国av| 久久精品国产99精品国产亚洲性色| 日本黄大片高清| 国产高清有码在线观看视频| netflix在线观看网站| 亚洲,欧美精品.| 久久久国产成人精品二区| 亚洲精品在线美女| 岛国在线免费视频观看| 人人妻人人看人人澡| 美女黄网站色视频| www.熟女人妻精品国产| 午夜a级毛片| 午夜精品久久久久久毛片777| 亚洲av五月六月丁香网| 日日干狠狠操夜夜爽| 成人精品一区二区免费| 免费高清视频大片| 老女人水多毛片| 精品久久久久久久久亚洲 | 99久久99久久久精品蜜桃| 亚洲av美国av| 国产精品永久免费网站| 一区福利在线观看| 成年女人毛片免费观看观看9| 久久热精品热| 亚洲精品久久国产高清桃花| 真实男女啪啪啪动态图| 成年女人看的毛片在线观看| 国产一区二区三区在线臀色熟女| 欧美另类亚洲清纯唯美| 精品一区二区三区视频在线观看免费| a级毛片免费高清观看在线播放| 91麻豆av在线| 小说图片视频综合网站| 亚洲内射少妇av| 在线看三级毛片| 成年版毛片免费区| 97超视频在线观看视频| 午夜福利在线观看吧| 国产综合懂色| 中文字幕av成人在线电影| 天美传媒精品一区二区| 久久精品国产亚洲av天美| av福利片在线观看| 亚洲国产欧洲综合997久久,| 美女 人体艺术 gogo| 在线观看舔阴道视频| 91av网一区二区| 成人无遮挡网站| 啦啦啦韩国在线观看视频| 男人舔奶头视频| 一夜夜www| 真实男女啪啪啪动态图| 久久久久亚洲av毛片大全| 丰满乱子伦码专区| 国产视频一区二区在线看| 亚洲自偷自拍三级| 色视频www国产| 午夜福利在线观看免费完整高清在 | 欧美+日韩+精品| 男女做爰动态图高潮gif福利片| 精品人妻熟女av久视频| 少妇熟女aⅴ在线视频| 国产精品三级大全| 亚洲精品乱码久久久v下载方式| 神马国产精品三级电影在线观看| 偷拍熟女少妇极品色| www.熟女人妻精品国产| 无遮挡黄片免费观看| 亚洲五月婷婷丁香| 日本熟妇午夜| 长腿黑丝高跟| 亚洲avbb在线观看| 久久热精品热| 亚洲五月天丁香| 91在线观看av| 美女黄网站色视频| 久久久久性生活片| 全区人妻精品视频| 成年女人永久免费观看视频| 欧美日韩亚洲国产一区二区在线观看| 国产乱人视频| 十八禁人妻一区二区| 色5月婷婷丁香| 久久久成人免费电影| 亚洲成人久久爱视频| 在线国产一区二区在线| 搡老岳熟女国产| 嫁个100分男人电影在线观看| 天堂av国产一区二区熟女人妻| 18禁黄网站禁片免费观看直播| 久久性视频一级片| 91在线观看av| 日韩欧美一区二区三区在线观看| 日韩有码中文字幕| 伊人久久精品亚洲午夜| 香蕉av资源在线| 在线免费观看不下载黄p国产 | 国产视频一区二区在线看| 露出奶头的视频| 国产aⅴ精品一区二区三区波| 国产蜜桃级精品一区二区三区| 精品99又大又爽又粗少妇毛片 | 久久6这里有精品| 国产成+人综合+亚洲专区| 露出奶头的视频| 午夜视频国产福利| 精品久久久久久久久av| 中文字幕高清在线视频| 成人特级av手机在线观看| 国产激情偷乱视频一区二区| 丰满乱子伦码专区| 国产精品不卡视频一区二区 | 国产白丝娇喘喷水9色精品| 一区二区三区四区激情视频 | 一本久久中文字幕| av天堂中文字幕网| 色精品久久人妻99蜜桃| 亚洲成人免费电影在线观看| 真人一进一出gif抽搐免费| 熟女电影av网| 午夜精品在线福利| 日本免费一区二区三区高清不卡| 精品无人区乱码1区二区| 久久热精品热| 99热这里只有是精品在线观看 | 精品人妻一区二区三区麻豆 | 在线a可以看的网站| 亚洲精华国产精华精| 亚洲专区国产一区二区| 久久午夜福利片| 日本成人三级电影网站| 成年人黄色毛片网站| 国产午夜福利久久久久久| 午夜精品在线福利| 国产乱人视频| 成年免费大片在线观看| 少妇被粗大猛烈的视频| 99久久成人亚洲精品观看| 欧美午夜高清在线| 日韩大尺度精品在线看网址| 麻豆国产97在线/欧美| 丁香六月欧美| 99国产综合亚洲精品| 成人永久免费在线观看视频| 女人十人毛片免费观看3o分钟| 亚洲欧美日韩东京热| 久久6这里有精品| 看十八女毛片水多多多| 男插女下体视频免费在线播放| 动漫黄色视频在线观看| 精品熟女少妇八av免费久了| 亚洲人成网站在线播放欧美日韩| 99在线视频只有这里精品首页| 在线a可以看的网站| 国内毛片毛片毛片毛片毛片| 亚洲精品成人久久久久久| 日韩欧美精品免费久久 | 极品教师在线免费播放| 成人欧美大片| 欧美黑人欧美精品刺激| 如何舔出高潮| 亚洲中文字幕一区二区三区有码在线看| 91在线精品国自产拍蜜月| 国产av麻豆久久久久久久| 午夜a级毛片| 久久久久性生活片| 永久网站在线| 男女视频在线观看网站免费| 国产熟女xx| 国产精品日韩av在线免费观看| 午夜福利成人在线免费观看| 久久精品人妻少妇| 成人午夜高清在线视频| 欧美高清成人免费视频www| 国产高清视频在线观看网站| 内地一区二区视频在线| 无遮挡黄片免费观看| 欧美日韩福利视频一区二区| 国产亚洲精品久久久久久毛片| 狠狠狠狠99中文字幕| 国产激情偷乱视频一区二区| 91麻豆精品激情在线观看国产| 日本在线视频免费播放| 久久久久久久久久黄片| 男女那种视频在线观看| 亚洲无线在线观看| 欧美日韩瑟瑟在线播放| 日本一二三区视频观看| 日本免费一区二区三区高清不卡| 性欧美人与动物交配| 午夜a级毛片| 九色国产91popny在线| 一二三四社区在线视频社区8| 中文字幕高清在线视频| 岛国在线免费视频观看| 亚洲国产高清在线一区二区三| 国产淫片久久久久久久久 | 国产精华一区二区三区| 99久久久亚洲精品蜜臀av| x7x7x7水蜜桃| 一区福利在线观看| 高潮久久久久久久久久久不卡| 淫秽高清视频在线观看| 一个人看视频在线观看www免费| 欧美黑人巨大hd| 精品一区二区三区视频在线观看免费| 非洲黑人性xxxx精品又粗又长| 丁香欧美五月| 国产色爽女视频免费观看| 美女黄网站色视频| 色综合婷婷激情| 一本综合久久免费| 我要搜黄色片| 亚洲av二区三区四区| 我要看日韩黄色一级片| 18+在线观看网站| 免费看光身美女| 国产欧美日韩精品亚洲av| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 日韩人妻高清精品专区| 桃红色精品国产亚洲av| 三级男女做爰猛烈吃奶摸视频| 精品久久久久久久末码| 欧美日韩瑟瑟在线播放| 嫩草影院精品99| 亚洲欧美日韩高清在线视频| 十八禁网站免费在线| 日本三级黄在线观看| 久久99热这里只有精品18| 亚洲精品乱码久久久v下载方式| 精品国产三级普通话版| 高清在线国产一区| 国产主播在线观看一区二区| 日韩欧美在线二视频| 国产伦精品一区二区三区视频9| 黄色丝袜av网址大全| 丰满的人妻完整版| 亚洲精品乱码久久久v下载方式| 波多野结衣高清无吗| 1024手机看黄色片| 日韩中文字幕欧美一区二区| 成人无遮挡网站| 在线a可以看的网站| 性插视频无遮挡在线免费观看| 亚洲专区国产一区二区| 毛片一级片免费看久久久久 | 国产成人av教育| 国语自产精品视频在线第100页| 久久久精品欧美日韩精品| 99久久精品一区二区三区| 久久久久久久久久黄片| 天堂影院成人在线观看| 九九久久精品国产亚洲av麻豆| 国产成人啪精品午夜网站| 亚洲精品成人久久久久久| 精品午夜福利视频在线观看一区| 精品人妻视频免费看| 女人被狂操c到高潮| 国产真实伦视频高清在线观看 | www.