• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    T1 and ECV Mapping in Myocardial Disease

    2016-05-22 08:42:17EricOlaussonandErikSchelbertMDMS

    Eric L. Olausson and Erik B. Schelbert, MD, MS

    1Department of Clinical Physiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden

    2Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA

    3UPMC Cardiovascular Magnetic Resonance Center, Heart and Vascular Institute, Pittsburgh, PA, USA

    4Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA, USA

    Introduction

    T1 mapping using cardiovascular magnetic resonance (CMR) introduces novel techniques for myocardial tissue characterization to detect and quantify disease processes occurring at the microscopic level. Rather than relying on nonspecific functional measures, T1 mapping focuses on intrinsic changes of myocardial composition that advances understanding about specific disease pathways. These changes in myocardial tissue composition inform diagnosis and prognosis.

    T1 mapping encompasses two key parameters:native (i.e., precontrast) T1 and extracellular volume fraction (ECV) derived from additional postcontrast T1 and blood T1 measurements. Native T1 can re flect myocardial changes related to disease affecting the entire myocardium, whether intracellular or extracellular [1]. In contrast, ECV is more specific and mostly re flects myocardial changes limited to the extracellular interstitial space which includes the vascular compartment [1]. These two parameters appear to be robust for diagnosing specific disease processes [2]. These advances introduce new tools to detect focal and diffuse derangements in myocardial structure occurring in cardiac disease that can be otherwise difficult to detect [3–6].

    Optimal diagnosis and prognosis promises optimal treatment whereby the patient’s therapy can be matched to the underlying disease process. Indeed,this important principle of myocardial tissue composition-guided therapy has already been demonstrated with other myocardial CMR parameters [i.e.,T2*(star)] whereby CMR guided care improved disease detection/severity measurement culminating in markedly improved patient outcomes [7]. It appears likely that T1 and ECV mapping will show similar impact in patient care. This review focuses on the emerging key principles involving the clinical application of T1 mapping.

    Native T1, ECV, and Parametric Mapping

    T1 is physical property of matter. The term “T1”refers to the exponentiated time constant representing the nonlinear recovery of longitudinal magnetization (spin-lattice relaxation) after a radiofrequency pulse. T1 is expressed in units of time (e.g., msec)and varies with temperature and chemical composition. Thus the accumulation of gadolinium based contrast agent, iron or glycosphingolipid can lower T1 in myocardium in proportion to severity. Practically, T1 is estimated by fitting the changes in signal intensity in T1 weighted images acquired at various time points following an inversion pulse. Modi fied Look Locker inversion (MOLLI) [8] is the most studied pulse sequence for myocardial T1 measurement, but other sequences also measure myocardial T1 [9–13]. Their relative merits and feasibility for clinical implementation remain areas of active investigation [14]. MOLLI uses a 3 parameter model to describe signal intensity(SI) as a function of exponentiated time after a 180 degree radiofrequency inversion pulse (TI):

    where T1=T1*((B/A)?1) [8, 15, 16].

    If myocardial T1 is additionally measured post gadolinium contrast (Gd), typically between 10 and 20 min after 0.1–0.2 mmol/kg bolus, Gd concentrations in the plasma and interstitium are in equilibrium because renal clearance is slow relative to its dispersion through the body. The uptake of Gd in the myocardium relative to plasma is a direct measure of the interstitial space with minimal dependence of gadolinium concentration since Gd contrast is extracellular [17]. ECV exploits this characteristic and is de fined as:

    where λ=[ΔR1myocardium]/[ΔR1bloodpool] pre and post gadolinium contrast (where R1=1/T1) [1].

    The term “mapping” refers to the measurement of native T1 or ECV on a pixelwise basis. Mapping requires coregistration of component images from which the data are fit to generate the parameter estimates. Mapping permits visualization and spatial localization of T1 (Figure 1) or ECV (Figure 2).The signal intensity of regions of interest drawn on a T1 or ECV map by a reader yields the quantitative value of T1 or ECV. Color coding with look-up tables permits rapid qualitative interpretation based on visual inspection of the map.

    Even though T1 mapping has limited spatial resolution, cellular and molecular changes occurring within each voxel can affect the aggregate T1 signal rendering them quanti fiable. The estimated T1-based parameters quanti fied on a T1 or ECV map demonstrate the spatial localization of these changes whereby each pixel expresses the quantitative value of that parameter. This quantitation permits detection of diffuse disease even if it is not directly visible (Figures 1 and 2).

    These innovations are important because disease severity is quanti fied, and its spatial extent and distribution are also demonstrated on the map. Thus, myocardial disease can be rapidly detected regardless of whether focal or diffuse. Non quantitative “weighted”images, e.g., late gadolinium enhancement (LGE),are not robust for detecting diffuse disease and are not validated for this purpose [19]. LGE images are expressed in arbitrary units and can only detect spatial variation in myocardial fibrosis, e.g., “hot spots” relative to the most normal appearing myocardium which may not be normal at all. LGE cannot quantify the extent of diffuse interstitial expansion. Historically,diffuse myocardial disease has been difficult to measure or even appreciate noninvasively.

    Figure 1 Native T1 in Human Myocardium Decreases with Excess Iron Content [18].Panel A shows native T1 map shown from a patient with hemochromatosis and iron overload, demonstrating a remarkably low myocardial T1. In comparison to a patient with normal myocardial T1 who also happened to have a small pericardial effusion(panel B), panel A provides an image that is immediately recognizable as abnormal.

    Figure 2 ECV mapping to depict and quantify diffuse myocardial fibrosis.Examples of an ECV map quantifying the spatial distribution and extent of mostly diffuse fibrosis in a patient with nonischemic cardiomyopathy (Panel A). The image contrasts significantly with a patient without myocardial fibrosis with normal ECV measures (Panel B).

    Pitfalls in T1 and ECV Mapping

    T1 and ECV mapping demand more technical complexity for accurate image generation than T1 weighted imaging. It is imperative that the CMR practitioner be intimately familiar with several potential problems in image acquisition. Since T1 measures are sensitive to scanner characteristics and specific parameters related to sampling of T1 recovery, normative data from healthy volunteers should be generatedfor each scannerwith minimal adjustment in the chosen T1 mapping pulse sequences thereafter; locking the T1 mapping protocols is recommended [1]. For the mathematical fitting of the T1 data, phase sensitive reconstruction [20]improves fitting of the data by removing a degree of freedom related to polarity and associated phase of the magnetization [i.e., SI=A?B·e(?TI/T1*)and the absolute value signs which previously introduced a degree of freedom are no longer present].

    Creating the pixelwise map of T1 or ECV requires coregistration of all of the component images.Breath holding is therefore recommended to minimize misregistration for T1 and ECV mapping [1].Motion correction improves coregistration of the component images from which the pixelwise maps are derived because breath holding does not always remove all respiratory motion [21]. Error maps [22]depict subsequent problems with data fitting. These latter images can alert the CMR reader to technological problems and/or associated artifact which may necessitate repeat measurements. These innovations improve the robustness of the technique,and they can be extended to ECV mapping [22].In general, temporal and spatial resolution both must be sufficiently high to avoid artifact related to motion. Most protocols involve parallel imaging factors of 2 to maintain sufficiently high spatial and temporal resolution.

    Partial volume averaging can corrupt myocardial T1 measures. The tissue from which T1 estimates are measured should be orthogonal to the imaging plane given the image slice thickness of 6–8 mm;obliquity and misregistration will in flate partial volume errors related to limited spatial resolution.Partial volume effects can be visualized as bands around the edges of the myocardium on T1 and ECV maps that depict pixels straddling the border between tissues (Figures 1 and 2). Partial volume error limits sampling of myocardial disease by T1 and/or ECV mapping to the mid myocardium since subendocardial and subepicardial pixels are “contaminated” by partial volume effects.

    Off resonance can bias T1 measures significantly and represents a barrier to standardization between CMR sites, so optimal shimming is recommended to minimize off resonance [1]. These technical pitfalls are discussed in more detail in the consensus statement on myocardial T1 mapping and extracellular volume quanti fication from the Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology [1].

