• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Echocardiographic Measures of Strain and Prognosis

    2016-05-22 08:42:07QuanHuynhBMedPhDandThomasMarwickMBBSPhDMPH

    Quan L. Huynh, BMed, PhD and Thomas H. Marwick, MBBS, PhD, MPH

    1Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS 7000, Australia

    2Baker IDI Heart and Diabetes Research Institute, Melbourne, Australia

    Introduction

    The determination of global left ventricular (LV) systolic function is central to the treatment of patients with cardiovascular disease. In addition to providing “phenotyping” of the two main heart failure (HF) entities(which determines treatment), it provides prognostic information. The cardiovascular imaging modality most commonly used in clinical practice is echocardiography. For decades, echocardiographic LV ejection fraction (EF) has been the most widely used tool to evaluate LV systolic function. Although EF has important prognostic value [1], this method has substantial limitations, including intraobserver and interobserver variability, LV geometric assumptions, load dependency, and the in fluence of heart rate and translational motion [2]. In addition, while EF is linearly associated with outcomes in patients with moderately or severely impaired ventricles, it has little value in predicting outcomes in patients with preserved or normal EF [1]. In the current era, about 50% of patients with HF have preserved EF [3], an epidemiologic transition from reduced EF, which accounted for most cases of HF 50 years ago. We therefore need a reliable parameter that is robust, reproducible, and most importantly able to detect subtle changes in systolic function that may occur early in the disease process when therapeutic intervention may be most bene ficial.

    There are now two decades of research that support echocardiographic strain as a powerful tool for accurate quanti fication of myocardial mechanics.While EF neglects the complex geometry of myocardial fibers and muscle band orientation, strain accounts for longitudinal, circumferential, and radial shortening and torsion of cardiac muscles[2]. In simple terms, strain measures myocardial deformation or change in length during systole and diastole. Recent evidence suggests strain is superior to EF in predicting outcomes [4]. This article seeks to comprehensively review the prognostic value of echocardiographic strain in the prediction of adverse outcomes in cardiovascular disease.

    What is Strain?

    The concept of myocardial strain as a marker of myocardial deformation was introduced in the early 1970s to explain the response of isolated myo fibrils to applied stress [5]. Strain re flects the fractional change in length of myocardium during a cardiac cycle relative to its length at the baseline, expressed as a percentage. Longitudinal and circumferential strain (which represent shortening of the myocardium) have negative values, whereas radial strain(which represents lengthening of the myocardium)has positive values. Strains are not direct measures of contractility because myocardial deformation is load dependent. However, the stress-strain relationship re flects contractility.

    Of the number of strain parameters, global longitudinal strain (GLS), which re flects the deformation along the entire LV wall that can be visualized from apical views in echocardiography, appears to be most robust and more sensitive than EF in detecting subclinical LV dysfunction [6]. In this review, we focus on the prognostic value of GLS.

    Measurement of Strain

    Tissue Doppler Imaging

    Echocardiographic measurement of myocardial strain in clinical practice was first obtained by tissue Doppler imaging (TDI). Myocardial velocity gradient is an estimate of strain rate (Figure 1a), and integration of strain rate over time results in strain (Figure 1b) [7].This method has been well validated [8], but the angle dependence of TDI is a major limitation. If the angle between the ultrasound beam and myocardial motion is more than 20°, TDI-derived strain may be substantially underestimated. The requirement of high frame rate imaging (ideally more than 130 frames per second) is also a limitation of this method.

    Figure 1 Different Techniques for Measurement of Myocardial Deformation.Tissue velocity imaging may be used to measure strain rate(A), from which strain is derived (B). Strain is now more frequently assessed with use of speckle tracking (C).

    Speckle-Tracking Echocardiography

    This method, developed just over a decade ago, has superseded TDI in measuring myocardial strain.It tracks the pattern of echocardiographic B-mode speckles from frame to frame, and the changes in measurement between them allows calculation of myocardial deformation (Figure 1C). This method has been widely validated, and is recommended by the European and American guidelines [7]. Although dependent on good image quality, and requiring a higher frame rate with TDI is desirable for some purposes (2D imaging is usually at 50–70 frames per second compared with color Doppler imaging at 120–140 frames per second), this technique has the advantage of being angle independent. Rapid and user-friendly semiautomated postprocessing also makes this method highly feasible. Generally,speckle-tracking strain provides excellent accuracy in both experimental and clinical studies [9], and has better intraobserver and interobserver reproducibility than TDI-derived strain [10]. In practice, GLS is measured from all three apical views to provide a mean value of 18 cardiac segments (Figure 2). As speckle strain can track myocardial motion in more than one direction, not only longitudinal (the most widely used) but also circumferential strain can be obtained (Figure 3). Radial strain can be obtained but is difficult to reproduce.

    The most recent development has been the ability to assess strain in three dimensions (Figure 4). This has the bene fit of avoiding out-of-plane motion(and therefore tracking of more speckles) but has the disadvantage of lower temporal resolution than 2D techniques. At present, its reproducibility seems to be insufficient for follow-up measurements.

    Figure 2 Measurement of Regional Strain in 18 Myocardial Segments.In addition to individual strain curves in each of the three apical views, the results are summarized in a “bull’s eye” display.

    Prognostic Value of GLS in HF

    HF with Preserved EF

    EF provides little prognostic value in this setting[1]. Diastolic dysfunction parameters have been used to evaluate disease severity [11] but provide modest sensitivity and specificity [12, 13]. GLS has emerged as an effective means to identify subtle changes in global LV function in HF with preserved EF (HFpEF) [14], with value superior and incremental to EF in predicting adverse outcome.Table 1 summarizes studies on prognostic values of LV strain in HF patients. Shah et al. [15] showed that longitudinal LV strain (from apical four-chamber and apical two-chamber views) provided independent prediction of the composite outcome (cardiovascular death, HF hospitalization, and aborted cardiac arrest) in 447 HFpEF patients. This was the strongest predictor among echocardiographic parameters,and showed value incremental to clinical and echocardiographic predictors in predicting risk of incident cardiovascular events [15]. In a group that might be considered to have a precursor to HFpEF,Esrboll et al. [23] also found significant prognostic value of GLS that is incremental to EF and other clinical factors in predicting all-cause death and HF hospitalization in 849 post–myocardial infarction patients with preserved EF.

    We now need to move to the next step in the use of GLS in HFpEF. Given the difficulties in making this diagnosis, and the heterogeneity of groups studied, we should determine whether the use of GLS can help us select patients for therapy. Perhaps the detection of abnormal systolic function (GLS)with diastolic dysfunction will enable recognition of a group with a primary problem of myocardial relaxation rather than interstitial disease.

    Figure 3 Measurement and Display of Apical and Circumferential Strain.

