范政武,王 鐵,陳 峙
(太原理工大學(xué)車輛工程系,太原 030024)
基于人工魚群算法的車輛平順性優(yōu)化分析
范政武,王 鐵,陳 峙
(太原理工大學(xué)車輛工程系,太原 030024)
平順性是汽車重要特性之一,平順性優(yōu)化分析屬于組合優(yōu)化問題,同時(shí)其非線性特性導(dǎo)致優(yōu)化實(shí)質(zhì)上是一個(gè)非線性多峰的優(yōu)化問題,為了有效解決此類復(fù)雜優(yōu)化的求解問題,近年來(lái)基于隨機(jī)搜索優(yōu)化算法建立了一種新型的人工魚群算法。該文將人工魚群算法應(yīng)用到汽車平順性優(yōu)化分析研究中,以某8×4載貨車為研究對(duì)象,建立9自由度汽車平順性模型,對(duì)影響汽車平順性的重要參數(shù)進(jìn)行優(yōu)化分析。優(yōu)化結(jié)果表明,加速度均方根平均下降16.82%,在60 km/h時(shí)下降最大,加速度均方根下降21.24%,有效提高了重型車的平順性能。因此,利用該模型可對(duì)汽車平順性進(jìn)行預(yù)測(cè)或評(píng)估。
農(nóng)業(yè)機(jī)械;模型;優(yōu)化;平順性;優(yōu)化分析;魚群算法;應(yīng)用
范政武,王 鐵,陳 峙.基于人工魚群算法的車輛平順性優(yōu)化分析[J].農(nóng)業(yè)工程學(xué)報(bào),2016,32(6):107-114.doi:10.11975/j.issn.1002-6819.2016.06.015 http://www.tcsae.org
Fan Zhengwu,Wang Tie,Chen Zhi.Vehicle ride comfort analysis and optimization based on artificial fish swarm algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2016,32(6):107-114.(in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2016.06.015 http://www.tcsae.org
重載車輛的行駛平順性不僅決定了駕駛的舒適性而且影響貨物安全可靠的運(yùn)輸。國(guó)內(nèi)外學(xué)者對(duì)平順性的仿真優(yōu)化做了大量的研究。文獻(xiàn)[1]通過ADAMS建立相關(guān)仿真模型,應(yīng)用響應(yīng)面法對(duì)基本參數(shù)進(jìn)行了優(yōu)化。文獻(xiàn)[2]利用具有緊支撐正交特性的Daubechies小波和最小二乘法原理辨識(shí)油氣懸架物理參數(shù),借助遺傳算法優(yōu)化油氣懸架的物理參數(shù),達(dá)到了改善平順性的目的。文獻(xiàn)[3]以1/2汽車8自由度振動(dòng)系統(tǒng)模型為研究對(duì)象,基于懸架參數(shù)建立數(shù)學(xué)模型,采用微粒群算法,優(yōu)化相關(guān)參數(shù),改進(jìn)了車輛的行駛平順性。文獻(xiàn)[4]運(yùn)用多種群遺傳算法和模糊理論,以輪胎的剛度和阻尼、簧上質(zhì)量為模糊變量,進(jìn)行了雙層嵌套的不確定性優(yōu)化。文獻(xiàn)[5]針對(duì)車輛主動(dòng)懸架系統(tǒng)的控制,提出一種非線性控方法,應(yīng)用粒子群算法對(duì)控制器的增益進(jìn)行優(yōu)化,尋求主動(dòng)懸架系統(tǒng)核心參數(shù)的平衡。文獻(xiàn)[6]建立了車輛半主動(dòng)懸架的模型,提出了模糊邏輯控制,應(yīng)用粒子群算法優(yōu)化模糊邏輯控制的比例因子。文獻(xiàn)[7]研究了汽車平順性分析中時(shí)域法和頻域法的對(duì)比,結(jié)果表明各種算法計(jì)算結(jié)果差別不大但各有特點(diǎn)。
本文在建立汽車平順性模型,應(yīng)用人工魚群智能優(yōu)化算法,以駕駛員座椅處垂向加速度為優(yōu)化目標(biāo),把前后懸架剛度和阻尼作為控制設(shè)計(jì)變量,對(duì)車輛平順性進(jìn)行分析和優(yōu)化。人工魚群算法(artificial fish school algorithm,AFSA)是2002年由李曉磊博士提出的一種基于動(dòng)物群體行為的智能優(yōu)化算法[8],近幾年來(lái)得到了廣泛的應(yīng)用。
若要準(zhǔn)確地分析汽車的振動(dòng)響應(yīng),首先應(yīng)建立合理的動(dòng)力學(xué)模型,模型建立時(shí)所考慮因素的多少與計(jì)算精度有很大關(guān)系,由于汽車各部件振動(dòng)情況十分復(fù)雜,欲通過一個(gè)完整的模型全面反映汽車的振動(dòng)特性是比較困難的。因此,在研究問題時(shí),需根據(jù)問題的主次因素,對(duì)振動(dòng)系統(tǒng)進(jìn)行適當(dāng)?shù)暮?jiǎn)化。通過對(duì)汽車在行駛過程中能量分布的分析,將汽車振動(dòng)系統(tǒng)簡(jiǎn)化為具有四輪輸入的1/2汽車9自由度動(dòng)力學(xué)模型,其整車參數(shù)表見表1,某8×4自卸車9自由度振動(dòng)力學(xué)模型如圖1所示。
