邵 凱,李建偉,于立河,張景云,薛贏文,金珊珊,郭建華
(1.黑龍江八一農(nóng)墾大學(xué)農(nóng)學(xué)院/黑龍江省寒地作物種質(zhì)改良與栽培重點(diǎn)實(shí)驗(yàn)室,黑龍江大慶163319;2.黑龍江省農(nóng)墾科學(xué)院作物所,黑龍江佳木斯 154007)
?
不同行距和密度對(duì)耐密品種克旱16花后個(gè)體質(zhì)量和產(chǎn)量的影響
邵 凱1,李建偉1,于立河1,張景云2,薛贏文1,金珊珊1,郭建華1
(1.黑龍江八一農(nóng)墾大學(xué)農(nóng)學(xué)院/黑龍江省寒地作物種質(zhì)改良與栽培重點(diǎn)實(shí)驗(yàn)室,黑龍江大慶163319;2.黑龍江省農(nóng)墾科學(xué)院作物所,黑龍江佳木斯 154007)
摘要:為研究不同播種行距和密度對(duì)春小麥單株莖鞘物質(zhì)積累及垂直分配的影響,以耐密品種克旱16為試驗(yàn)材料,分別設(shè)置行距為10、15 cm(分別記為C1、C2)和密度為600萬、750萬、900 株·hm-2(分別記為B1、B2、B3),共6個(gè)處理組合,研究不同處理下單株花后莖鞘不同節(jié)間物質(zhì)積累動(dòng)態(tài)、貯藏物質(zhì)再轉(zhuǎn)運(yùn)以及對(duì)穗貢獻(xiàn)率、莖長(zhǎng)、小穗密度、千粒重和產(chǎn)量的影響。結(jié)果表明,上三節(jié)間平均莖鞘物質(zhì)積累量在B1C2處理(對(duì)照)最高;單株莖鞘干物質(zhì)積累量隨行距增寬而降低;倒一節(jié)莖鞘貯藏物質(zhì)對(duì)穗的貢獻(xiàn)率最大;莖長(zhǎng)隨行距的增寬而增長(zhǎng),B3C2處理下莖長(zhǎng)最大(73.73 cm);小穗密度在B3C2處理下最低;千粒重和產(chǎn)量在B3C1處理下最高,較對(duì)照(B1C2)增加0.71%和13.13%。可見,對(duì)于耐密品種克旱16而言,適當(dāng)增加密度和減小行距有利于高產(chǎn),本試驗(yàn)以B3C1處理為最適栽培模式。
關(guān)鍵詞:春小麥;行距;密度;干物質(zhì);產(chǎn)量
小麥產(chǎn)量由群體內(nèi)單位面積穗數(shù)、穗粒數(shù)和千粒重三個(gè)因素組成,群體產(chǎn)量是個(gè)體單株生產(chǎn)力累加的結(jié)果,但又不是每個(gè)個(gè)體產(chǎn)量充分增長(zhǎng)的總和,栽培管理措施影響小麥群體產(chǎn)量和個(gè)體單株生產(chǎn)力的發(fā)揮。育種工作者在早期世代的選擇過程中發(fā)現(xiàn),小麥植株個(gè)體的產(chǎn)量潛力與群體產(chǎn)量往往不一致[1]。種植方式[2]、耕作方式和播種質(zhì)量[3]、肥水措施[4-6]、密度和播期[7-9]和行距調(diào)整[10-13]等栽培管理措施對(duì)小麥產(chǎn)量都有一定影響。葉片是植株光合作用的主要器官,但莖鞘作為非葉器官其貯藏物質(zhì)對(duì)穗的貢獻(xiàn)也十分重要[14-18]。前人研究大多針對(duì)的是不同栽培管理措施下的小麥群體[2,19],但對(duì)其中個(gè)體的表現(xiàn)未做研究。因此,本研究利用耐密型春小麥品種克旱16,比較不同播種行距和密度下個(gè)體花后莖鞘器官貯藏物質(zhì)積累動(dòng)態(tài)及貯藏物質(zhì)再分配和對(duì)穗的貢獻(xiàn)率、莖長(zhǎng)、小穗密度、產(chǎn)量的影響,以期為耐密品種的適宜栽培模式提供參考。
1材料與方法
1.1試驗(yàn)地概況
試驗(yàn)于2013年在黑龍江省農(nóng)業(yè)科學(xué)院克山分院試驗(yàn)地進(jìn)行,該試驗(yàn)地位于黑龍江省齊齊哈爾市克山縣(125.87 °E 48.03°N)。春小麥生育期平均氣溫為19.1 ℃,總降雨量為387.8 mm,總?cè)照諘r(shí)數(shù)為567.2 h;前茬作物為小麥。供試土壤為淋溶性黑鈣土,0~20 cm土壤耕層基礎(chǔ)理化指標(biāo)為:堿解氮128.7 mg·kg-1,速效磷51.7 mg·kg-1,速效鉀166.0 mg·kg-1,有機(jī)質(zhì)3.54 g·kg-1,pH值為6.2。