    HF with Reduced EF

    EF is the most widely used tool to quantify LV systolic function, and has been established as an important predictor of death in HF patients, particularly in those with HF with reduced EF (HFrEF) [1]. In general, a GLS of approximately 12% corresponds to an EF of approximately 35% (Figure 5). Several studies have found GLS to provide prognostic value superior to EF even among HFrEF patients [17, 18].Over a median follow-up of 40 months, the largest such study of HFrEF patients (n=1065, EF≤45%)found GLS not only superior to all other echocardiographic parameters, but also that it provided value incremental to established cardiovascular risk factors in the prediction of all-cause death [16]. The analysis of risk strati fication also demonstrated that GLS was especially useful for stratifying patients with very severe HF (EF<22%). While it seems likely that the superiority of GLS is more a re flection of the limitations of EF than a specific physiologic signal from GLS, we should consider wider use of GLS in addition to EF in the follow-up of HFrEF.

    Figure 4 In this Display of 3D Strain, Segmental and Global Measurements are Made in a Similar Way to Those of 2D Strain.

    Prognostic Value of GLS in Myocardial Diseases

    Cardiotoxicity Following Chemotherapy

    The increase of cancer survivorship and the development of new therapies with cardiac sequelae has made cardiotoxicity after chemotherapy a potentially important contributor to HF. Current recommendations stress the close surveillance of EF before and after administration of chemotherapy.EF has limited ability to distinguish random variation from cardiotoxicity, because the test-retest variability of EF is large [24]. Consequently, the recognition of EF changes may identify patients too late in the cardiotoxic process to respond to treatment [25]. GLS is now recommended in guidelines for follow-up of patients after chemotherapy[26]. While a randomized clinical trial is in process to compare GLS-guided therapy and EF-guided therapy (http://www.anzctr.org.au/TrialSearch.asp x?searchTxt=SUCCOUR&isBasic=True), observational data have supported a relative reduction of more than 10–15% in GLS to be clinically significant and a potential trigger for cardioprotective therapy.

    Hypertrophic Cardiomyopathy

    The diagnosis of hypertrophic cardiomyopathy requires a combination of clinical features, ECG, 2D echocardiography, and Doppler echocardiography,and exclusion of other similar conditions. While myocardial function is impaired, EF may be normal or even supernormal among these patients. Radial and circumferential strains may be preserved, but longitudinal strain is reduced during early stages of the disease and is use is now recommended in the guidelines [27]. As summarized in Table 2, GLS has independent prognostic value, incremental to conventional parameters, in the prediction of major cardiac adverse outcomes among patients with hypertrophic cardiomyopathy [28, 29].

    ?

    Figure 5 Impaired Longitudinal Strain in a Patient with Dilated Cardiomyopathy and Reduced Ejection Fraction.Stain adds incremental value to ejection fraction in this context.

    Rare Heart Muscle Disease

    Cardiac amyloidosis results from extracellular deposition of amyloid fibers in the myocardial interstitium. While EF often remains normal until late in the disease process, strain deteriorates early and has incremental diagnostic value [32]. Strain may also help to distinguish between familial and systemic amyloidosis [33]. Patients with systemic amyloidosis present with lower longitudinal strain, which may explain why they usually have severer HF and a higher mortality rate than those with familial amyloidosis. A recent prospective study of 206 consecutive patients with biopsy-proven systemic amyloidosis found GLS to be an independent predictor of survival, with prognostic value incremental to standard clinical and serologic parameters [30].

    Cardiac sarcoidosis is a rare but serious complication of sarcoidosis; sudden cardiac death may occur before the clinical presentation [34]. The early detection of cardiac involvement in sarcoidosis may facilitate selection for specific therapies,and use of GLS is a promising method to identify patients with mild systolic dysfunction that is not re flected by EF. Although limited data are available, a recent study of 100 sarcoidosis patients(without evidence of cardiac sarcoidosis or preexisting structural heart disease) showed a significant impairment of GLS compared with that in controls,suggesting subclinical systolic dysfunction in the absence of any conventional evidence of heart disease [31]. In multivariable analysis, GLS also remained as the only significant predictor of the composite outcome including all-cause death, HF hospitalization, device implantation, new arrhythmias, or development of cardiac sarcoidosis.

    Prognostic Value of GLS in Coronary Artery Disease

    ?

    Strain was initially developed as a regional parameter, and is reduced during myocardial ischemia [35]and infarction [8, 36]. Abnormal strain may re flect the extent of ischemia or scar (Figure 6) [37]. It may also differentiate between transmural and nontransmural scar [38]. Individuals with cardiovascular risk factors (diabetes mellitus, hypertension,and obesity) who are at higher risk of myocardial ischemia present with reduced strain [39–41].Table 3 summarizes studies on prognostic values of LV strain in patients with coronary artery disease.In the evaluation of patients with suspected stable angina, GLS is an independent predictor of signi fi-cant coronary artery disease both at rest and during stress echocardiography [46, 47]. For patients who have experienced myocardial infarction or chronic ischemic cardiomyopathy, GLS has been shown to be superior to EF in the prediction of adverse outcomes such as death, reinfarction, HF, and stroke[23, 22, 42]. However, as in other situations, we still lack high-quality information that shows GLS to be superior to EF in facilitating decision making in patients with CAD.

    Figure 6 Distribution of Strain in a Patient with Anterior Myocardial Infarction.The pattern of reduced strain is visualized in the “bull’s eye” display.

    Prognostic Value of GLS in Valvular Heart Disease

    Surgery is generally the treatment of choice for severe symptomatic valvular heart disease. However,the selection of patients with asymptomatic moderate-to-severe valvular heart disease – especially regurgitation – is problematic. Reduction in EF usually occurs in relatively advanced stages of myocardial dysfunction, perhaps too late to reverse myocardial injury. On the other hand, premature surgery risks surgical and prosthetic complications[48]. GLS allows quanti fication of early myocardial dysfunction, which may improve the identi fication of the optimal timing of surgery [49]. Recent studies have also demonstrated the prognostic utility of GLS incremental to standard clinical and echocardiographic parameters among patients with mitral or aortic regurgitation or with aortic stenosis, both before [49–51] and after [52–54] surgery. These prognostic values of GLS in valvular disease are summarized in Table 4.

    Cardiac Arrhythmias

    ?

    ?

    Patients with prior myocardial infarction are at risk of sudden cardiac death and life-threatening ventricular arrhythmias. EF < 35% is currently used to select patients for implantation of a cardioverter de fibrillator for primary prevention [55].Although the risk of sudden cardiac death is highest for patients with severely impaired EF, most patients with sudden cardiac death have EF > 35%,re flecting its modest value in risk strati fication[56]. Recent studies have focused on finding a better risk-stratifying parameter and suggest that GLS and mechanical dispersion (measured from strain echocardiography as the standard deviation of the time to peak longitudinal strain, re flecting abnormalities in synchrony; Figure 7) independently predict sudden cardiac death and ventricular arrhythmias, and improve risk strati fication above and beyond traditional risk factors [43–45,57]. Although the current evidence is not robust enough to add strain as the criterion for implantation of cardioverter de fibrillators, these recent findings promise wider use of strain echocardiography in clinical practice.