熟女人妻精品国产| 九九久久精品国产亚洲av麻豆| 日本三级黄在线观看| 黄色女人牲交| 国产在视频线在精品| 欧美性猛交黑人性爽| 国产白丝娇喘喷水9色精品| 别揉我奶头~嗯~啊~动态视频| 搡老岳熟女国产| 99久久成人亚洲精品观看| 国产精品免费一区二区三区在线| 国产aⅴ精品一区二区三区波| 日韩欧美一区二区三区在线观看| 校园春色视频在线观看| 97人妻精品一区二区三区麻豆| 美女 人体艺术 gogo| 婷婷精品国产亚洲av在线| 热99re8久久精品国产| 大型黄色视频在线免费观看| 日韩亚洲欧美综合| 一区二区三区激情视频| 亚洲最大成人手机在线| 伊人久久精品亚洲午夜| 国产黄色小视频在线观看| 9191精品国产免费久久| 麻豆国产97在线/欧美| 国产成人a区在线观看| 久久这里只有精品中国| 亚洲不卡免费看| 日韩成人在线观看一区二区三区| 国内精品久久久久久久电影| 国产精品综合久久久久久久免费| 精品人妻熟女av久视频| 免费看a级黄色片| 久久久久性生活片| 91字幕亚洲| 成人性生交大片免费视频hd| 亚洲精品在线美女| 99riav亚洲国产免费| 亚洲色图av天堂| 久久6这里有精品| 亚洲电影在线观看av| 别揉我奶头~嗯~啊~动态视频| 免费看a级黄色片| 非洲黑人性xxxx精品又粗又长| 人妻夜夜爽99麻豆av| 亚洲精品久久国产高清桃花| 老熟妇乱子伦视频在线观看| 制服丝袜大香蕉在线| 在线观看舔阴道视频| 丝袜美腿在线中文| 免费av不卡在线播放| 性色avwww在线观看| 一级黄色大片毛片| 国产成人影院久久av| 亚洲 欧美 日韩 在线 免费| 日本 欧美在线| 在线天堂最新版资源| 老鸭窝网址在线观看| 久久精品91蜜桃| 亚洲人与动物交配视频| av中文乱码字幕在线| 亚洲av不卡在线观看| 国产精品一及| 乱码一卡2卡4卡精品| 婷婷六月久久综合丁香| 99热这里只有是精品50| 一二三四社区在线视频社区8| av专区在线播放| 黄色视频,在线免费观看| 欧美精品啪啪一区二区三区| 一级毛片久久久久久久久女| 国产精品98久久久久久宅男小说| 日本一二三区视频观看| 不卡一级毛片| 老司机午夜十八禁免费视频| 少妇人妻一区二区三区视频| 精品人妻一区二区三区麻豆 | 成熟少妇高潮喷水视频| 国产真实伦视频高清在线观看 | 丁香六月欧美| 国产精品女同一区二区软件 | 黄色配什么色好看| 免费人成视频x8x8入口观看| 国产白丝娇喘喷水9色精品| 久久天躁狠狠躁夜夜2o2o| 波多野结衣巨乳人妻| 色播亚洲综合网| 欧美一区二区精品小视频在线| 老司机午夜十八禁免费视频| 日本 av在线| 国产高清三级在线| 噜噜噜噜噜久久久久久91| 精品福利观看| 熟女人妻精品中文字幕| 亚洲精品日韩av片在线观看| 十八禁国产超污无遮挡网站| a级毛片a级免费在线| 国产精品国产高清国产av| 成人无遮挡网站| 日韩精品青青久久久久久| 精品99又大又爽又粗少妇毛片 | 我要搜黄色片| 99视频精品全部免费 在线| 亚洲欧美激情综合另类| 丰满的人妻完整版| 精品久久久久久久人妻蜜臀av| 最近中文字幕高清免费大全6 | 少妇的逼水好多| 男女之事视频高清在线观看| 麻豆成人av在线观看|