1.2試驗(yàn)材料
試驗(yàn)材料為黑龍江省春小麥主栽品種克旱16(KH16),由黑龍江省農(nóng)業(yè)科學(xué)院克山分院育成。該品種耐密植、抗旱、中筋、晚熟。本試驗(yàn)播種日期為4月24日。
1.3試驗(yàn)設(shè)計(jì)
采用大田隨機(jī)區(qū)組設(shè)計(jì)。種植密度設(shè)600萬、750萬、900萬株·hm-2三個(gè)水平,分別用B1、B2和B3表示;行距設(shè)為10 cm和15 cm兩個(gè)水平,分別用C1和C2表示;因大田常規(guī)播種密度和行距為550~600萬株·hm-2和15 cm[20],本試驗(yàn)以B1C2處理作為對(duì)照(CK)。每個(gè)處理3 次重復(fù),共18 個(gè)小區(qū)。小區(qū)面積2.4 m2,長(zhǎng)2 m,寬1.2 m?;蕿槊抗暿┠蛩睾土姿岫@各150 kg(尿素含N 46.3%,磷酸二銨含N 18.0%、P2O546.0%),其余管理措施同大田。
1.4測(cè)定指標(biāo)及方法
在測(cè)產(chǎn)區(qū)外,分別于開花后0、10、20、30、40 d每個(gè)小區(qū)隨機(jī)選取生長(zhǎng)整齊一致的10個(gè)單株,去除分蘗保留主莖,將主莖其他葉片去除,僅留旗葉,最后將主莖分為倒一、二、三、四節(jié)莖鞘(葉鞘基部“關(guān)節(jié)”算入本節(jié)莖鞘)和主莖整穗5部分,再分開裝入紙袋,105 ℃殺青30 min后80 ℃烘干至恒重。成熟期同樣每個(gè)處理隨機(jī)選取10株,風(fēng)干后進(jìn)行室內(nèi)考種,測(cè)定其主穗穗長(zhǎng)、小穗數(shù)、穗粒數(shù)和千粒重。成熟期采用小區(qū)計(jì)產(chǎn),每個(gè)小區(qū)收獲1 m2,統(tǒng)計(jì)成穗數(shù)后風(fēng)干,脫粒后測(cè)產(chǎn)。
莖鞘物質(zhì)轉(zhuǎn)運(yùn)特征參數(shù)和小穗密度計(jì)算公式如下:
最大干重期至成熟期貯藏物質(zhì)轉(zhuǎn)運(yùn)量=最大干重期干物重-成熟期干物重;
最大干重期至成熟期貯藏物質(zhì)轉(zhuǎn)運(yùn)率=(最大干重期干物重-成熟期干物重)/最大干重期干物重×100%;
最大干重期至成熟期貯藏物質(zhì)貢獻(xiàn)率=(最大干重期干物重-成熟期干物重)/穗重×100%;
開花前貯藏物質(zhì)轉(zhuǎn)運(yùn)量=莖鞘開花期干物重-成熟期干物重;
開花前貯藏物質(zhì)轉(zhuǎn)運(yùn)率=(莖鞘開花期干物重-成熟期干物重)/開花期干物重×100%;
開花前貯藏物質(zhì)貢獻(xiàn)率=(莖鞘開花期干物重-成熟期干物重)/穗重×100%;
小穗密度=[(小穗數(shù)-1)/穗軸長(zhǎng)度]×10
(注:最大干重期即干物質(zhì)積累最大的時(shí)期,本試驗(yàn)上3節(jié)最大干重期均為花后20 d,倒4節(jié)是花后10 d時(shí))
1.5數(shù)據(jù)分析
數(shù)據(jù)用Excel 2003 進(jìn)行處理、分析及繪圖,用 SPSS 18.0版軟件進(jìn)行數(shù)據(jù)的統(tǒng)計(jì)分析及顯著性分析。
2結(jié)果與分析
2.1不同行距和密度下的花后莖鞘物質(zhì)積累特征
由圖1可以看出,上四節(jié)莖鞘物質(zhì)積累量均呈先上升后下降的變趨勢(shì)化,上三節(jié)莖鞘物質(zhì)積累量峰值均出現(xiàn)在花后20 d時(shí),均以B3C1處理最高,但與其他處理差異不顯著;倒四節(jié)莖鞘物質(zhì)積累量峰值出現(xiàn)在花后10 d,以B1C2處理最高,亦與其他處理差異不顯著。上三節(jié)平均莖鞘物質(zhì)積累量均以CK處理(B1C2)最高;倒四節(jié)則以B2C1處理最高,B1C2次之。