    Figure 7 Mechanical Dispersion Illustrated by 2D Strain.The time to peak strain varies in each myocardial segment, and the amount of dispersion is a predictor of arrhythmic risk.

    Clinical Relevance of Strain Imaging

    Emerging data have demonstrated the superior prognostic value of GLS in a wide variety of cardiac diseases. This unique predictive value is a strong argument in support of the routine use of strain imaging alongside EF. However, this method has a number of pitfalls, including intervendor variability [58].

    What is needed for the near future is to determine if clinical decisions based on strain result in better outcomes. We need clinical trials to test these hypo theses. Some of these trials that are still ongoing are the Tasmanian Study of Echocardiographic Detection of Left Ventricular Dysfunction (also known as the TAS-ELF study, ACTRN12614000080628) and the Strain Surveillance During Chemotherapy for Improving Cardiovascular Outcomes (also known as the SUCCOUR study, ACTRN12614000341628). The TAS-ELF study is a randomized controlled trial to study HF outcomes in stage A HF patients. These patients are randomized to receive intervention(treatment guided by strain imaging) and usual care (treatment guided by EF). The SUCCOUR study is a multinational randomized controlled trial involving chemotherapy patients at risk of cardiotoxicity. These patients are randomized to receive cardioprotection guided by measurement of LV strain pr cardioprotection guided by measurement of EF for avoidance of cardiotoxicity.The findings from these studies may open a new perspective in the management of cardiac disease where therapeutic intervention may be initiated in“at-risk” patients before they develop symptoms and therefore might completely reverse myocardial dysfunction.

    Conflict of Interest

    The authors declare no Conflict of interest.

    REFERENCES

    1. Curtis JP, Sokol SI, Wang Y,Rathore SS, Ko DT, Jadbabaie F,et al. The association of left ventricular ejection fraction, mortality,and cause of death in stable outpatients with heart failure. J Am Coll Cardiol 2003;42:736–42.

    2. Nesbitt GC, Mankad S, Oh JK.Strain imaging in echocardiography: methods and clinical applications. Int J Cardiovasc Imaging 2009;25:9–22. doi: 10.1007/s10554-008-9414-1.

    3. Owan TE, Hodge DO, Herges RM,Jacobsen SJ, Roger VL, Red field MM. Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med 2006;355:251–9.

    4. Kalam K, Otahal P, Marwick TH. Prognostic implications of global LV dysfunction: a systematic review and meta-analysis of global longitudinal strain and ejection fraction. Heart 2014;100:1673–80. doi: 10.1136/heartjnl-2014-305538.

    5. Mirsky I, Parmley WW. Assessment of passive elastic stiffness for isolated heart muscle and the intact heart. Circ Res 1973;33:233–43.

    6. Smiseth OA, Torp H, Opdahl A,Haugaa KH, Urheim S. Myocardial strain imaging: how useful is it in clinical decision making? Eur Heart J 2016;37:1196–207. doi:10.1093/eurheartj/ehv529.

    7. Voigt JU, Pedrizzetti G, Lysyansky P, Marwick TH, Houle H, Baumann R, et al. De finitions for a common standard for 2D speckle tracking echocardiography: consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. Eur Heart J Cardiovasc Imaging 2015;16:1–11.doi: 10.1093/ehjci/jeu184.

    8. Urheim S, Edvardsen T, Torp H, Angelsen B, Smiseth OA.Myocardial strain by Doppler echocardiography. Validation of a new method to quantify regional myocardial function. Circulation 2000;102:1158–64.

    9. Amundsen BH, Helle-Valle T,Edvardsen T, Torp H, Crosby J,Lyseggen E, et al. Noninvasive myocardial strain measurement by speckle tracking echocardiography:validation against sonomicrometry and tagged magnetic resonance imaging. J Am Coll Cardiol 2006;47:789–93.

    10. Hanekom L, Cho GY, Leano R, Jeffriess L, Marwick TH.Comparison of two-dimensional speckle and tissue Doppler strain measurement during dobutamine stress echocardiography: an angiographic correlation. Eur Heart J 2007;28:1765–72.

    11. Paulus WJ, Tschope C, Sanderson JE, Rusconi C, Flachskampf FA, Rademakers FE, et al. How to diagnose diastolic heart failure: a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the Heart Failure and Echocardiography Associations of the European Society of Cardiology.Eur Heart J 2007;28:2539–50.

    12. Abhayaratna WP, Marwick TH, Smith WT, Becker NG.Characteristics of left ventricular diastolic dysfunction in the community: an echocardiographic survey. Heart 2006;92:1259–64.

    13. Persson H, Lonn E, Edner M,Baruch L, Lang CC, Morton JJ,et al. Diastolic dysfunction in heart failure with preserved systolic function: need for objective evidence: results from the CHARM Echocardiographic Substudy-CHARMES. J Am Coll Cardiol 2007;49:687–94.

    14. Kraigher-Krainer E, Shah AM,Gupta DK, Santos A, Claggett B, Pieske B, et al. Impaired systolic function by strain imaging in heart failure with preserved ejection fraction. J Am Coll Cardiol 2014;63:447–56. doi: 10.1016/j.jacc.2013.09.052.

    15. Shah AM, Claggett B, Sweitzer NK, Shah SJ, Anand IS, Liu L, et al.Prognostic importance of impaired systolic function in heart failure with preserved ejection fraction and the impact of spironolactone. Circulation 2015;132:402–14. doi: 10.1161/CIRCULATIONAHA.115.015884.

    16. Sengelov M, Jorgensen PG,Jensen JS, Bruun NE, Olsen FJ,Fritz-Hansen T, et al. Global Longitudinal strain is a superior predictor of all-cause mortality in heart failure with reduced ejection fraction. JACC Cardiovasc Imaging 2015;8:1351–9. doi:10.1016/j.jcmg.2015.07.013.

    17. Nahum J, Bensaid A, Dussault C,Macron L, Clémence D, Belaid B, et al. Impact of longitudinal myocardial deformation on the prognosis of chronic heart failure patients. Circ Cardiovasc Imaging 2010;3:249–56. doi: 10.1161/CIRCIMAGING.109.910893.

    18. Iacoviello M, Puzzovivo A, Guida P , Forleo C, Monitillo F, Catanzaro R, et al. Independent role of left ventricular global longitudinal strain in predicting prognosis of chronic heart failure patients.Echocardiography 2013;30:803–11. doi: 10.1111/echo.12142.