    Native T1 for Diagnosing Disease

    Case control studies indicate that intracellular accumulation of iron in myocardial siderosis (iron overload) [18] or intracellular accumulation of glycosphingolipid in Anderson Fabry disease [23–25]lower native T1 in a diffuse fashion throughout the myocardium (Figure 1). Clinically, siderosis can present as a dilated cardiomyopathy phenotype whereas Anderson Fabry disease presents as a left ventricular hypertrophy phenotype. Neither of these two morphologic phenotypes (i.e., dilated cardiomyopathy or left ventricular hypertrophy) is sufficiently specific to inform the clinician of the underlying disease process. Thus, T1 measures add diagnostic specificity to these two morphologic phenotypes.

    Since native T1 has the advantage of not requiring gadolinium based contrast, native T1 can be implemented as a rapid screening tool for Fabry’s disease or iron overload. For example, the TIC-TOC study demonstrated the clinical and economic advantages of an ultrafast magnetic resonance imaging protocol for detecting myocardial siderosis [26]. This study scanned 6 participantsper hourfor two 12-h days,reducing scanning costs by a factor of ≈4. Native T1 mapping analysis took minimal training, required<1 minute, and was reliable.

    Native T1 can also decrease in highlyfocalmyocardial disease (i.e., not diffuse) such as the core of an acute myocardial infarction. [27,28]. Shorter native T1 in the core of an infarct typically indicates more severe disease including microvascular obstruction and greater risks of adverse outcomes [29]. Native T1 can also depict the area at risk that occurs with acute coronary artery occlusion [30, 31].

    Native T1 can increase in other conditions. These include myocardial fibrosis [32], amyloidosis [33–36] acute myocarditis [30, 37–42], acute myocardial infarction [16, 27, 28], vasodilation [43], and hypertrophic cardiomyopathy [44–46]. The origins of increased native T1 likely re flect increased water content (edema) in these conditions. The excess water in these diverse conditions may challenge the concept of what constitutes myocardial “edema”in the setting of diffuse disease. Native T1 in the setting of cardiac amyloidosis becomes especially high, a feature which can assist in distinguishing amyloidosis from fibrosis [33, 34, 36, 47] and also assist in prognosis [34].

    Since so many disease pathways can alter native myocardial T1, the clinical context must be known to inform the clinician about the nature and extent of disease, like many valuable parameters in clinical medicine. Therefore, it is entirely expected that increased native generally T1 lacks specificity.Native T1 is most diagnostic when it is significantly decreased diffusely re flecting either Anderson Fabry disease or iron overload. When the native T1 is severely elevated, one must consider amyloidosis, especially in the setting of left ventricular hypertrophy and other suggestive ancillary findings. Otherwise, native T1 derangements can alert the clinician to myocardial disease such as fibrosis or edema, depending on the clinical context spanning the range from ambulatory patients to hospitalized patients post cardiac arrest.

    Current recommendations advise each center to establish normal reference ranges since many scanner related factors and pulse sequence related factors can in fluence resultant native T1 measures [1]. Care must be taken to optimize the scanning protocol and then avoid subsequent changes in parameters to avoid confounding native T1 measurements.

    ECV for Diagnosing Intrinsic Myocardial Disease

    Myocardial fibrosis re flects dysregulation of collagen homeostasis. It occurs in a spectrum from mild to severe where excess collagen (concentration) accumulates in the myocardial interstitium from excess production and/or decreased catabolism [48]. Since gadolinium contrast agents are extracellular, ECV measures interstitial expansion occurring with fibrosis, amyloidosis, vasodilation,or interstitial edema [3, 4, 49]. Similar to native T1,these conditions can generally be differentiated if the clinical context is known.

    ECV dichotomizes the myocardium into its primarily cardiomyocyte compartment and predominantly interstitial compartment (including the myocardial vasculature) [1]. ECV simplyquanti fiesthe interstitial uptake of gadolinium contrast agents relative to the plasma (Figure 2). Accordingly, histologic validation data overall show best agreement with ECV compared to other T1 metrics based on R2values (i.e., the proportion of variation in a variable explained by another variable) [50, 51]. specifically,ECV is superior to native [17, 52–55] or post contrast T1 [17, 52, 53, 56] in terms of agreement with collagen volume fraction. ECV is also superior to native T1 [57] or post contrast T1 [57] for predicting outcomes in large cohorts. Despite the potential confounding effects of capillary rarefaction which occurs in myocardial fibrosis [58] (since myocardial gadolinium contrast uptake includes the myocardial vasculature), most validation studies report high R2values ≥0.6 when compared against the collagen volume fraction [17, 52–56, 59, 60].

    ECV quanti fication of interstitial expansion represents a powerful tool to investigate myocardial remodeling, especially when combined with ancillary clinical data. While myocardial fibrosis may follow myocyte loss due to various types of injury,it also may occur with primary fibroblast activation[19]. The positive correlation between myocardial fibrosis (whether by ECV or histology) and left ventricular mass suggests significant prevalence of primary fibroblast activation since myocyte loss alone would decrease left ventricular mass [51].This information may be relevant when appraising potential therapeutic targets to reverse myocardial remodeling.

    The heart is similar to the liver, lung, and kidney:excess collagen can culminate in profound organ dysfunction and associated vulnerability [61].Interstitial protein accumulation therefore re flects intrinsic organ disease. One need only consider the clinical example of cardiac amyloidosis to observe how disastrous interstitial protein accumulation can be for cardiac function, leading to symptoms and dismal survival. Thankfully, myocardial fibrosis exhibits at least some degree of plasticity, and various interventions can reverse it in humans [62–66].

    “Interstitial heart disease” can affect microvascular, mechanical and electrical function as well as myocyte energetics [67], re flecting cardiomyocyteextracellular matrix interactions beyond the interstitium. These interactions include: (a) capillary rarefaction and perivascular fibrosis [58] that limit perfusion reserve [62, 68, 69]; (b) myocardial stiffening [70, 71] from increased amyloid proteins [72]or from titin and collagen expansion with increased cross-linking in MF that leads to systolic and diastolic dysfunction [48, 63, 65, 69] and increased filling pressures [70], (c) impaired electrical conduction from disarray in the collagen network architecture that predisposes to reentrant arrhythmia and sudden death; [72, 73] and d) likely impaired cardiomyocyte/mitochondrial energetics if interposing excess collagen isolates cardiomyocytes from capillaries in the setting of decreased perfusion reserve and myocardial stiffening [51]. These concepts are illustrated in Figure 3.

    Emerging data reveal that many cardiac insults culminate in myocardial fibrosis as a final common pathway, and the extent of fibrosis can vary across disease categories [2]. Similar to older studies limited to histopathology, myocardial fibrosis quanti fied by ECV can be observed in a variety of disease states including myocarditis [41, 74], rheumatologic disease [75–77], hypertension [78, 79],diabetes [80], obesity [81], heart failure regardless of ejection fraction [19, 52, 70, 82], and hypertrophic cardiomyopathy [59, 83, 84]. ECV doesnotappear to elevated in “Athlete’s Heart,” suggesting that physiologic adaptation to exercise is primarily cellular (cardiomyocyte hypertrophy) rather than interstitial (myocardial fibrosis) [44].

    Risk Strati fication with T1 Mapping and ECV

    Increased ECV re flects intrinsic myocardial disease.Indeed, the extent of myocardial fibrosis appears to govern vulnerability to adverse outcomes (death or heart failure) regardless of cause or disease category[19, 34]. The literature on ECV strongly suggests that it is a powerful tool to assess risk of adverse events and poor outcomes. In fact, ECV appears to be a more robust risk strati fier than left ventricular ejection fraction, the prognostic benchmark that governs so many clinical decisions in cardiology.ECV also appears to be a stronger risk strati fier than late gadolinium enhancement [19, 85].