花后40 d時(shí)(成熟期),倒一、倒四節(jié)莖鞘物質(zhì)積累量隨密度增加呈先升高后下降的趨勢(shì),B2處理下最高;同一密度下,倒一、倒四節(jié)莖鞘物質(zhì)積累量均隨行距增寬而降低,倒一節(jié)在對(duì)照處理下最低,倒四節(jié)在B3C2處理下最低。分別較CK(B1C2)和B3C1處理降低1.43%和13.13%(圖1A、1D)。C1行距時(shí),倒二、三節(jié)莖鞘物質(zhì)積累量隨密度增加呈先升高后下降的趨勢(shì),C2行距時(shí)則呈遞減趨勢(shì);B2和B3處理時(shí),倒二節(jié)莖鞘物質(zhì)積累量隨行距增寬而降低。B3C2處理最低,分別較CK(B1C2)和B3C1處理降低8.99%、24.23%和15.81%、14.33%(圖1B、1C)。單株上四節(jié)莖鞘物質(zhì)積累量在C1行距時(shí)均呈先上升后下降的趨勢(shì),在C2行距時(shí)呈遞減趨勢(shì);同一密度下,單株莖鞘物質(zhì)積累量隨行距增寬而降低,B3C2處理最低,分別較CK(B1C2)和B3C1處理降低6.94%和11.79%。
數(shù)據(jù)為3 次重復(fù)的平均值,圖柱上不同的小寫字母表示在 0.05 水平上差異顯著,下同
The table shows an average of three replicates. Values followed by different lower case letters in the column mean difference significant at the 0.05 levels.The same as below
圖1不同行距和密度處理下的花后莖鞘物質(zhì)積累動(dòng)態(tài)
Fig.1Dynamics of dry weight in stem organ after anthesis in different planting density and row spacing
2.2不同行距和密度對(duì)貯藏物質(zhì)再轉(zhuǎn)運(yùn)及對(duì)穗貢獻(xiàn)的影響
最大干重期至成熟期上四節(jié)莖鞘貯藏物質(zhì)轉(zhuǎn)運(yùn)量以倒一節(jié)最高,倒二節(jié)次之,倒四節(jié)最小,貯藏物質(zhì)轉(zhuǎn)移率也基本以倒一、二節(jié)較高(表1),表明倒一、二節(jié)間莖鞘貯藏物質(zhì)對(duì)穗形成及籽粒形成具有重要意義?;ㄇ扒o鞘貯藏物質(zhì)轉(zhuǎn)運(yùn)量以倒一、倒二節(jié)較高,而倒四節(jié)最低,但貯藏物質(zhì)轉(zhuǎn)運(yùn)率以倒一節(jié)較高,倒二、三、四節(jié)相差不大。
上四節(jié)最大干重期至成熟期莖鞘貯藏物質(zhì)貢獻(xiàn)率在C2行距時(shí)隨密度的增加而增大,在C1行距時(shí)呈先降后升趨勢(shì),B2處理最低;B3C2處理貢獻(xiàn)率最大,分別較CK(B1C2)和B3C1處理提高66.28%和20.97%。倒二、三節(jié)最大干重期至成熟期莖鞘貯藏物質(zhì)轉(zhuǎn)運(yùn)率在B3C2處理下最大(分別為49.24%和46.45%);倒一、倒四節(jié)最大干重期至成熟期莖鞘貯藏物質(zhì)轉(zhuǎn)運(yùn)率、花前莖鞘貯藏物質(zhì)轉(zhuǎn)運(yùn)率和貢獻(xiàn)率在CK處理下最大。
表1 不同行距和密度處理下花后莖鞘物質(zhì)再分配及對(duì)穗的貢獻(xiàn)
同一列中不同的小寫字母表示在 0.05 水平上差異顯著
Values followed by different lower case letters within a column are significantly different at 0.05 levels