    19. Zhang KW, French B, May Khan A, Plappert T, Fang JC, Sweitzer NK, et al. Strain improves risk prediction beyond ejection fraction in chronic systolic heart failure. J Am Heart Assoc 2014;3:e000550. doi:10.1161/JAHA.113.000550.

    20. Cho GY, Marwick TH, Kim HS,Kim MK, Hong KS, Oh DJ. Global 2-dimensional strain as a new prognosticator in patients with heart failure. J Am Coll Cardiol 2009;54:618–24. doi: 10.1016/j.jacc.2009.04.061.

    21. Stampehl MR, Mann DL, Nguyen JS, Cota F, Colmenares C,Dokainish H. Speckle strain echocardiography predicts outcome in patients with heart failure with both depressed and preserved left ventricular ejection fraction.Echocardiography 2015;32:71–8.doi: 10.1111/echo.12613.

    22. Bertini M, Ng AC, Antoni ML,Nucifora G, Ewe SH, Auger D,et al. Global longitudinal strain predicts long-term survival in patients with chronic ischemic cardiomyopathy. Circ Cardiovasc Imaging 2012;5:383–91. doi: 10.1161/CIRCIMAGING.111.970434.

    23. Ersboll M, Valeur N, Mogensen UM,Andersen MJ, M?ller JE, Velazquez EJ, et al. Prediction of all-cause mortality and heart failure admissions from global left ventricular longitudinal strain in patients with acute myocardial infarction and preserved left ventricular ejection fraction. J Am Coll Cardiol 2013;61:2365–73.doi: 10.1016/j.jacc.2013.02.061.

    24. Thavendiranathan P, Poulin F, Lim KD, Plana JC, Woo A, Marwick TH. Use of myocardial strain imaging by echocardiography for the early detection of cardiotoxicity in patients during and after cancer chemotherapy: a systematic review.J Am Coll Cardiol 2014;63:2751–68. doi: 10.1016/j.jacc.2014.01.073.

    25. Cardinale D, Colombo A, Lamantia G, Colombo N, Civelli M, De Giacomi G, et al. Anthracyclineinduced cardiomyopathy: clinical relevance and response to pharmacologic therapy. J Am Coll Cardiol 2010;55:213–20. doi: 10.1016/j.jacc.2009.03.095.

    26. Plana JC, Galderisi M, Barac A,Ewer MS, Ky B, Scherrer-Crosbie M, et al. Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 2014;15:1063–93. doi: 10.1093/ehjci/jeu192.

    27. Elliott PM, Anastasakis A, Borger MA, Borggrefe M, Cecchi F,Charron P, et al. 2014 ESC guidelines on diagnosis and management of hypertrophic cardiomyopathy:the Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC). Eur Heart J 2014;35:2733–79. doi:10.1093/eurheartj/ehu284.

    28. Hartlage GR, Kim JH, Strickland PT, Cheng AC, Ghasemzadeh N,Pernetz MA, et al. The prognostic value of standardized reference values for speckle-tracking global longitudinal strain in hypertrophic cardiomyopathy. Int J Cardiovasc Imaging 2015;31:557–65. doi:10.1007/s10554-015-0590-5.

    29. Reant P, Mirabel M, Lloyd G,Peyrou J, Ayala JM, Dickie S,et al. Global longitudinal strain is associated with heart failure outcomes in hypertrophic cardiomyopathy. Heart 2016;102:741–7. doi:10.1136/heartjnl-2015-308576.

    30. Buss SJ, Emami M, Mereles D,Korosoglou G, Kristen AV, Voss A,et al. Longitudinal left ventricular function for prediction of survival in systemic light-chain amyloidosis:incremental value compared with clinical and biochemical markers. J Am Coll Cardiol 2012;60:1067–76.doi: 10.1016/j.jacc.2012.04.043.

    31. Joyce E, Ninaber MK, Katsanos S,Debonnaire P, Kamperidis V, Bax JJ, et al. Subclinical left ventricular dysfunction by echocardiographic speckle-tracking strain analysis relates to outcome in sarcoidosis.Eur J Heart Fail 2015;17:51–62.doi: 10.1002/ejhf.205.

    32. Koyama J, Ray-Sequin PA, Falk RH. Longitudinal myocardial function assessed by tissue velocity,strain, and strain rate tissue Doppler echocardiography in patients with AL (primary) cardiac amyloidosis.Circulation 2003;107:2446–52.

    33. Ogiwara F, Koyama J, Ikeda S,Kinoshita O, Falk RH. Comparison of the strain Doppler echocardiographic features of familial amyloid polyneuropathy (FAP) and light-chain amyloidosis. Am J Cardiol 2005;95:538–40.

    34. Sekhri V, Sanal S, Delorenzo LJ,Aronow WS, Maguire GP. Cardiac sarcoidosis: a comprehensive review. Arch Med Sci 2011;7:546–54. doi: 10.5114/aoms.2011.24118.

    35. Voigt JU, Arnold MF, Karlsson M, Hübbert L, Kukulski T, Hatle L, et al. Assessment of regional longitudinal myocardial strain rate derived from Doppler myocardial imaging indexes in normal and infarcted myocardium. J Am Soc Echocardiogr 2000;13:588–98.

    36. Aarsaether E, Rosner A,Straumbotn E, Busund R. Peak longitudinal strain most accurately re flects myocardial segmental viability following acute myocardial infarction - an experimental study in open-chest pigs. Cardiovasc Ultrasound 2012;10:23. doi:10.1186/1476-7120-10-23.

    37. Choi JO, Cho SW, Song YB,Cho SJ, Song BG, Lee SC,et al. Longitudinal 2D strain at rest predicts the presence of left main and three vessel coronary artery disease in patients without regional wall motion abnormality. Eur J Echocardiogr 2009;10:695–701. doi: 10.1093/ejechocard/jep041.

    38. Roes SD, Mollema SA, Lamb HJ,van der Wall EE, de Roos A, Bax JJ. Validation of echocardiographic two-dimensional speckle tracking longitudinal strain imaging for viability assessment in patients with chronic ischemic left ventricular dysfunction and comparison with contrast-enhanced magnetic resonance imaging. Am J Cardiol 2009;104:312–7. doi: 10.1016/j.amjcard.2009.03.040.

    39. Wang Q, Gao Y, Tan K, Li P.Subclinical impairment of left ventricular function in diabetic patients with or without obesity: a study based on three-dimensional speckle tracking echocardiography.Herz 2015;40:260–8. doi: 10.1007/s00059-014-4186-y.

    40. Fang ZY, Leano R, Marwick TH.Relationship between longitudinal and radial contractility in subclinical diabetic heart disease. Clin Sci(Lond) 2004;106:53–60.