    ECV can measure myocardial fibrosis reasonably well despite the manipulation of myocardial tissue that occurs during histologic processing prior to microscopy that can alter the original in vivo interstitial space between cells. This alteration can potentially perturb the correlation between ECV and the collagen volume fraction. In addition, the distribution of collagen can vary spatially in the myocardium which also can alter ECV-collagen correlations.Diffuse myocardial fibrosis may have a subendocardial predilection in ischemic heart disease [86]rendering its ultimate quanti fication challenging by ECV which preferentially samples the mid myocardium. Nonetheless, surveying the literature, it is important to note that despite these limitations:

    ? ECV has been extensively validated against collagen volume fraction as shown in Table 1 [17,52–56, 59, 87, 88]

    ? ECV is reproducible between separate CMR scans [11, 87, 89–93]; and

    ? ECV predicts outcomes [34, 80, 85, 94] to the extent that ECV can provide “added prognostic value” manifest by state of the art reclassi fication and discrimination metrics [19].Native T1 and ECV mapping have each shown promise for risk strati fication in cardiac amyloidosis [34].

    Table 1 Histologic validation studies of ECV measuring myocardial fibrosis according to R2 value. The R2 value describes the proportion of variation in collagen volume fraction explained by ECV.

    T1 Mapping and ECV for Monitoring Therapeutic Response in Practice or Phase 2 Ef ficacy Trials

    T1 and ECV mapping technology may act as a catalyst for therapeutic development for Phase 2 ef ficacy trials. Due to the ability to track specific disease processes such as intracellular diseases affecting the cardiomyocyte (e.g., iron overload,Anderson Fabry disease) and extracellular/interstitial disease processes (e.g., myocardial fibrosis and cardiac amyloidosis) affecting the myocardial interstitium, investigators and clinicians can now enjoy robust, reproducible techniques that quantify the extent of myocardial disease. Rather than relying on nonspecific measures like left ventricular shape or function or natriuretic peptide levels, all of which can be in fluenced by preload, afterload,and volume status, investigators and clinicians can now probe how the myocardium in an individual may respond to proposed treatment. This issue is enormously important given the aging population and the epidemic of heart failure where therapeutic progress has been slow [95–97]. In fact, whether the heart is the primary derangement in heart failure with preserved ejection fraction (“HFpEF”)is actively being debated. T1 and ECV mapping can now provide clear evidence of therapeutic response specifically located in the myocardium.Novel therapies targeting the interstitium are in development.

    Conclusion

    T1 and ECV mapping foster precision medicine and personalized care. Since T1 and ECV mapping elucidate specific disease pathways affecting myocardium, they promise to improve patient outcomes through targeted therapy. They are clinically robust and can easily be integrated into clinical scanning routines. Data thus far are promising, but further investigation is required to capitalize on the remarkable opportunities that T1 mapping and ECV introduce. These opportunities include improved understanding of disease mechanisms, therapeutic response to treatment, pharmacologic development,and optimizing therapeutic regimens through image guided care.

    REFERENCES

    1. Moon JC, Messroghli DR, Kellman P,Piechnik SK, Robson MD, Ugander M, et al. Myocardial T1 mapping and extracellular volume quanti fication: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement. J Cardiovasc Magn Reson 2013;15:92.

    2. Schelbert EB, Messroghli DR.State of the art: clinical applications of cardiac T1 mapping. Radiology 2016;278:658–76.

    3. Sado DM, Flett AS, Banypersad SM, White SK, Maestrini V,Quarta G, et al. Cardiovascular magnetic resonance measurement of myocardial extracellular volume in health and disease. Heart 2012;98:1436–41.

    4. Ugander M, Oki AJ, Hsu LY,Kellman P, Greiser A, Aletras AH,et al. Extracellular volume imaging by magnetic resonance imaging provides insights into overt and sub-clinical myocardial pathology.Eur Heart J 2012;33:1268–78.

    5. Puntmann VO, Peker E,Chandrashekhar Y, Nagel E. T1 Mapping in characterizing myocardial disease: a comprehensive review. Circ Res 2016;119:277–99.

    6. Taylor AJ, Salerno M,Dharmakumar R, Jerosch-Herold M. T1 mapping: basic techniques and clinical applications. JACC Cardiovasc Imaging 2016;9:67–81.

    7. Modell B, Khan M, Darlison M,Westwood MA, Ingram D, Pennell DJ. Improved survival of thalassaemia major in the UK and relation to T2* cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2008;10:42.

    8. Messroghli DR, Radjenovic A, Kozerke S, Higgins DM,Sivananthan MU, Ridgway JP.Modi fied Look-Locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magn Reson Med 2004;52:141–6.

    9. Roujol S, Weingartner S, Foppa M, Chow K, Kawaji K, Ngo LH,et al. Accuracy, precision, and reproducibility of four T1 mapping sequences: a head-to-head comparison of MOLLI, ShMOLLI,SASHA, and SAPPHIRE.Radiology 2014;272:683–9.

    10. Piechnik SK, Ferreira VM,Dall’Armellina E, Cochlin LE,Greiser A, Neubauer S, et al.Shortened Modi fied Look-Locker Inversion recovery (ShMOLLI) for clinical myocardial T1-mapping at 1.5 and 3 T within a 9 heartbeat breathhold. J Cardiovasc Magn Reson 2010;12:69.

    11. Schelbert EB, Testa SM, Meier CG,Ceyrolles WJ, Levenson JE, Blair AJ,et al. Myocardial extravascular extracellular volume fraction measurement by gadolinium cardiovascular magnetic resonance in humans: slow infusion versus bolus. J Cardiovasc Magn Reson 2011;13:16.

    12. Chow K, Flewitt JA, Green JD, Pagano JJ, Friedrich MG,Thompson RB. Saturation recovery single-shot acquisition (SASHA) for myocardial T1 mapping. Magn Reson Med 2014;71:2082–95.

    13. Salerno M, Janardhanan R, Jiji RS,Brooks J, Adenaw N, Mehta B,et al. Comparison of methods for determining the partition coef fi-cient of gadolinium in the myocardium using T(1) mapping. J Magn Reson Imaging 2013;38:217–24.

    14. Robson MD, Piechnik SK,Tunnicliffe EM, Neubauer S. T1 measurements in the human myocardium: the effects of magnetization transfer on the SASHA and MOLLI sequences. Magn Reson Med 2013;70:664–70.

    15. Deichmann R, Hasse A.Quanti fication of T1 values by SNAPSHOT-FLASH NMR imaging. J Magn Reson 1992;96:608–12.

    16. Messroghli DR, Niendorf T,Schulz-Menger J, Dietz R,Friedrich MG. T1 mapping in patients with acute myocardial infarction. J Cardiovasc Magn Reson 2003;5:353–9.

    17. Miller CA, Naish J, Bishop P,Coutts G, Clark D, Zhao S, et al.Comprehensive validation of cardiovascular magnetic resonance techniques for the assessment of myocardial extracellular volume. Circ Cardiovasc Imaging 2013;6:373–83.

    18. Sado DM, Maestrini V, Piechnik SK, Banypersad SM, White SK,Flett AS, et al. Noncontrast myocardial T1 mapping using cardiovascular magnetic resonance for iron overload. J Magn Reson Imaging 2015;41:1505–11.

    19. Schelbert EB, Piehler KM, Zareba KM, Moon JC, Ugander M,Messroghli DR, et al. Myocardial fibrosis quanti fied by extracellular volume is associated with subsequent hospitalization for heart failure, death, or both across the spectrum of ejection fraction and heart failure stage. J Am Heart Assoc 2015;4:e002613.

    20. Xue H, Greiser A, Zuehlsdorff S,Jolly MP, Guehring J, Arai AE,et al. Phase-sensitive inversion recovery for myocardial T1 mapping with motion correction and parametric fitting. Magn Reson Med 2013;69:1408–20.

    21. Xue H, Shah S, Greiser A, Guetter C, Littmann A, Jolly MP, et al.Motion correction for myocardial T1 mapping using image registration with synthetic image estimation. Magn Reson Med 2012;67:1644–55.

    22. Kellman P, Arai AE, Xue H. T1 and extracellular volume mapping in the heart: estimation of error maps and the in fluence of noise on precision. J Cardiovasc Magn Reson 2013;15:56.

    23. Thompson RB, Chow K, Khan A, Chan A, Shanks M, Paterson I, et al. T1 Mapping with CMR is highly sensitive for fabry disease independent of hypertrophy and gender. Circ Cardiovasc Imaging 2013;6:637–45.

    24. Sado DM, White SK, Piechnik SK,Banypersad SM, Treibel T, Captur G, et al. Identi fication and assessment of anderson-fabry disease by cardiovascular magnetic resonance noncontrast myocardial t1 mapping. Circ Cardiovasc Imaging 2013;6:392–8.