圖2 不同行距和密度處理對(duì)莖長(zhǎng)和小穗密度的影響
2.3不同行距和密度對(duì)莖長(zhǎng)和小穗密度的影響
C1行距時(shí)莖長(zhǎng)隨密度增加呈遞增趨勢(shì),C2行距時(shí)則先降后升,B2處理時(shí)最低;同一密度處理下,莖長(zhǎng)隨行距的增寬而增長(zhǎng),B3C2處理最高(73.73 cm),分別較B1C2(CK)和B3C1處理增長(zhǎng)1.75%和0.36%,但差異不顯著。
C1行距時(shí)小穗密度隨密度增加呈先降后升趨勢(shì),B2密度時(shí)最低;C2行距時(shí)呈遞減趨勢(shì),B3最低。B1C2和B3C1處理較其密度增加6.76%和4.77%;B1和B2處理下,小穗密度隨行距的增寬而增大,B3處理則相反。
2.4不同行距和密度對(duì)小麥產(chǎn)量及其構(gòu)成的影響
不同播種行距和密度使小麥產(chǎn)量的差異較顯著(表2)。在C1和C2行距下,均以B3密度的產(chǎn)量最高,分別為5 580.00 kg·hm-2和5 423.33 kg·hm-2,均與CK(B1C2)處理差異不顯著;同一密度下(除B1處理外),C1行距較C2更利于產(chǎn)量的提高。說明適宜的行距和密度配置有利于小麥的豐產(chǎn)。不同密度下,穗數(shù)呈極顯著差異,但相同密度下不同行距間差異不顯著。B3C1處理較B3C2處理穗數(shù)增加0.20%,較對(duì)照增加38.91%。
表2表明,在穗數(shù)接近時(shí),產(chǎn)量的提高主要表現(xiàn)在以下兩個(gè)方面:一是穗粒數(shù),對(duì)照主穗粒數(shù)最多(41.93 粒),除與B2C2處理差異顯著外,與其他處理差異均不顯著;二是粒重,B3C1處理千粒重最高(32.83 g),且與其他處理差異不顯著。而表2中,成穗數(shù)差異極顯著的處理(B1C1、B1C2與B3C1、B3C2)的產(chǎn)量差異也極顯著,表明植株個(gè)體單株生產(chǎn)力對(duì)產(chǎn)量的影響并沒有超過群體內(nèi)成穗數(shù)量對(duì)產(chǎn)量的影響。
表2 不同行距和密度對(duì)小麥產(chǎn)量和產(chǎn)量構(gòu)成因素的影響
同一列中不同的大寫字母表示在 0.01 水平差異顯著,不同的小寫字母表示在 0.05 水平上差異顯著
Values followed by different capital and lower case letters within a column mean difference significant at 0.01 and 0.05 levels,respectively
3討 論
小麥群體結(jié)構(gòu)建立的基本措施是通過播種行距和密度實(shí)現(xiàn)的[21]。在群體規(guī)模下,個(gè)體質(zhì)量與群體產(chǎn)量之間存在一定矛盾,協(xié)調(diào)好這些矛盾對(duì)構(gòu)建高產(chǎn)高效群體具有十分重要的意義。前人對(duì)于播種行距或密度與產(chǎn)量關(guān)系的研究較多[22-23],而對(duì)播種行距和密度互作下植株個(gè)體與產(chǎn)量關(guān)系的研究不夠完善。人們通常認(rèn)為低密度、寬行距有利于增加群體的通風(fēng)透光性能,但也有研究認(rèn)為低密度、寬行距同時(shí)也會(huì)使群體內(nèi)產(chǎn)生過多的漏光損失[19]。高的種植密度從各方面來看都是一種逆境,高密度群體中個(gè)體對(duì)諸如光合有效輻射、土壤養(yǎng)分和水分等資源的競(jìng)爭(zhēng)更加劇烈[24]。對(duì)于耐密品種來說,高密度種植條件下才能發(fā)揮其增產(chǎn)潛力。本研究發(fā)現(xiàn),克旱16(KH16)千粒重和產(chǎn)量在900 萬株·hm-2與10 cm行距配置時(shí)最高。