    41. Holland DJ, Marwick TH, Haluska BA, Leano R, Hordern MD, Hare JL, et al. Subclinical LV dysfunction and 10-year outcomes in type 2 diabetes mellitus. Heart 2015;101:1061–6. doi: 10.1136/heartjnl-2014-307391.

    42. Munk K, Andersen NH, Terkelsen CJ, Bibby BM, Johnsen SP, B?tker HE, et al. Global left ventricular longitudinal systolic strain for early risk assessment in patients with acute myocardial infarction treated with primary percutaneous intervention. J Am Soc Echocardiogr 2012;25:644–51. doi: 10.1016/j.echo.2012.02.003.

    43. Haugaa KH, Smedsrud MK, Steen T, Kongsgaard E, Loennechen JP,Skjaerpe T, et al. Mechanical dispersion assessed by myocardial strain in patients after myocardial infarction for risk prediction of ventricular arrhythmia. JACC Cardiovasc Imaging 2010;3:247–56. doi:10.1016/j.jcmg.2009.11.012.

    44. Ersboll M, Valeur N, Andersen MJ, Mogensen UM, Vinther M,Svendsen JH, et al. Early echocardiographic deformation analysis for the prediction of sudden cardiac death and life-threatening arrhythmias after myocardial infarction. JACC Cardiovasc Imaging 2013;6:851–60.doi: 10.1016/j.jcmg.2013.05.009.

    45. Haugaa KH, Grenne BL, Eek CH,Ersb?ll M, Valeur N, Svendsen JH, et al. Strain echocardiography improves risk prediction of ventricular arrhythmias after myocardial infarction. JACC Cardiovasc Imaging 2013;6:841–50. doi:10.1016/j.jcmg.2013.03.005.

    46. Biering-Sorensen T, Hoffmann S,Mogelvang R, Iversen AZ, Galatius S, Fritz-Hansen T, et al. Myocardial strain analysis by 2-dimensional speckle tracking echocardiography improves diagnostics of coronary artery stenosis in stable angina pectoris. Circ Cardiovasc Imaging 2014;7:58–65. doi: 10.1161/CIRCIMAGING.113.000989.

    47. Voigt JU, Exner B, Schmiedehausen K, Huchzermeyer C, Reulbach U, Nixdorff U, et al. Strainrate imaging during dobutamine stress echocardiography provides objective evidence of inducible ischemia. Circulation 2003;107:2120–6.

    48. Dal-Bianco JP, Khandheria BK,Mookadam F, Gentile F, Sengupta PP. Management of asymptomatic severe aortic stenosis. J Am Coll Cardiol 2008;52:1279–92. doi:10.1016/j.jacc.2008.07.020.

    49. Kearney LG, Lu K, Ord M, Patel SK, Pro fitis K, Matalanis G, et al.Global longitudinal strain is a strong independent predictor of allcause mortality in patients with aortic stenosis. Eur Heart J Cardiovasc Imaging 2012;13:827–33. doi:10.1093/ehjci/jes115.

    50. Yingchoncharoen T, Gibby C,Rodriguez LL, Grimm RA,Marwick TH. Association of myocardial deformation with outcome in asymptomatic aortic stenosis with normal ejection fraction. Circ Cardiovasc Imaging 2012;5:719–25. doi: 10.1161/CIRCIMAGING.112.977348.

    51. Kusunose K, Goodman A, Parikh R, Barr T, Agarwal S, Popovic ZB,et al. Incremental prognostic value of left ventricular global longitudinal strain in patients with aortic stenosis and preserved ejection fraction. Circ Cardiovasc Imaging 2014;7:938–45. doi: 10.1161/CIRCIMAGING.114.002041.

    52. Dahl JS, Videbaek L, Poulsen MK, Rudbaek TR, Pellikka PA,Moller JE. Global strain in severe aortic valve stenosis: relation to clinical outcome after aortic valve replacement. Circ Cardiovasc Imaging 2012;5:613–20.

    53. Kamperidis V, van Rosendael PJ,Ng AC, Katsanos S, van der Kley F,Debonnaire P, et al. Impact of flow and left ventricular strain on outcome of patients with preserved left ventricular ejection fraction and low gradient severe aortic stenosis undergoing aortic valve replacement. Am J Cardiol 2014;114:1875–81. doi:10.1016/j.amjcard.2014.09.030.

    54. Witkowski TG, Thomas JD,Debonnaire PJ, Delgado V, Hoke U,Ewe SH, et al. Global longitudinal strain predicts left ventricular dysfunction after mitral valve repair.Eur Heart J Cardiovasc Imaging 2013;14:69–76. doi: 10.1093/ehjci/jes155.

    55. McMurray JJ, Adamopoulos S,Anker SD, Auricchio A, B?hm M, Dickstein K, et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur Heart J 2012;33:1787–847. doi:10.1093/eurheartj/ehs104.

    56. Buxton AE, Lee KL, Ha fley GE,Pires LA, Fisher JD, Gold MR, et al.Limitations of ejection fraction for prediction of sudden death risk in patients with coronary artery disease:lessons from the MUSTT study. J Am Coll Cardiol 2007;50:1150–7.

    57. Leren IS, Hasselberg NE, Saberniak J, H?land TF, Kongsg?rd E, Smiseth OA, et al. Cardiac mechanical alterations and genotype specific differences in subjects with long QT syndrome. JACC Cardiovasc Imaging 2015;8:501–10. doi:10.1016/j.jcmg.2014.12.023.

    58. Farsalinos KE, Daraban AM, Unlu S, Thomas JD, Badano LP, Voigt JU.Head-to-head comparison of global longitudinal strain measurements among nine different vendors:The EACVI/ASE Inter-Vendor Comparison Study. J Am Soc Echocardiogr 2015;28:1171–81.