    25. Thompson RB, Chow K, Khan A,Chan A, Shanks M, Paterson I, et al.T(1) mapping with cardiovascular MRI is highly sensitive for Fabry disease independent of hypertrophy and sex. Circ Cardiovasc Imaging 2013;6:637–45.

    26. Abdel-Gadir A, Vorasettakarnkij Y,Ngamkasem H, Nordin S, Ako EA,Tumkosit M, et al. Ultrafast magnetic resonance imaging for iron quanti fication in Thalassemia participants in the developing world:the TIC-TOC study (Thailand and UK International Collaboration in Thalassaemia Optimising Ultrafast CMR). Circulation 2016;134:432–4.

    27. Dall’Armellina E, Ferreira VM,Kharbanda RK, Prendergast B, Piechnik SK, Robson MD,et al. Diagnostic value of precontrast T1 mapping in acute and chronic myocardial infarction. JACC Cardiovasc Imaging 2013;6:739–42.

    28. Dall’Armellina E, Piechnik SK,Ferreira VM, Si QL, Robson MD,Francis JM, et al. Cardiovascular magnetic resonance by non contrast T1-mapping allows assessment of severity of injury in acute myocardial infarction. J Cardiovasc Magn Reson 2012;14:15.

    29. Carberry J, Carrick D, Haig C, Rauhalammi SM, Ahmed N, Mordi I, et al. Remote zone extracellular volume and left ventricular remodeling in survivors of ST-elevation myocardial infarction. Hypertension 2016;68:385–91.

    30. Ferreira VM, Piechnik SK,Dall’Armellina E, Karamitsos TD,Francis JM, Choudhury RP, et al.Non-contrast T1-mapping detects acute myocardial edema with high diagnostic accuracy: a comparison to T2-weighted cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2012;14:42.

    31. Ugander M, Bagi PS, Oki AJ,Chen B, Hsu LY, Aletras AH, et al.Myocardial edema as detected by pre-contrast T1 and T2 CMR delineates area at risk associated with acute myocardial infarction. JACC Cardiovasc Imaging 2012;5:596–603.

    32. Bull S, White SK, Piechnik SK,Flett AS, Ferreira VM, Loudon M, et al. Human non-contrast T1 values and correlation with histology in diffuse fibrosis. Heart 2013;99:932–7.

    33. Fontana M, Banypersad SM,Treibel TA, Maestrini V, Sado DM, White SK, et al. Native T1 mapping in transthyretin amyloidosis. JACC Cardiovasc Imaging 2014;7:157–65.

    34. Banypersad SM, Fontana M,Maestrini V, Sado DM, Captur G, Petrie A, et al. T1 mapping and survival in systemic light-chain amyloidosis. Eur Heart J 2014;36:244–51.

    35. Karamitsos TD, Piechnik SK,Banypersad SM, Fontana M,Ntusi NB, Ferreira VM, et al.Noncontrast T1 mapping for the diagnosis of cardiac amyloidosis. JACC Cardiovasc Imaging 2013;6:488–97.

    36. Robbers LF, Baars EN, Brouwer WP, Beek AM, Hofman MB,Niessen HW. T1 mapping shows increased extracellular matrix size in the myocardium due to amyloid depositions. Circ Cardiovasc Imaging 2012;5:423–6.

    37. Ferreira VM, Piechnik SK,Dall’armellina E, Karamitsos TD, Francis JM, Ntusi N, et al.T Mapping for the diagnosis of acute myocarditis using CMR:comparison to T-weighted and late gadolinium enhanced imaging. JACC Cardiovasc Imaging 2013;6:1048–58.

    38. Ferreira VM, Piechnik SK,Dall’Armellina E, Karamitsos TD,Francis JM, Ntusi N, et al. Native T1-mapping detects the location,extent and patterns of acute myocarditis without the need for gadolinium contrast agents. J Cardiovasc Magn Reson 2014;16:36.

    39. Hinojar R, Foote L, Sangle S,Marber M, Mayr M, Carr-White G, et al. Native T1 and T2 mapping by CMR in lupus myocarditis: disease recognition and response to treatment. Int J Cardiol 2016;222:717–26.

    40. Luetkens JA, Homsi R, Dabir D,Kuetting DL, Marx C, Doerner J,et al. Comprehensive cardiac magnetic resonance for short-term follow-up in acute myocarditis. J Am Heart Assoc 2016;5:e003603.

    41. Lurz P, Luecke C, Eitel I,Fohrenbach F, Frank C, Grothoff M, et al. Comprehensive cardiac magnetic resonance imaging in patients with suspected myocarditis: the MyoRacer-Trial. J Am Coll Cardiol 2016;67:1800–11.

    42. Bohnen S, Radunski UK, Lund GK, Kandolf R, Stehning C, Schnackenburg B, et al.Performance of t1 and t2 mapping cardiovascular magnetic resonance to detect active myocarditis in patients with recent-onset heart failure. Circ Cardiovasc Imaging 2015;8:e003073.

    43. Mahmod M, Piechnik SK, Levelt E, Ferreira VM, Francis JM, Lewis A, et al. Adenosine stress native T1 mapping in severe aortic stenosis:evidence for a role of the intravascular compartment on myocardial T1 values. J Cardiovasc Magn Reson 2014;16:92.

    44. Swoboda PP, McDiarmid AK,Erhayiem B, Broadbent DA,Dobson LE, Garg P, et al. Assessing myocardial extracellular volume by T1 mapping to distinguish hypertrophic cardiomyopathy from athlete’s heart. J Am Coll Cardiol 2016;67:2189–90.

    45. Hinojar R, Varma N, Child N,Goodman B, Jabbour A, Yu C-Y, et al. T1 mapping in discrimination of hypertrophic phenotypes - hypertensive heart disease and hypertrophic cardiomyopathy: findings from the International T1 Multicenter CMR study. Circ Cardiovasc Imaging 2015;8:e003285.

    46. Puntmann VO, Voigt T, Chen Z,Mayr M, Karim R, Rhode K, et al.Native T1 mapping in differentiation of normal myocardium from diffuse disease in hypertrophic and dilated cardiomyopathy. JACC Cardiovasc Imaging 2013;6:475–84.

    47. Mongeon FP, Jerosch-Herold M,Coelho-Filho OR, Blankstein R,Falk RH, Kwong RY. Quanti fication of extracellular matrix expansion by CMR in in filtrative heart disease. JACC Cardiovasc Imaging 2012;5:897–907.

    48. Weber KT, Brilla CG. Pathological hypertrophy and cardiac interstitium. Fibrosis and renin-angiotensin-aldosterone system. Circulation 1991;83:1849–65.

    49. Kellman P, Wilson JR, Xue H,Bandettini WP, Shanbhag SM,Druey KM, et al. Extracellular volume fraction mapping in the myocardium, part 2: initial clinical experience. J Cardiovasc Magn Reson 2012;14:64.

    50. Salerno M, Kramer CM. Advances in parametric mapping with CMR imaging. JACC Cardiovasc Imaging 2013;6:806–22.

    51. Schelbert EB, Fonarow GC,Bonow RO, Butler J, Gheorghiade M. Therapeutic targets in heart failure: refocusing on the myocardial interstitium. J Am Coll Cardiol 2014;63:2188–98.

    52. Inui K, Tachi M, Saito T, Kubota Y,Murai K, Kato K, et al. Superiority of the extracellular volume fraction over the myocardial T1 value for the assessment of myocardial fibrosis in patients with non-ischemic cardiomyopathy. Magn Reson Imaging 2016;34:1141–5.

    53. Zeng M, Zhang N, He Y, Wen Z,Wang Z, Zhao Y, et al. Histological validation of cardiac magnetic resonance T1 mapping for detecting diffuse myocardial fibrosis in diabetic rabbits. J Magn Reson Imaging 2016 (e-pub PMID:27061226).

    54. Aus dem Siepen F, Buss SJ,Messroghli D, Andre F, Lossnitzer D, Seitz S, et al. T1 mapping in dilated cardiomyopathy with cardiac magnetic resonance: quanti fi-cation of diffuse myocardial fibrosis and comparison with endomyocardial biopsy. Eur Heart J Cardiovasc Imaging 2014;16:210–6.