張宏雷等[25]研究認(rèn)為,常規(guī)行距(15 cm)處理且熟期正常的情況下,KH16以密度1 000萬株·hm-2左右與施用氮磷鉀純量195 kg·hm-2左右配置為最佳肥密模式。劉寧濤等[26]研究發(fā)現(xiàn),KH16產(chǎn)量在密度為850 萬株·hm-2處理最高。本研究結(jié)果與二者相似。本研究表明,高密度(900 萬株·hm-2)下主穗粒數(shù)較低密度(600 萬株·hm-2)下少,平均降低9.50%;900 萬株·hm-2與10 cm行距配置下小穗密度僅低于600 萬株·hm-2與15 cm行距配置(對(duì)照)1.87%,差異不顯著。說明低密度有利于單株穗部發(fā)育,增加結(jié)實(shí)率。
禾谷類作物經(jīng)濟(jì)產(chǎn)量的60%~100%來自開花后到成熟期的光合產(chǎn)物,生育后期的光合功能直接影響到籽粒產(chǎn)量[27]。相對(duì)于花后來說,花前光合產(chǎn)物對(duì)經(jīng)濟(jì)產(chǎn)量的貢獻(xiàn)較少。本研究表明,KH16上四節(jié)莖鞘開花前貯藏物質(zhì)對(duì)穗的貢獻(xiàn)率以密度900 萬株·hm-2、行距10 cm配置下最小,而此配置的花后貯藏物質(zhì)對(duì)穗的貢獻(xiàn)率最大,說明高密度、窄行距有利于單株花后莖鞘貯藏物質(zhì)對(duì)穗提供更多營(yíng)養(yǎng),確保籽粒發(fā)育,進(jìn)而提高經(jīng)濟(jì)產(chǎn)量。這與張向前等[28]研究結(jié)果相似。本研究也發(fā)現(xiàn),900 萬株·hm-2與10 cm行距配置下產(chǎn)量最高,但單株表現(xiàn)并非最佳,上四節(jié)莖鞘貯藏物質(zhì)積累動(dòng)態(tài)、最大干重至成熟期貯藏物質(zhì)轉(zhuǎn)運(yùn)量、轉(zhuǎn)運(yùn)率及對(duì)穗的貢獻(xiàn)率等指標(biāo)均非最高,而以低密度處理下表現(xiàn)較好。說明群體和個(gè)體單株發(fā)育非協(xié)同增益。改善單株個(gè)體與群體之間的矛盾,使其共同發(fā)展是本試驗(yàn)今后的重要課題。
綜上所述,對(duì)于KH16來說,在行距一定時(shí),增加種植密度可增加成穗數(shù),也可以增加植株個(gè)體花后上四節(jié)莖鞘貯藏物質(zhì)對(duì)穗的貢獻(xiàn)率,從而增加粒重,有效提高產(chǎn)量;在密度一定時(shí),適當(dāng)縮小行距,同樣增加了成穗數(shù)和植株個(gè)體花后上四節(jié)莖鞘貯藏物質(zhì)對(duì)穗的貢獻(xiàn)率,還增加了主穗粒數(shù),更有助于豐產(chǎn)??梢娒芏?00 萬株·hm-2與10 cm行距配置是春小麥品種KH16的最佳種植模式。
參考文獻(xiàn):
[1]Quail K J,Fischer R A,Wood J T.Early generation selection in wheat.I.Yield potential [J].AustralianJournalofAgriculturalResearch,1989,40(6):1117-1133.
[2]司紀(jì)升,王法宏,李升東,等.不同種植方式對(duì)小麥群體質(zhì)量和產(chǎn)量結(jié)構(gòu)的影響[J].麥類作物學(xué)報(bào),2006,26(6):136-139.
Si J S,Wang F H,Li S D,etal.Effect of different plangting patterns on population quality and yield structure of wheat [J].JournalofTriticeaeCrops,2006,26(6):136-139.
[3]鄭 亭,梵高瓊,王秀芳,等.耕作方式、播深及覆土對(duì)機(jī)播套作小麥麥苗素質(zhì)的影響[J].農(nóng)業(yè)工程學(xué)報(bào),2011,27(5):164-168.