    成熟少妇高潮喷水视频| 中文字幕人妻熟女乱码| 久99久视频精品免费| 免费在线观看黄色视频的| 亚洲人成伊人成综合网2020| 少妇的丰满在线观看| 老司机福利观看| 亚洲男人的天堂狠狠| 国产精品亚洲av一区麻豆| 法律面前人人平等表现在哪些方面| 成年女人毛片免费观看观看9| 午夜福利成人在线免费观看| 人妻久久中文字幕网| 国产片内射在线| 91老司机精品| 麻豆一二三区av精品| 中文字幕精品免费在线观看视频| 色婷婷久久久亚洲欧美| 亚洲在线自拍视频| 欧美中文综合在线视频| 成人18禁在线播放| 50天的宝宝边吃奶边哭怎么回事| 怎么达到女性高潮| 欧美日本视频| 老熟妇乱子伦视频在线观看| 中文亚洲av片在线观看爽| 不卡一级毛片| 国产精品影院久久| 亚洲第一av免费看| 一进一出好大好爽视频| 久久久久久大精品| 久久精品国产亚洲av高清一级| 午夜福利在线观看吧| 国产色视频综合| 久久这里只有精品19| 久久精品国产99精品国产亚洲性色 | 999精品在线视频| 91字幕亚洲| 天天躁狠狠躁夜夜躁狠狠躁| 婷婷六月久久综合丁香| 亚洲熟妇熟女久久| а√天堂www在线а√下载| 一区二区三区精品91| 美女 人体艺术 gogo| 色av中文字幕| 国产99久久九九免费精品| 欧美乱色亚洲激情| 国产亚洲av高清不卡| 好男人电影高清在线观看| 丁香欧美五月| 亚洲av美国av| 嫩草影院精品99| 色播亚洲综合网| 99精品久久久久人妻精品| 精品日产1卡2卡| 精品国内亚洲2022精品成人| 中文字幕精品免费在线观看视频| 精品一区二区三区视频在线观看免费| 国产野战对白在线观看| 国产一卡二卡三卡精品| 国产一区二区三区综合在线观看| 18禁美女被吸乳视频| 精品欧美国产一区二区三| av网站免费在线观看视频| 麻豆av在线久日| aaaaa片日本免费| 九色国产91popny在线| 搡老熟女国产l中国老女人| 不卡av一区二区三区| 国产一级毛片七仙女欲春2 | 一级a爱片免费观看的视频| 国产91精品成人一区二区三区| 久久久久久大精品| 1024视频免费在线观看| 大香蕉久久成人网| 亚洲第一欧美日韩一区二区三区| 亚洲天堂国产精品一区在线| 精品久久久久久久人妻蜜臀av | 久久天堂一区二区三区四区| 亚洲无线在线观看| 亚洲七黄色美女视频| 午夜福利视频1000在线观看 | 午夜两性在线视频| 午夜免费成人在线视频| 亚洲视频免费观看视频| 精品久久久久久久毛片微露脸| 久久久久久久精品吃奶| 制服诱惑二区| 精品日产1卡2卡| 免费一级毛片在线播放高清视频 | 午夜免费激情av| 两人在一起打扑克的视频| xxx96com| 少妇熟女aⅴ在线视频| 12—13女人毛片做爰片一| av在线播放免费不卡| 国产一区二区激情短视频| a级毛片在线看网站| 国产麻豆成人av免费视频| 日韩欧美在线二视频| 色播在线永久视频| 在线观看66精品国产| 日本五十路高清| 亚洲,欧美精品.| 最近最新中文字幕大全免费视频| 波多野结衣一区麻豆| 级片在线观看| av电影中文网址| 亚洲色图av天堂| 午夜福利18| 亚洲成人国产一区在线观看| 亚洲熟妇熟女久久| 一级片免费观看大全| 亚洲人成伊人成综合网2020| 成人18禁高潮啪啪吃奶动态图| 欧美日本视频| 国产视频一区二区在线看| 亚洲成人精品中文字幕电影| 91精品三级在线观看| 久久久久久久精品吃奶| 很黄的视频免费| 亚洲第一电影网av| 久久精品国产综合久久久| 精品一区二区三区视频在线观看免费| 日韩成人在线观看一区二区三区| 成人精品一区二区免费| 国产精品野战在线观看| 少妇 在线观看| 日韩成人在线观看一区二区三区| 99在线人妻在线中文字幕| 免费搜索国产男女视频| 久久久精品国产亚洲av高清涩受| www.熟女人妻精品国产| 亚洲一区二区三区不卡视频| 亚洲三区欧美一区| 国产av一区二区精品久久| 99在线人妻在线中文字幕| 中国美女看黄片| 国产单亲对白刺激| 日日摸夜夜添夜夜添小说| 一二三四在线观看免费中文在| 波多野结衣av一区二区av| 啦啦啦 在线观看视频| 麻豆av在线久日| 超碰成人久久| 纯流量卡能插随身wifi吗| 麻豆久久精品国产亚洲av| 巨乳人妻的诱惑在线观看| 亚洲av成人av| 又大又爽又粗| 国产激情久久老熟女| 午夜福利影视在线免费观看| 韩国精品一区二区三区| 午夜福利,免费看| 久久久久久久久久久久大奶| 亚洲成a人片在线一区二区| 成人欧美大片| 中文亚洲av片在线观看爽| 婷婷六月久久综合丁香| 黄色视频,在线免费观看| 欧美日韩一级在线毛片| 国产高清videossex| 一级毛片女人18水好多| 欧美激情久久久久久爽电影 | 搡老妇女老女人老熟妇| 禁无遮挡网站| 午夜成年电影在线免费观看| 男男h啪啪无遮挡| 亚洲熟女毛片儿| 亚洲成人精品中文字幕电影| 亚洲精品国产精品久久久不卡| 精品国产乱码久久久久久男人| 操美女的视频在线观看| 可以在线观看毛片的网站| 一级a爱视频在线免费观看| 欧美在线黄色| 亚洲av日韩精品久久久久久密| 老鸭窝网址在线观看| 狂野欧美激情性xxxx| netflix在线观看网站| 亚洲av成人不卡在线观看播放网| 亚洲熟妇中文字幕五十中出| 欧美成人性av电影在线观看| 日本撒尿小便嘘嘘汇集6| 一级毛片高清免费大全| 欧美一区二区精品小视频在线| 日本精品一区二区三区蜜桃| 午夜福利在线观看吧| 亚洲精品国产一区二区精华液| 91在线观看av| 亚洲精品一区av在线观看| 变态另类丝袜制服| 国产欧美日韩一区二区精品| 久久久久久久久免费视频了| 国产精品免费视频内射| 啦啦啦免费观看视频1| 香蕉丝袜av| x7x7x7水蜜桃| 亚洲中文日韩欧美视频| 国产高清视频在线播放一区| 国产精品九九99| 久久午夜亚洲精品久久| 看黄色毛片网站| 亚洲国产毛片av蜜桃av| 日本免费a在线| 亚洲免费av在线视频| 在线国产一区二区在线| 亚洲电影在线观看av| 黄色 视频免费看| 亚洲激情在线av| 亚洲人成电影观看| 久久午夜综合久久蜜桃| 精品少妇一区二区三区视频日本电影| 一区二区日韩欧美中文字幕| av视频在线观看入口| 国产精品亚洲av一区麻豆| 亚洲va日本ⅴa欧美va伊人久久| 亚洲自拍偷在线| 国产伦人伦偷精品视频| 久久久久久亚洲精品国产蜜桃av| 搞女人的毛片| 日本欧美视频一区| 亚洲国产精品成人综合色| 国产激情久久老熟女| 亚洲欧美精品综合一区二区三区| 91成人精品电影| 叶爱在线成人免费视频播放| 欧美丝袜亚洲另类 | 亚洲 欧美一区二区三区| 亚洲人成网站在线播放欧美日韩| 他把我摸到了高潮在线观看| 亚洲精品久久国产高清桃花| 久久午夜综合久久蜜桃| 在线观看www视频免费| 亚洲,欧美精品.