    55. de Meester de Ravenstein C, Bouzin C, Lazam S, Boulif J, Amzulescu M, Melchior J, et al. Histological Validation of measurement of diffuse interstitial myocardial fibrosis by myocardial extravascular volume fraction from Modi fied Look-Locker imaging (MOLLI) T1 mapping at 3 T. J Cardiovasc Magn Reson 2015;17:48.

    56. White SK, Sado DM, Fontana M, Banypersad SM, Maestrini V, Flett AS, et al. T1 mapping for myocardial extracellular volume measurement by CMR: bolus only versus primed infusion technique. JACC Cardiovasc Imaging 2013;6:955–62.

    57. Treibel TA, Fridman Y, Hackman B, Kadakkal A, Sayeed A, Maanja M, et al. Extracellular volume associates with outcomes more strongly than native or post-contrast myocardial T1. Eur Heart J Cardiovasc Imaging Supplement 2016;17:i1–i80.

    58. Mohammed SF, Hussain S,Mirzoyev SA, Edwards WD,Maleszewski JJ, Red field MM.Coronary microvascular rarefaction and myocardial fibrosis in heart failure with preserved ejection fraction. Circulation 2015;131:550–9.

    59. Flett AS, Hayward MP, Ashworth MT, Hansen MS, Taylor AM, Elliott PM, et al. Equilibrium contrast cardiovascular magnetic resonance for the measurement of diffuse myocardial fibrosis: preliminary validation in humans. Circulation 2010;122:138–44.

    60. Fontana M, White SK, Banypersad SM, Sado DM, Maestrini V, Flett AS, et al. Comparison of T1 mapping techniques for ECV quantification. Histological validation and reproducibility of ShMOLLI versus multibreath-hold T1 quanti fication equilibrium contrast CMR. J Cardiovasc Magn Reson 2012;14:88.

    61. Rockey DC, Bell PD, Hill JA.Fibrosis–a common pathway to organ injury and failure. N Engl J Med 2015;372:1138–49.

    62. Schwartzkopff B, Brehm M,Mundhenke M, Strauer BE. Repair of coronary arterioles after treatment with perindopril in hypertensive heart disease. Hypertension 2000;36:220–5.

    63. Brilla CG, Funck RC, Rupp H.Lisinopril-mediated regression of myocardial fibrosis in patients with hypertensive heart disease.Circulation 2000;102:1388–93.

    64. Izawa H, Murohara T, Nagata K,Isobe S, Asano H, Amano T, et al.Mineralocorticoid receptor antagonism ameliorates left ventricular diastolic dysfunction and myocardial fibrosis in mildly symptomatic patients with idiopathic dilated cardiomyopathy: a pilot study.Circulation 2005;112:2940–5.

    65. Diez J, Querejeta R, Lopez B,Gonzalez A, Larman M, Martinez Ubago JL. Losartan-dependent regression of myocardial fibrosis is associated with reduction of left ventricular chamber stiffness in hypertensive patients. Circulation 2002;105:2512–7.

    66. Heydari B, Abdullah S, Pottala JV,Shah R, Abbasi S, Mandry D, et al.Effect of omega-3 acid ethyl esters on left ventricular remodeling after acute myocardial infarction:the OMEGA-REMODEL randomized clinical trial. Circulation 2016;134:378–91.

    67. Schelbert EB, Wong TC,Gheorghiade M. Think small and examine the constituents of left ventricular hypertrophy and heart failure: cardiomyocytes versus fibroblasts, collagen, and capillaries in the interstitium. J Am Heart Assoc 2015;4:e002491.

    68. Kato S, Saito N, Kirigaya H,Gyotoku D, Iinuma N, Kusakawa Y,et al. Impairment of coronary flow reserve evaluated by phase contrast cine-magnetic resonance imaging in patients with heart failure with preserved ejection fraction. J Am Heart Assoc 2016;5:e002649.

    69. Brilla CG, Janicki JS, Weber KT.Cardioreparative effects of lisinopril in rats with genetic hypertension and left ventricular hypertrophy.Circulation 1991;83:1771–9.

    70. Rommel KP, von Roeder M,Latuscynski K, Oberueck C, Blazek S, Fengler K, et al. Extracellular volume fraction for characterization of patients with heart failure and preserved ejection fraction. J Am Coll Cardiol 2016;67:1815–25.

    71. Zile MR, Baicu CF, J SI, Stroud RE, Nietert PJ, Bradshaw AD, et al.Myocardial stiffness in patients with heart failure and a preserved ejection fraction: contributions of collagen and titin. Circulation 2015;131:1247–59

    72. Banypersad SM, Moon JC, Whelan C, Hawkins PN, Wechalekar AD.Updates in cardiac amyloidosis: a review. J Am Heart Assoc 2012;1:e000364.

    73. Tamarappoo BK, John BT, Reinier K, Teodorescu C, Uy-Evanado A,Gunson K, et al. Vulnerable myocardial interstitium in patients with isolated left ventricular hypertrophy and sudden cardiac death: a postmortem histological evaluation. J Am Heart Assoc 2012;1:e001511.

    74. Nadjiri J, Nieberler H, Hendrich E, et al. Performance of native and contrast-enhanced T1 mapping to detect myocardial damage in patients with suspected myocarditis: a head-to-head comparison of different cardiovascular magnetic resonance techniques.Int J Cardiovasc Imaging 2016.doi:10.1007/s10554-016-1029-3.

    75. Ntusi NA, Piechnik SK, Francis JM, Ferreira VM, Matthews PM, Robson MD, et al. Diffuse myocardial fibrosis and in flammation in rheumatoid arthritis:insights from CMR T1 mapping.JACC Cardiovasc Imaging 2015;8:526–36.

    76. Salazar G, Bellocchi C, Todoerti K, Saporiti F, Piacentini L, Scorza R, et al. Gene expression pro filing reveals novel protective effects of Aminaphtone on ECV304 endothelial cells. Eur J Pharmacol 2016;782:59–69.

    77. Barison A, Gargani L, De Marchi D, Aquaro GD, Guiducci S, Picano E, et al. Early myocardial and skeletal muscle interstitial remodelling in systemic sclerosis: insights from extracellular volume quanti fication using cardiovascular magnetic resonance. Eur Heart J Cardiovasc Imaging 2015;16:74–80.

    78. Treibel TA, Zemrak F, Sado DM, Banypersad SM, White SK,Maestrini V, et al. Extracellular volume quanti fication in isolated hypertension - changes at the detectable limits? J Cardiovasc Magn Reson 2015;17:74.

    79. Coelho-Filho OR, Mongeon FP,Mitchell R, Moreno H, Jr, Nadruz W, Jr, Kwong R, et al. Role of transcytolemmal water-exchange in magnetic resonance measurements of diffuse myocardial fibrosis in hypertensive heart disease. Circ Cardiovasc Imaging 2013;6:134–41.

    80. Wong TC, Piehler K, Kang IA,Kadakkal A, Kellman P, et al.Myocardial extracellular volume fraction quanti fied by cardiovascular magnetic resonance is increased in diabetes and associated with mortality and incident heart failure admission. Eur Heart J 2014;35:657–64.

    81. Shah RV, Abbasi SA, Neilan TG,Hulten E, Coelho-Filho O, Hoppin A, et al. Myocardial tissue remodeling in adolescent obesity. J Am Heart Assoc 2013;2:e000279.

    82. Su MY, Lin LY, Tseng YH, Chang CC, Wu CK, Lin JL, et al. CMR-veri fied diffuse myocardial fibrosis is associated with diastolic dysfunction in HFpEF. JACC Cardiovasc Imaging 2014;7:991–7.

    83. Wong TC. Cardiovascular magnetic resonance imaging of myocardial interstitial expansion in hypertrophic cardiomyopathy.Curr Cardiovasc Imaging Rep 2014;7:9267.

    84. Ho CY, Abbasi SA, Neilan TG,Shah RV, Chen Y, Heydari B,et al. T1 measurements identify extracellular volume expansion in hypertrophic cardiomyopathy sarcomere mutation carriers with and without left ventricular hypertrophy. Circ Cardiovasc Imaging 2013;6:415–22.