Zheng T,Fan G Q,Wang X F,etal.Effect of tillage management,sowing depth and soil-covering on the seedlings quality of mechanical sowing wheat under intercropping condition [J].TransactionsoftheCSAE,2011,27(5):164-168.
[4]陸增根,戴廷波,姜 東,等.氮肥運(yùn)籌對(duì)弱筋小麥群體指標(biāo)與產(chǎn)量和品質(zhì)形成的影響[J].作物學(xué)報(bào),2007,33(4):590-597.
Lu Z G,Dai T B,Jiang D,etal.Effects of nitrogen strategies on population quality index and grain yield &quality in weak-gluten wheat [J].ActaAgronomicaSinica,2007,33(4):590-597.
[5]李志賢,柴守璽.西北綠洲氮磷配施對(duì)冬小麥產(chǎn)量及養(yǎng)分利用效率的影響[J].麥類作物學(xué)報(bào),2010,30(3):488- 491.
Li Z X,Chai S X.Effect of fertilizer N,P on winter-wheat yield and fertilizer use efficiency in north-west oasis area [J].JournalofTriticeaeCrops,2010,30(3):488- 491.
[6]吳永成,周順利,王志敏,等.氮肥運(yùn)籌對(duì)華北平原限水灌溉冬小麥產(chǎn)量和水氮利用效率的影響[J].麥類作物學(xué)報(bào),2008,28(6):1016-1020.
Wu Y C,Zhou S L,Wang Z M,etal.Effect of nitrogen fertilizer applications on yield,water and nitrogen use efficiency under limited irrigation of winter wheat in north China plain [J].JournalofTriticeaeCrops,2008,28(6):1016-1020.
[7]Weber R,Podolska G.The effects of sowing term and density on size and structure of yield of winter wheat [J].BiuletynInstytutuHodowliiAklimatyzacjiRosIin,2009,252:81-90.
[8]Dornbusch T,Baccar R,Watt J,etal.Plasticity of winter wheat modulated by sowing date,plant population density and nitrogen fertilisation:Dimensions and size of leaf blades,sheaths and internodes in relation to their position on a stem [J].FieldCropsResearch,2011,121(1):116-124.
[9]Momtazi F,Emam Y,Karimian N A.Physiological characteristics and grain yield of winter wheat in response to planting density and sowing date [J].JWSS-IsfahanUniversityofTechnology,2005,9(3):143-160.
[10]Teich A H,Welacky T,Hamill A,etal.Row-spacing and seed-rate effects on winter wheat in Ontario [J].CanadianJournalofPlantScience,1993,73(1):31-35.
[11]張東旭,董 琦,高志強(qiáng).不同行距配置對(duì)小麥產(chǎn)量及產(chǎn)量構(gòu)成因素的影響[J].安徽農(nóng)業(yè)科學(xué),2007,35(18):5379,5381.
Zhang D X,Dong Q,Gao Z Q.Effect of the different row spacing on wheat yield and its constructed comonent [J].JournalofAnhuiAgriculturalSciences,2007,35(18):5379,5381.
[12]馬愛平,王娟玲,靖 華,等.不同播種行距和密度對(duì)小麥產(chǎn)量和水分利用效率的影響[J].陜西農(nóng)業(yè)科學(xué),2009,55(1):3-5.
Ma A P,Wang J L,Jing H,etal.Effect of planting density and sow spacing on yield and water utilization of wheat [J].ShaanxiJournalofAgriculturalSciences,2009,55(1):3-5.
[13]田森林,李慧明,白文斌.晉中晚熟冬小麥“窄行稀條播”的群體質(zhì)量和產(chǎn)量效應(yīng)[J].麥類作物學(xué)報(bào),2012,32(6):1107-1110.
Tian S L,Li H M,Bai W B.Effect of the “Narrow Spaced Sparse Drilling” planting technique on the population and yield of winter wheat in Mid-Shanxi late-maturing winter wheat region [J].JournalofTriticeaeCrops,2012,32(6):1107-1110.
[14]李朝霞,趙世杰,孟慶偉,等.不同粒葉比小麥品種非葉片光合器官光合特性的研究[J].作物學(xué)報(bào),2004,30(5):419-426.
Li Z X,Zhao S J,Meng Q W,etal.Photosynthetic characteristics in non-lesf organs of winter wheat cultivars differing in grain-leaf ratio [J].ActaAgronomicaSinica,2004,30(5):419-426.