| 成年人黄色毛片网站| 黄色a级毛片大全视频| 亚洲精品中文字幕在线视频| 亚洲精品美女久久久久99蜜臀| 国产色视频综合| 国内精品久久久久精免费| 悠悠久久av| 99在线人妻在线中文字幕| 国产精品美女特级片免费视频播放器 | 级片在线观看| 一边摸一边做爽爽视频免费| 日韩精品免费视频一区二区三区| 叶爱在线成人免费视频播放| 国产麻豆69| 久久国产亚洲av麻豆专区| 好男人电影高清在线观看| 成人亚洲精品一区在线观看| 热99re8久久精品国产| 中文字幕高清在线视频| 国产午夜福利久久久久久| 99精品欧美一区二区三区四区| 禁无遮挡网站| 一级毛片女人18水好多| 18禁观看日本| 日韩视频一区二区在线观看| 大码成人一级视频| 欧美精品啪啪一区二区三区| 男女做爰动态图高潮gif福利片 | 高清在线国产一区| 亚洲国产高清在线一区二区三 | 精品不卡国产一区二区三区| 免费av毛片视频| 给我免费播放毛片高清在线观看| 日韩大尺度精品在线看网址 | 国产成人av教育| 亚洲国产日韩欧美精品在线观看 | 国产午夜福利久久久久久| 在线天堂中文资源库| 极品人妻少妇av视频| 超碰成人久久| 久久婷婷人人爽人人干人人爱 | 国产精品99久久99久久久不卡| 在线永久观看黄色视频| 大香蕉久久成人网| 一级毛片精品| 亚洲精品在线观看二区| 午夜亚洲福利在线播放| 少妇的丰满在线观看| 亚洲av五月六月丁香网| 97碰自拍视频| 日本a在线网址| 欧美国产日韩亚洲一区| 黄色 视频免费看| 天天添夜夜摸| 亚洲精品国产一区二区精华液| 欧美成人午夜精品| 国产一区二区三区综合在线观看| aaaaa片日本免费| 亚洲精品一卡2卡三卡4卡5卡| 免费av毛片视频| 欧美色视频一区免费| 黄色a级毛片大全视频| 久久久久亚洲av毛片大全| 午夜亚洲福利在线播放| 色综合欧美亚洲国产小说| 变态另类成人亚洲欧美熟女 | 国产99久久九九免费精品| 国产精品久久久久久亚洲av鲁大| 午夜亚洲福利在线播放| 高清在线国产一区| 一区二区三区高清视频在线| 成在线人永久免费视频| 欧洲精品卡2卡3卡4卡5卡区| 亚洲精品在线美女| 成人亚洲精品一区在线观看| 婷婷丁香在线五月| 亚洲欧美激情在线| 国产精品九九99| 精品日产1卡2卡| 日本黄色视频三级网站网址| 亚洲av日韩精品久久久久久密| 欧美中文日本在线观看视频| 午夜激情av网站| 99精品欧美一区二区三区四区| 亚洲欧美激情综合另类| 亚洲午夜精品一区,二区,三区| 日韩欧美三级三区| 国产麻豆成人av免费视频| 亚洲va日本ⅴa欧美va伊人久久| 免费av毛片视频| tocl精华| 亚洲午夜理论影院| 国产精品香港三级国产av潘金莲| 禁无遮挡网站| 韩国av一区二区三区四区| 在线观看免费视频网站a站| 日本欧美视频一区| www.www免费av| 国产成人精品久久二区二区免费| 巨乳人妻的诱惑在线观看| 国产精华一区二区三区| 中文字幕高清在线视频| 在线观看一区二区三区| 久久性视频一级片| 韩国av一区二区三区四区| av视频免费观看在线观看| 操出白浆在线播放| 搡老熟女国产l中国老女人| 午夜a级毛片| 欧美成狂野欧美在线观看| 欧美绝顶高潮抽搐喷水| 日韩欧美一区二区三区在线观看| 在线观看免费午夜福利视频| 超碰成人久久| 亚洲成av片中文字幕在线观看| 夜夜夜夜夜久久久久| 变态另类成人亚洲欧美熟女 | 国产高清videossex| 午夜福利高清视频| 亚洲七黄色美女视频| 人人澡人人妻人| 免费看a级黄色片| 一边摸一边抽搐一进一小说| 热re99久久国产66热| 日本欧美视频一区| av在线天堂中文字幕| 一卡2卡三卡四卡精品乱码亚洲| 曰老女人黄片| 亚洲国产毛片av蜜桃av| 给我免费播放毛片高清在线观看| 中文字幕精品免费在线观看视频| 精品国产美女av久久久久小说| 午夜老司机福利片| 国产精品一区二区精品视频观看| 国产黄a三级三级三级人| 亚洲av电影不卡..在线观看| 国产欧美日韩一区二区三区在线| 老鸭窝网址在线观看| 日日夜夜操网爽| 久久狼人影院| 无人区码免费观看不卡| 亚洲专区国产一区二区| 黑丝袜美女国产一区| 欧美大码av| 亚洲成人精品中文字幕电影| 香蕉国产在线看| 亚洲国产精品合色在线| 国产三级黄色录像| 国产精品久久电影中文字幕| ponron亚洲| 色精品久久人妻99蜜桃| 欧美日本视频| 一二三四社区在线视频社区8| 操美女的视频在线观看| 日本黄色视频三级网站网址| 黄频高清免费视频| 人妻丰满熟妇av一区二区三区| 啦啦啦免费观看视频1| 日韩有码中文字幕| 一边摸一边做爽爽视频免费| 免费观看人在逋| 亚洲欧美日韩高清在线视频| 日本欧美视频一区| 成年女人毛片免费观看观看9| 巨乳人妻的诱惑在线观看| 欧美色欧美亚洲另类二区 | 夜夜爽天天搞| 久久精品国产综合久久久| 亚洲久久久国产精品| 国产成人av激情在线播放| 日本精品一区二区三区蜜桃| 人妻丰满熟妇av一区二区三区| 欧美老熟妇乱子伦牲交| 亚洲一区高清亚洲精品| 欧美亚洲日本最大视频资源| 久久久久久久精品吃奶| 看黄色毛片网站| 午夜福利,免费看| 熟女少妇亚洲综合色aaa.