    85. Wong TC, Piehler K, Meier CG,Testa SM, Klock AM, Aneizi AA,et al. Association between extracellular matrix expansion quantified by cardiovascular magnetic resonance and short-term mortality.Circulation 2012;126:1206–16.

    86. Beltrami CA, Finato N, Rocco M,Feruglio GA, Puricelli C, Cigola E, et al. Structural basis of endstage failure in ischemic cardiomyopathy in humans. Circulation 1994;89:151–63.

    87. Fontana M, White SK, Banypersad SM, Sado DM, Maestrini V, Flett AS, et al. Comparison of T1 mapping techniques for ECV quantification. Histological validation and reproducibility of ShMOLLI versus multibreath-hold T1 quanti fication equilibrium contrast CMR. J Cardiovasc Magn Reson 2012;14:88.

    88. Duca F, Kammerlander AA,Zotter-Tufaro C, Aschauer S,Schwaiger ML, Marzluf BA, et al.Interstitial fibrosis, functional status, and outcomes in heart failure with preserved ejection fraction:insights from a prospective Cardiac Magnetic Resonance Imaging Study. Circ Cardiovasc Imaging 2016;9:e005277.

    89. McDiarmid AK, Swoboda PP,Erhayiem B, Ripley DP, Kidambi A, Broadbent DA, et al. Single bolus versus split dose gadolinium administration in extra-cellular volume calculation at 3 Tesla. J Cardiovasc Magn Reson 2015;17:6.

    90. Kawel N, Nacif M, Zavodni A, Jones J, Liu S, Sibley CT, et al. T1 mapping of the myocardium: intra-individual assessment of post-contrast T1 time evolution and extracellular volume fraction at 3T for Gd-DTPA and Gd-BOPTA. J Cardiovasc Magn Reson 2012;14:26.

    91. Chin CW, Semple S, Malley T,White AC, Mirsadraee S, Weale PJ,et al. Optimization and comparison of myocardial T1 techniques at 3T in patients with aortic stenosis.Eur Heart J Cardiovasc Imaging 2014;15:556–65.

    92. Singh A, Hors field MA, Bekele S,Khan J, Greiser A, McCann GP.Myocardial T1 and extracellular volume fraction measurement in asymptomatic patients with aortic stenosis: reproducibility and comparison with age-matched controls.Eur Heart J Cardiovasc Imaging 2015;16:763–70.

    93. Liu S, Han J, Nacif MS, Jones J,Kawel N, Kellman P, et al. Diffuse myocardial fibrosis evaluation using cardiac magnetic resonance T1 mapping: sample size considerations for clinical trials. J Cardiovasc Magn Reson 2012;14:90.

    94. Ghosn MG, Pickett S, Brunner G,Nabi F, Zoghbi W, Quinones M,et al. Association of myocardial extracellular volume and clinical outcome: a cardiac magnetic resonance study (Abstract). J Am Coll Cardiol 2015;65:A1077.

    95. Butler J, Fonarow GC, Zile MR,Lam CS, Roessig L, Schelbert EB, et al. Developing therapies for heart failure with preserved ejection fraction: current state and future directions. JACC Heart Fail 2014;2:97–112.

    96. Senni M, Paulus WJ, Gavazzi A,Fraser AG, Diez J, Solomon SD,et al. New strategies for heart failure with preserved ejection fraction:the importance of targeted therapies for heart failure phenotypes.Eur Heart J 2014;35:2797–815.

    97. Vaduganathan M, Greene SJ,Ambrosy AP, Gheorghiade M,Butler J. The disconnect between phase II and phase III trials of drugs for heart failure. Nat Rev Cardiol 2013;10:85–97.