[15]徐恒永,趙君實(shí).高產(chǎn)冬小麥的冠層光合能力及不同器官的貢獻(xiàn)[J].作物學(xué)報(bào),1995,21(2):204-209.
Xu H Y,Zhao J S.Canopy photosynthesis capacity and the contribution from different organs in high-yielding winter wheat [J].ActaAgronomicaSinica,1995,21(2):204-209.
[16]魏愛麗,王志敏,李戰(zhàn)友.高產(chǎn)小麥莖鞘貯藏物質(zhì)利用率及其對(duì)穗貢獻(xiàn)的基因型差異研究[J].華北農(nóng)學(xué)報(bào),2002,17(2):23-29.
Wei A L,Wang Z M,Li Z Y.Study on utilization efficiency of stem reserves and its contribution to ear in different genotype wheat [J].ActaAgriculturaeBoreali-Sinica,2002,17(2):23-29.
[17]魏愛麗,王志敏.小麥不同光合器官對(duì)穗粒重的作用及基因型差異研究[J].麥類作物學(xué)報(bào),2001,21(2):57-61.
Wei A L,Wang Z M.A study on the contribution of different organs to grain weight in different genotype wheat [J].JournalofTriticeaeCrops,2001,21(2):57-61.
[18]索全義,王俊超,高聚林,等.不同施肥條件下小麥光合器官對(duì)單穗產(chǎn)量的影響[J].麥類作物學(xué)報(bào),2007,27(1):116-121.
Suo Q Y,Wang J C,Gao J L,etal.Effect of wheat photosynthesis organs on grain yield of single ear in different fertilizations [J].JournalofTriticeaeCrops,2007,27(1):116-121.
[19]陳雨海,余松烈,于振文,等.小麥生長(zhǎng)后期群體光截獲量及其分布與產(chǎn)量的關(guān)系[J].作物學(xué)報(bào),2003,29(5):730-734.
Chen Y H,Yu S L,Yu Z W,etal.Relationship between amount or distribution of PAR interception and grain output of wheat communities [J].ActaAgronomicaSinica,2003,29(5):730-734.
[20]何元龍.黑龍江小麥?zhǔn)犯錥M].哈爾濱:黑龍江教育出版社,2010:303.
He Y L.The History of Heilongjiang Wheat [M].Haerbin:Heilongjiang Education Press,2010:303.
[21]薛贏文,張英華,黃 琴,等.窄行均播對(duì)晚播冬小麥群體環(huán)境、個(gè)體性狀和物質(zhì)生產(chǎn)的影響[J].生態(tài)學(xué)報(bào),2015,35(16):5545-5555.
Xue Y W,Zhang Y H,Huang Q,etal.Effects of narrow row spacing and uniform sowing on canopy environment,individual plant traits and biomass production in late-sowing winter wheat [J].ActaEcologicaSinica,2015,35(16):5545-5555.
[22]趙 竹,曹承富,喬玉強(qiáng),等.機(jī)播條件下行距與密度對(duì)小麥產(chǎn)量和品質(zhì)的影響[J].麥類作物學(xué)報(bào),2011,31(4):714-719.
Zhao Z,Cao C G,Qiao Y Q,etal.Effect of row space and density on yield and quality of wheat under condition of machine sowing [J].JournalofTriticeaeCrops,2011,31(4):714-719.
[23]楊吉順,高輝遠(yuǎn),劉 鵬,等.種植密度和行距配置對(duì)超高產(chǎn)夏玉米群體光合特性的影響[J].作物學(xué)報(bào),2010,36(7):1226-1233.
Yang J S,Gao H Y,Liu P,etal.Effects of planting density and row spacing on canopy apparent photosynthesis of high-yield summer corn [J].ActaAgronomicaSinica,2010,36(7):1226-1233.
[24]Tollenaar M,Lee E A.Yield potential,yield stability and stress tolerance in maize [J].FieldCropsResearch,2002,75:161-169.
[25]張宏雷,宋 偉,王 婧.克旱16不同密度及施肥量級(jí)對(duì)產(chǎn)量影響研究[J].科技致富向?qū)?2014(20):20-21.
Zhang H L,Song W,Wang J.Effect of planting density and fertilization on yield of Kehan 16 [J].GuideofSci-techMagazine,2014(20):20-21.