| 日韩精品青青久久久久久| 一本久久中文字幕| 老熟妇乱子伦视频在线观看| av在线天堂中文字幕| 久久青草综合色| 少妇被粗大的猛进出69影院| 成人国语在线视频| 纯流量卡能插随身wifi吗| 日韩大码丰满熟妇| 国产精品亚洲美女久久久| 亚洲精品美女久久av网站| svipshipincom国产片| 波多野结衣av一区二区av| 可以在线观看的亚洲视频| 麻豆成人av在线观看| 久久精品国产亚洲av高清一级| 一级黄色大片毛片| 深夜精品福利| 久久伊人香网站| 日韩成人在线观看一区二区三区| 久9热在线精品视频| 黄色成人免费大全| 免费观看人在逋| 波多野结衣巨乳人妻| 亚洲成av片中文字幕在线观看| 国产片内射在线| 啦啦啦免费观看视频1| 国内精品久久久久久久电影| 国产一级毛片七仙女欲春2 | 日本 欧美在线| 一本大道久久a久久精品| 国产精品自产拍在线观看55亚洲| 久久青草综合色| 欧美黄色片欧美黄色片| 免费久久久久久久精品成人欧美视频| 色在线成人网| 性少妇av在线| 黑人巨大精品欧美一区二区蜜桃| 久久午夜亚洲精品久久| 久久香蕉精品热| 国产精品久久视频播放| www日本在线高清视频| 黄色视频,在线免费观看| 男男h啪啪无遮挡| 亚洲精品国产精品久久久不卡| 精品久久久久久久久久免费视频| 国产精品久久久久久精品电影 | 久久人人爽av亚洲精品天堂| 国产蜜桃级精品一区二区三区| 婷婷丁香在线五月| 村上凉子中文字幕在线| 极品人妻少妇av视频| 亚洲精品中文字幕在线视频| 日韩高清综合在线| 欧美不卡视频在线免费观看 | 久久欧美精品欧美久久欧美| 国产熟女午夜一区二区三区| 精品少妇一区二区三区视频日本电影| 男女下面插进去视频免费观看| 精品久久久精品久久久| 淫秽高清视频在线观看| 日韩欧美免费精品| 一级毛片高清免费大全| 99国产精品免费福利视频| 国产人伦9x9x在线观看| 国产蜜桃级精品一区二区三区| 狂野欧美激情性xxxx| 午夜影院日韩av| 国内精品久久久久久久电影| 纯流量卡能插随身wifi吗| 制服诱惑二区| 妹子高潮喷水视频| 在线观看免费日韩欧美大片| 一二三四在线观看免费中文在| av网站免费在线观看视频| 亚洲国产精品合色在线| 亚洲av第一区精品v没综合| 91在线观看av| 亚洲狠狠婷婷综合久久图片| 中文字幕av电影在线播放| 亚洲精品美女久久av网站| 高潮久久久久久久久久久不卡| 国产91精品成人一区二区三区| av天堂久久9| 宅男免费午夜| 久久伊人香网站| 国产精品久久久人人做人人爽| 免费久久久久久久精品成人欧美视频| 国产一区在线观看成人免费| 99久久综合精品五月天人人| 久久久国产欧美日韩av| 国产亚洲欧美98| 人人妻,人人澡人人爽秒播| 欧美色欧美亚洲另类二区 | 免费在线观看亚洲国产| 国产蜜桃级精品一区二区三区| 日日摸夜夜添夜夜添小说| 亚洲一码二码三码区别大吗| 国产99白浆流出| 久久久国产成人精品二区| 国产精品,欧美在线| 亚洲av片天天在线观看| 视频在线观看一区二区三区| 国产精品影院久久| 天堂影院成人在线观看| 大陆偷拍与自拍| 精品不卡国产一区二区三区| 日本撒尿小便嘘嘘汇集6| 精品国产美女av久久久久小说| 国产成人精品久久二区二区免费| 亚洲五月天丁香| 韩国精品一区二区三区| 黄色丝袜av网址大全| 露出奶头的视频| 欧美精品亚洲一区二区| 久久久精品国产亚洲av高清涩受| av视频免费观看在线观看| 精品高清国产在线一区| 久久精品成人免费网站| 最好的美女福利视频网| 亚洲天堂国产精品一区在线| 俄罗斯特黄特色一大片| 亚洲中文字幕日韩| 久久精品国产99精品国产亚洲性色 | 国产精品久久视频播放| 国产精品久久久久久亚洲av鲁大| 亚洲欧洲精品一区二区精品久久久| 国产一区二区三区在线臀色熟女| 国产精品免费视频内射| 日本vs欧美在线观看视频| 国产又爽黄色视频| 国产成人啪精品午夜网站| 免费av毛片视频| av天堂久久9| 午夜福利,免费看| 精品高清国产在线一区| 免费看十八禁软件| 免费看a级黄色片| 亚洲情色 制服丝袜| 少妇裸体淫交视频免费看高清 | 夜夜躁狠狠躁天天躁| 欧美成人性av电影在线观看| 午夜精品国产一区二区电影| 午夜成年电影在线免费观看| 精品久久久久久久毛片微露脸| 国产精品亚洲一级av第二区| 性欧美人与动物交配| 美女高潮喷水抽搐中文字幕| 欧美绝顶高潮抽搐喷水| 中文字幕人妻熟女乱码| 久久婷婷人人爽人人干人人爱 | 18美女黄网站色大片免费观看| 亚洲精品在线观看二区| 欧美久久黑人一区二区| 亚洲精品中文字幕一二三四区| 一进一出抽搐gif免费好疼| 国产精品久久电影中文字幕| 免费高清在线观看日韩| 精品国产亚洲在线| 老司机午夜福利在线观看视频| 一进一出好大好爽视频| 99精品在免费线老司机午夜| 久久精品人人爽人人爽视色| 可以在线观看毛片的网站| 嫩草影院精品99| 美女国产高潮福利片在线看| 桃红色精品国产亚洲av| 国产欧美日韩一区二区三区在线| 欧美色欧美亚洲另类二区 | 精品久久久久久成人av| 国产免费av片在线观看野外av| 九色国产91popny在线| 国产一区二区激情短视频| 亚洲自偷自拍图片 自拍| 国产精品 国内视频| 亚洲中文字幕一区二区三区有码在线看 | 给我免费播放毛片高清在线观看| 日本免费一区二区三区高清不卡 | 美女大奶头视频| 日韩欧美在线二视频| 国产精品二区激情视频| 99国产精品99久久久久| 午夜亚洲福利在线播放| 麻豆成人av在线观看| av福利片在线| 久久国产乱子伦精品免费另类| 午夜成年电影在线免费观看| 欧美黑人欧美精品刺激| 热re99久久国产66热| 男女下面插进去视频免费观看| 亚洲一区二区三区色噜噜| 欧美乱妇无乱码| 人人妻,人人澡人人爽秒播| 欧美另类亚洲清纯唯美| 人人妻人人爽人人添夜夜欢视频| 精品高清国产在线一区| 日本a在线网址| 亚洲 欧美 日韩 在线 免费| 久久久精品国产亚洲av高清涩受| 男女下面进入的视频免费午夜 | 久久精品国产99精品国产亚洲性色 |