    亚洲国产毛片av蜜桃av| 视频区图区小说| 男女国产视频网站| 国产片特级美女逼逼视频| 九九爱精品视频在线观看| 内射极品少妇av片p| 精品人妻偷拍中文字幕| 亚州av有码| 久久6这里有精品| 干丝袜人妻中文字幕| 免费少妇av软件| 免费av不卡在线播放| 精华霜和精华液先用哪个| 中国国产av一级| 成年人午夜在线观看视频| 国产 一区 欧美 日韩| 少妇高潮的动态图| 街头女战士在线观看网站| 免费av中文字幕在线| 一本一本综合久久| 久久久久久人妻| 人人妻人人看人人澡| 午夜福利网站1000一区二区三区| 国产男人的电影天堂91| 美女cb高潮喷水在线观看| 久久精品国产亚洲av天美| 国产成人一区二区在线| 亚洲精品自拍成人| 久久久国产一区二区| 精品久久久久久久末码| 国产无遮挡羞羞视频在线观看| 久久毛片免费看一区二区三区| 永久免费av网站大全| 亚洲自偷自拍三级| 国产老妇伦熟女老妇高清| 丝袜喷水一区| 午夜福利网站1000一区二区三区| 成人影院久久| 国产精品伦人一区二区| 99国产精品免费福利视频| 免费人妻精品一区二区三区视频| 久久99热这里只频精品6学生| 妹子高潮喷水视频| 欧美+日韩+精品| 国产精品偷伦视频观看了| 一级a做视频免费观看| 国产淫片久久久久久久久| 国产 一区 欧美 日韩| 老司机影院毛片| 99久久精品热视频| 久久国产亚洲av麻豆专区| 国产69精品久久久久777片| 国产av一区二区精品久久 | 一级a做视频免费观看| 国产片特级美女逼逼视频| 日韩视频在线欧美| 你懂的网址亚洲精品在线观看| 亚洲怡红院男人天堂| 亚洲欧美日韩卡通动漫| 成年av动漫网址| 成人免费观看视频高清| 国产精品秋霞免费鲁丝片| 日本av手机在线免费观看| 最近中文字幕2019免费版| 伊人久久精品亚洲午夜| 少妇人妻 视频| 国产免费福利视频在线观看| av在线蜜桃| 免费高清在线观看视频在线观看| 日韩制服骚丝袜av| 激情五月婷婷亚洲| 欧美zozozo另类| 简卡轻食公司| 夜夜爽夜夜爽视频| 亚洲欧美精品自产自拍| 国产精品免费大片| 国产乱来视频区| 国产毛片在线视频| 美女主播在线视频| 天天躁日日操中文字幕| 乱码一卡2卡4卡精品| 亚洲国产高清在线一区二区三| 亚洲精品乱久久久久久| 女性被躁到高潮视频| 亚洲三级黄色毛片| 日韩av不卡免费在线播放| 亚洲精品国产成人久久av| 在线免费观看不下载黄p国产| 午夜免费男女啪啪视频观看| 欧美亚洲 丝袜 人妻 在线| 噜噜噜噜噜久久久久久91| 色视频www国产| 高清视频免费观看一区二区| 少妇人妻 视频| 一区二区三区乱码不卡18| 少妇精品久久久久久久| 三级国产精品欧美在线观看| 18禁在线播放成人免费| 亚洲精品国产av蜜桃| 亚洲色图av天堂| 国产精品秋霞免费鲁丝片| 国产在视频线精品| 99久久精品一区二区三区| 国产女主播在线喷水免费视频网站| 日韩中字成人| 亚洲真实伦在线观看| 亚洲成人中文字幕在线播放| 亚洲第一区二区三区不卡| 男女啪啪激烈高潮av片| 黄片wwwwww| 国产精品三级大全| 啦啦啦中文免费视频观看日本| 国产精品嫩草影院av在线观看| 久久精品久久久久久久性| 又黄又爽又刺激的免费视频.| 亚洲成人av在线免费| 18禁裸乳无遮挡动漫免费视频| 色婷婷久久久亚洲欧美| 久久这里有精品视频免费| 只有这里有精品99| av国产精品久久久久影院| 高清毛片免费看| 黄色日韩在线| 一级毛片电影观看| 久热久热在线精品观看| 国产黄片美女视频| 日韩av免费高清视频| 亚洲欧美一区二区三区国产| h日本视频在线播放| 亚洲精品乱久久久久久| 国产中年淑女户外野战色| 人人妻人人爽人人添夜夜欢视频 | 久久久成人免费电影| 免费观看的影片在线观看| 国产欧美日韩精品一区二区| 男女啪啪激烈高潮av片| 日本爱情动作片www.在线观看| 久久精品国产a三级三级三级| 99视频精品全部免费 在线| 777米奇影视久久| 97精品久久久久久久久久精品| 国产精品人妻久久久久久| 久久国产乱子免费精品| 一区二区三区乱码不卡18| 精品一品国产午夜福利视频| 3wmmmm亚洲av在线观看| 男男h啪啪无遮挡| 在线观看人妻少妇| 亚洲精品视频女| 日本猛色少妇xxxxx猛交久久| 99热6这里只有精品| www.av在线官网国产| 成人国产av品久久久| 天堂8中文在线网| 一二三四中文在线观看免费高清| 精品一区二区三区视频在线| 建设人人有责人人尽责人人享有的 | 国产免费一区二区三区四区乱码| 少妇人妻精品综合一区二区| 大又大粗又爽又黄少妇毛片口| 日本黄色日本黄色录像| 亚洲精品久久久久久婷婷小说| 各种免费的搞黄视频| 国产免费视频播放在线视频| 少妇熟女欧美另类| 又黄又爽又刺激的免费视频.| 成人亚洲欧美一区二区av| 亚洲欧洲国产日韩| 国产老妇伦熟女老妇高清| kizo精华| 少妇人妻久久综合中文| 一级黄片播放器| www.av在线官网国产| 亚洲自偷自拍三级| 国产v大片淫在线免费观看| 在线天堂最新版资源| av一本久久久久| 亚洲精品国产av蜜桃| 男女免费视频国产| 最近中文字幕高清免费大全6| 新久久久久国产一级毛片| 男女边摸边吃奶| 国产免费视频播放在线视频| 国产精品人妻久久久久久| 又大又黄又爽视频免费| 欧美精品亚洲一区二区| 九草在线视频观看| 国产亚洲午夜精品一区二区久久| 国产深夜福利视频在线观看| 欧美精品一区二区免费开放| 久久国内精品自在自线图片| 精品一品国产午夜福利视频| 99久久精品热视频| 三级国产精品片| 免费av不卡在线播放| 免费av中文字幕在线| 成年av动漫网址| 日本免费在线观看一区| 色视频在线一区二区三区| 新久久久久国产一级毛片| 午夜福利在线在线| 国语对白做爰xxxⅹ性视频网站| 国产午夜精品一二区理论片| 亚洲精品乱久久久久久| 女的被弄到高潮叫床怎么办| 日韩av不卡免费在线播放| 久久97久久精品| 99热这里只有是精品50| av国产免费在线观看| 大香蕉97超碰在线| 亚洲欧美日韩东京热| 最近最新中文字幕免费大全7| 亚洲va在线va天堂va国产| 国产深夜福利视频在线观看| 国产精品99久久久久久久久| 亚洲精品,欧美精品| 国产男女内射视频| 亚洲四区av| 成人美女网站在线观看视频| 纵有疾风起免费观看全集完整版| freevideosex欧美| 自拍欧美九色日韩亚洲蝌蚪91 | 国产亚洲精品久久久com| 又爽又黄a免费视频| 在线播放无遮挡| 欧美三级亚洲精品| 国产精品一及| 91精品伊人久久大香线蕉| 日本黄色片子视频| 欧美变态另类bdsm刘玥| 欧美精品人与动牲交sv欧美| 最近最新中文字幕免费大全7| 亚洲精品国产av成人精品| 丝瓜视频免费看黄片| 三级经典国产精品| 日韩一区二区三区影片| av专区在线播放| 亚洲精品久久久久久婷婷小说| 搡老乐熟女国产| 99热全是精品| 高清午夜精品一区二区三区| 女人十人毛片免费观看3o分钟| 国产伦精品一区二区三区四那| 99久久精品热视频| 国产精品久久久久久精品古装| 三级国产精品欧美在线观看| 亚洲综合精品二区| 成人免费观看视频高清| 青青草视频在线视频观看| 久久久久久久亚洲中文字幕| 亚洲伊人久久精品综合| 婷婷色av中文字幕| 久久热精品热| 精品一区二区三区视频在线| 欧美日韩一区二区视频在线观看视频在线| 亚洲成人手机| 亚洲精品一二三| 丰满人妻一区二区三区视频av| 欧美丝袜亚洲另类| 在线看a的网站| 91久久精品国产一区二区成人| 午夜免费观看性视频| 亚洲国产精品专区欧美| 极品教师在线视频| 男人舔奶头视频| 最后的刺客免费高清国语| 欧美老熟妇乱子伦牲交| 国产精品欧美亚洲77777| 精品亚洲成国产av| 久久久久精品久久久久真实原创| 99热全是精品| 国产免费福利视频在线观看| 久久午夜福利片| 久久久久久久久久成人| 免费av中文字幕在线| 亚洲精品一区蜜桃| 欧美日韩在线观看h| 丝袜脚勾引网站| 性高湖久久久久久久久免费观看| 一级a做视频免费观看| 精品人妻一区二区三区麻豆| 久久久久精品久久久久真实原创| 国产精品久久久久久久久免| 国产精品福利在线免费观看| 人妻系列 视频| 成年美女黄网站色视频大全免费 | 国产男女内射视频| 涩涩av久久男人的天堂| 草草在线视频免费看| 成人二区视频| 免费高清在线观看视频在线观看| 久久精品夜色国产| 日韩欧美 国产精品| 国模一区二区三区四区视频| 黄色日韩在线| 91精品国产国语对白视频| 久久毛片免费看一区二区三区| 亚洲国产欧美在线一区| 国产日韩欧美亚洲二区| 亚洲av成人精品一二三区| 亚洲精品456在线播放app| 午夜福利高清视频| 毛片女人毛片| 制服丝袜香蕉在线| 午夜福利影视在线免费观看| .