[26]劉寧濤,邵立剛,王 巖,等.密度對(duì)超高產(chǎn)春小麥克旱16號(hào)產(chǎn)量構(gòu)成及干物質(zhì)積累的影響[C]//第十五次中國(guó)小麥栽培科學(xué)學(xué)術(shù)研討會(huì)論文集,2012:491-495.
Liu N T,Shao L G,Wang Y,etal.Effect of planting density on yield components and dry matter accumulation of spring wheat cultivar Kehan 16 [C]//The 15th Chinese Wheat Cultivation Science Symposium,2012:491-495.
[27]李建偉,于立河,郭 偉,等.外源糖氮調(diào)控對(duì)春小麥花后物質(zhì)生產(chǎn)特點(diǎn)的影響[J].麥類作物學(xué)報(bào),2015,35(8):1127-1133.
Li J W,Yu L H,Guo W,etal.Effect of exogenous sugar and nitrogen on post-anthesis assimilation and the changes of soluble sugar and nitrogen in spring wheat [J].JournalofTriticeaeCrops,2015,35(8):1127-1133.
[28]張向前,陳 歡,趙 竹,等.密度和行距對(duì)早播小麥生長(zhǎng)、光合及產(chǎn)量的影響[J].麥類作物學(xué)報(bào),2015,35(1):86-92.
Zhang X Q,Chen H,Zhao Z,etal.Effect of planting density and sow spacing on growth,phptpsynthesis and yield of wheat under early sowing [J].JournalofTriticeaeCrops,2015,35(1):86-92.
Effect of Plant Density and Row Spacing on Growth and Yield of Post-anthesis Individual in Spring Wheat
SHAO Kai1,LI Jianwei1,YU Lihe1,ZHANG Jingyun2,XUE Yingwen1,JIN Shanshan1,GUO Jianhua1
(1.College of Agriculture,Heilongjiang Bayi Agricultural University/ Key Laboratory of Cold Crop Germplasm Improvement and Cultivation of Heilongjiang Province,Daqing,Heilongjiang 163319,China;2.Crops Development Institute of Heilongjiang Academy of Land Reclamation and Agricultural Sciences,Jiamusi,Heilongjiang 154007,China)
Abstract:In order to investigate the effects of different row spacing and density on the biomass accumulation of single spring wheat plant, with the high-density type cultivar, Kehan 16 as material, six treatments with two row spacing (10,15 cm,C1 and C2) and three planting densities of basic seedlings (600×104,750×104,900×104 plants·hm-2,B1,B2,B3) were designed and conducted in 2013 growing season. The biomass accumulation and yield components of individual plant were analyzed among different row spacing and density. The results showed that dry matter accumulation of the first to the third internode from ear was the highest under the treatment of B1C2.The dry matter accumulation in stem and sheath of individual plant was reduced with the increase of row spacing. The contribution of biomass accumulation in the first internode from the top to spike was the highest. The stem length was improved with the increase of row spacing, and the treatment of B3C2 gave the highest stem length (73.73 cm).The density of spikelet under B3C2 was the lowest, and which were improved by 6.76% and 4.77%,respectively,under the control and the treatment of B3C1.The 1 000-grain weight and yield under the treatment of B3C1 was the highest, which improved 1 000-grain weight and yield by 0.71% and 13.13% compared to the control, respectively. The results indicated that the optimal planting conditions for Kehan 16 are B3C1.
Key words:Spring wheat; Row spacing;Plant density;Dry matter;Yield
中圖分類號(hào):S512.1;S311
文獻(xiàn)標(biāo)識(shí)碼:A
文章編號(hào):1009-1041(2016)04-0465-07
通訊作者:于立河(E-mail:yulihe2002@126.com);張景云(E-mail:nkzhangjy@163.com)
基金項(xiàng)目:國(guó)家公益性行業(yè)(農(nóng)業(yè))專項(xiàng)(201303007);國(guó)家農(nóng)墾總局科技攻關(guān)項(xiàng)目(HNK125A-01-02);黑龍江省科技攻關(guān)項(xiàng)目(GZ11B101)。
收稿日期:2015-11-25修回日期:2015-12-25
網(wǎng)絡(luò)出版時(shí)間:2016-04-01
網(wǎng)絡(luò)出版地址:http://www.cnki.net/kcms/detail/61.1359.S.20160401.1533.024.html
第一作者E-mail:110451819@qq.com