国产精品久久| 久久6这里有精品| 熟女av电影| 国产国拍精品亚洲av在线观看| 久久久久久久久久久丰满| 亚洲欧美日韩无卡精品| 亚洲精品成人av观看孕妇| 国产av码专区亚洲av| 91精品伊人久久大香线蕉| 亚洲,欧美,日韩| 欧美少妇被猛烈插入视频| 日本欧美视频一区| 日本vs欧美在线观看视频 | 久久久久国产网址| 人人妻人人添人人爽欧美一区卜 | 亚洲精品乱久久久久久| 极品少妇高潮喷水抽搐| 亚洲综合色惰| 97在线人人人人妻| 亚洲美女视频黄频| 亚洲精品一区蜜桃| 精品国产乱码久久久久久小说| 韩国av在线不卡| 欧美精品一区二区大全| 国产精品熟女久久久久浪| 亚洲最大成人中文| 欧美日韩视频高清一区二区三区二| 人人妻人人看人人澡| 在线观看三级黄色| 中文字幕人妻熟人妻熟丝袜美| 亚洲怡红院男人天堂| 18禁动态无遮挡网站| 亚洲精品久久久久久婷婷小说| 男人和女人高潮做爰伦理| 人体艺术视频欧美日本| 好男人视频免费观看在线| 亚洲国产日韩一区二区| 综合色丁香网| 欧美激情国产日韩精品一区| 深爱激情五月婷婷| 国产精品不卡视频一区二区| 青春草亚洲视频在线观看| 国产色婷婷99| 亚洲精品乱久久久久久| 亚洲第一av免费看| 日韩中文字幕视频在线看片 | 久久久国产一区二区| 久久久a久久爽久久v久久| 日韩中字成人| 久久久久久人妻| 免费观看a级毛片全部| 久久久久性生活片| 免费人妻精品一区二区三区视频| 国产精品久久久久久精品古装| 亚洲精品视频女| 五月天丁香电影| 国产精品一区二区性色av| 国产精品久久久久成人av| 看十八女毛片水多多多| 国产免费一区二区三区四区乱码| 在线天堂最新版资源| 国模一区二区三区四区视频| 成人亚洲精品一区在线观看 | 午夜免费男女啪啪视频观看| 97在线视频观看| 亚洲三级黄色毛片| 免费av中文字幕在线| 大又大粗又爽又黄少妇毛片口| 最近最新中文字幕免费大全7| 国产大屁股一区二区在线视频| 国产一区二区在线观看日韩| 日本欧美国产在线视频| 在线观看免费视频网站a站| 99热国产这里只有精品6| 夜夜骑夜夜射夜夜干| 另类亚洲欧美激情| 免费不卡的大黄色大毛片视频在线观看| 午夜激情福利司机影院| 久久鲁丝午夜福利片| 国产成人精品婷婷| 人妻系列 视频| 亚洲第一区二区三区不卡| 校园人妻丝袜中文字幕| 99热这里只有精品一区| 国产精品久久久久久av不卡| 精品亚洲乱码少妇综合久久| 老司机影院毛片| xxx大片免费视频| 国产乱来视频区| 国产极品天堂在线| 性色av一级| 街头女战士在线观看网站| 国产69精品久久久久777片| 久久国产乱子免费精品| 国产爽快片一区二区三区| 日韩制服骚丝袜av| 又黄又爽又刺激的免费视频.| 在线观看三级黄色| 99久久精品一区二区三区| 国产精品爽爽va在线观看网站| 欧美高清成人免费视频www| 欧美性感艳星| 超碰97精品在线观看| 国产免费福利视频在线观看| 日韩成人av中文字幕在线观看| 久久久久久人妻| 男人狂女人下面高潮的视频| 熟女电影av网| 亚洲内射少妇av| 99热全是精品| 夫妻性生交免费视频一级片| 久久久精品94久久精品| 欧美 日韩 精品 国产| 高清午夜精品一区二区三区| 男女国产视频网站| 国产久久久一区二区三区| 这个男人来自地球电影免费观看 | 国产欧美日韩一区二区三区在线 | 美女视频免费永久观看网站| 久久人妻熟女aⅴ| 一级毛片久久久久久久久女| 国产精品麻豆人妻色哟哟久久| 国产真实伦视频高清在线观看| 国产 精品1| 亚洲精品亚洲一区二区| a级毛色黄片| 国产精品国产三级专区第一集| 51国产日韩欧美| 欧美亚洲 丝袜 人妻 在线| a级毛色黄片| 国产精品成人在线| 嘟嘟电影网在线观看| 日韩精品有码人妻一区| 亚洲图色成人| 99热网站在线观看| 男女无遮挡免费网站观看| 色哟哟·www| 午夜免费观看性视频| 美女xxoo啪啪120秒动态图| 高清视频免费观看一区二区| 久久97久久精品| av天堂中文字幕网| 五月天丁香电影| 久久久久久九九精品二区国产| 在线免费观看不下载黄p国产| 成人黄色视频免费在线看| 久久久久久久大尺度免费视频| 国产精品秋霞免费鲁丝片| 在线观看人妻少妇| 日韩av免费高清视频| 亚洲国产精品999| 久久综合国产亚洲精品| 国产在线视频一区二区| 一区二区三区免费毛片| 亚洲国产最新在线播放| 午夜免费观看性视频| 国产亚洲最大av| 国产欧美亚洲国产| 一本久久精品| 男女免费视频国产| 热re99久久精品国产66热6| 亚洲欧美日韩无卡精品| 亚洲精品一区蜜桃| 多毛熟女@视频| 日日摸夜夜添夜夜添av毛片| 国精品久久久久久国模美| 日本免费在线观看一区| 国产精品一区www在线观看| 欧美日韩在线观看h| 久久久久久久国产电影| 色婷婷av一区二区三区视频| 80岁老熟妇乱子伦牲交| 偷拍熟女少妇极品色| 国产一区二区三区综合在线观看 | 久久久久久九九精品二区国产| 久久久久性生活片| 欧美日韩精品成人综合77777| 久久精品国产鲁丝片午夜精品| xxx大片免费视频| 日韩欧美一区视频在线观看 | 国产视频内射| av国产免费在线观看| 国产深夜福利视频在线观看| 午夜激情久久久久久久| 麻豆成人av视频| 91久久精品国产一区二区成人| 国产成人精品久久久久久| 久久久久国产精品人妻一区二区| 91aial.com中文字幕在线观看| 亚洲精品乱码久久久v下载方式| 亚洲自偷自拍三级| 免费看不卡的av| 国产免费视频播放在线视频| 免费观看在线日韩| 青春草国产在线视频| 亚洲国产av新网站| 男人添女人高潮全过程视频| 久久久久久久精品精品| 成人亚洲欧美一区二区av| 简卡轻食公司| 精品国产乱码久久久久久小说| 99久久人妻综合| 在线观看三级黄色| 十八禁网站网址无遮挡 | 伊人久久国产一区二区| 中文精品一卡2卡3卡4更新| 中国美白少妇内射xxxbb| 女人十人毛片免费观看3o分钟| 欧美三级亚洲精品| 亚洲成人一二三区av| 菩萨蛮人人尽说江南好唐韦庄| 午夜视频国产福利| 免费大片18禁| 全区人妻精品视频| 99热这里只有是精品在线观看| 国产精品秋霞免费鲁丝片| 精品视频人人做人人爽| 亚洲aⅴ乱码一区二区在线播放| 夜夜看夜夜爽夜夜摸| 亚洲精品第二区| 亚洲国产av新网站| 男人添女人高潮全过程视频| 国精品久久久久久国模美| 夜夜看夜夜爽夜夜摸| 麻豆乱淫一区二区| 成人国产av品久久久| 97热精品久久久久久| 一个人看的www免费观看视频| 国产高清有码在线观看视频| 人妻制服诱惑在线中文字幕| 天堂8中文在线网| 小蜜桃在线观看免费完整版高清| 亚洲精品色激情综合| 观看免费一级毛片| 各种免费的搞黄视频| 中文字幕久久专区| 在线观看美女被高潮喷水网站| 免费观看在线日韩| 建设人人有责人人尽责人人享有的 | 日韩强制内射视频| 久久久久久久久久久免费av| 久久久久国产精品人妻一区二区| 两个人的视频大全免费| 建设人人有责人人尽责人人享有的 | 最黄视频免费看| 中文字幕亚洲精品专区| 日韩伦理黄色片| 日日啪夜夜爽| 美女国产视频在线观看| 中文字幕免费在线视频6| 在线观看免费日韩欧美大片 | 五月伊人婷婷丁香| 国产精品蜜桃在线观看| 国产精品秋霞免费鲁丝片| 美女视频免费永久观看网站| 在线观看免费日韩欧美大片 | 精品一区二区免费观看| 一级av片app| 99热国产这里只有精品6| 国产乱人偷精品视频| 国产男女内射视频| 国产精品人妻久久久久久| 18禁在线播放成人免费| 内射极品少妇av片p| av国产久精品久网站免费入址| 久久99精品国语久久久| 夜夜骑夜夜射夜夜干| 亚洲真实伦在线观看| 在线观看一区二区三区激情| 观看美女的网站| 国产成人精品久久久久久| 久久久久久久大尺度免费视频| 亚洲国产欧美人成| 欧美最新免费一区二区三区| 三级国产精品片| xxx大片免费视频| 成人高潮视频无遮挡免费网站| 欧美精品亚洲一区二区| 久久久成人免费电影| 麻豆成人av视频| 国产精品嫩草影院av在线观看| 日韩伦理黄色片| 蜜桃在线观看..| 亚洲va在线va天堂va国产| 亚洲天堂av无毛| 联通29元200g的流量卡| 久久午夜福利片| 日本av免费视频播放| 国产乱人偷精品视频| 黄色怎么调成土黄色| 纵有疾风起免费观看全集完整版| 老熟女久久久| 欧美国产精品一级二级三级 | 国产精品久久久久久久电影| 日韩 亚洲 欧美在线| 3wmmmm亚洲av在线观看| 人妻 亚洲 视频| 亚洲精品国产av成人精品| 日本色播在线视频| 亚洲人成网站在线观看播放| 我要看黄色一级片免费的| 精华霜和精华液先用哪个| 国产午夜精品一二区理论片| 一区二区三区乱码不卡18| 精品久久久久久久久亚洲| 亚洲丝袜综合中文字幕| 久久久久人妻精品一区果冻| 成人免费观看视频高清| 免费观看的影片在线观看| 日产精品乱码卡一卡2卡三|