針對(duì)本文9自由度振動(dòng)力學(xué)微分方程,系統(tǒng)的動(dòng)能T、勢(shì)能U和耗散能D分別如下公式所示[9]:
其中M,C,K分別是9行9列的質(zhì)量矩陣、阻尼矩陣、剛度矩陣;KF是9行9列的輪胎剛度矩陣,Z,,分別為位移、速度、加速度列向量;Q為路面激勵(lì)向量。其中位移向量為Z=[Z1,Z2,Z3,Z4,Z5,θ1,θ2,θ3],路面激勵(lì)向量為Q=[q1,q2,q3,q4]T。
表1 車輛參數(shù)表Table 1 Vehicle parameter table
圖1 某8×4自卸車9自由度振動(dòng)力學(xué)模型Fig.1 8×4 dump truck 9 degrees of freedom vibration mechanics model
左右輪轍的不平度相同,汽車對(duì)稱于其縱軸線,則汽車運(yùn)行時(shí),車身僅考慮垂直振動(dòng)及俯仰振動(dòng)。又設(shè)后面的車輪行駛在前輪的輪轍上,車輪輪轍激勵(lì)模型為[10]:
式中α為路面等級(jí)相關(guān)的常數(shù),本文選取路面等級(jí)為C(α=0.121(m-1));u為車速,Δi為延遲時(shí)間,Δi=L1i/u,L1(ii= 2,3,4)為二、三、四軸與一軸的距離。
圖2是在C路面等級(jí),車速u=70 km/h的條件下4個(gè)車輪的路面激勵(lì)時(shí)域仿真。從圖中可以看出,q1,q2,q3,q4的變化波形基本相同,只是在時(shí)間上有滯后。路面隨機(jī)激勵(lì)的位移變化范圍為:|Q|<0.02 m。
圖2 路面激勵(lì)時(shí)域模型仿真Fig.2 Road surface excitation time domain simulation model
為進(jìn)行汽車平順性仿真,在Matlab中開發(fā)了相應(yīng)的仿真程序。選取C級(jí)公路,仿真不同速度下車身座椅處垂直加速度,時(shí)域和頻域的仿真結(jié)果如圖3。
圖3分別是是以20、40、60、80、100和120 km/h的車速,在C級(jí)路面上進(jìn)行的頻域和時(shí)域仿真結(jié)果,可以看出不同車速下仿真曲線的變化趨勢(shì)是一致的,但不同車速其車身座椅處的垂直加速度是不同的。圖中顯示隨著車速的增加,車身座椅處的加速度在增加,如20 km/h時(shí),加速度(峰值)最大可達(dá)到4.75 m/s2,120 km/h是加速度(峰值)最大可達(dá)到5.43 m/s2。通常載貨汽車的整車平順性評(píng)價(jià)指標(biāo)采用車身座椅處加速度均方根值,不同車速下的車身座椅處加速度均方根值仿真結(jié)果如圖4。
圖3 車身座椅垂直加速度頻域和時(shí)域仿真Fig.3 Body seat vertical acceleration frequency domain and time domain simulation
圖4 車身座椅垂直加速度均方根Fig.4 Vertical acceleration root mean square of body seat
從圖4可以看出,整體上駕駛員座椅處垂直振動(dòng)加速度隨車速增加而變大,整車平順性也將變差。尤其是低速段和高速段加速度變化更加明顯,而在40~80 km/h這一速度段,加速度變換比較平緩。這說明要保持較好的經(jīng)濟(jì)性和平順性,車速應(yīng)保持在中速段,這與重型汽車實(shí)際運(yùn)行速度相吻合。
為了驗(yàn)證模型的有效性,此處采用了仿真與試驗(yàn)對(duì)比進(jìn)行驗(yàn)證。以某8×4自卸車為試驗(yàn)對(duì)象,在C級(jí)公路上以70 km/h的速度行駛,測(cè)試車身座椅處垂直加速度,并將其測(cè)試結(jié)果與仿真結(jié)果對(duì)比如圖5??梢钥闯銎淝€變化趨勢(shì)相似,驗(yàn)證了9自由度動(dòng)力學(xué)模型是和實(shí)際吻合的。
圖5 70 km/h車身座椅加速度試驗(yàn)與仿真結(jié)果對(duì)比Fig.5 70 km/h body seat acceleration experiment compared with simulation results
3.1 優(yōu)化變量
雙前橋的懸架參數(shù)對(duì)平順性影響較大,選取前懸架剛度K3,K4阻尼C3,C4作為優(yōu)化的設(shè)計(jì)變量,可表示為:
3.2 目標(biāo)函數(shù)
駕駛舒適性指標(biāo)中,主要以座椅垂向加速度值為主要參數(shù),以減小其均方根值為優(yōu)化目標(biāo),采用二次回歸正交組合設(shè)計(jì)來(lái)建立目標(biāo)函數(shù)。
依據(jù)二次回歸正交組合設(shè)計(jì)原理,因素?cái)?shù)P=4,二次回歸模型的回歸方程為[11]:
其中xh和xj是設(shè)計(jì)變量,bj是回歸系數(shù)。通過逐步回歸的方法可獲得回歸方程的回歸系數(shù),見表2。
表2 回歸系數(shù)表Tab.2 Regression coefficient table
3.3 人工魚群智能優(yōu)化算法
群(體)智能(swarm intelligence,SI)是指由簡(jiǎn)單的獨(dú)立個(gè)體所組成的群體,能夠協(xié)同工作自動(dòng)搜索并找到最佳位置,體現(xiàn)出非常復(fù)雜的行為特征。由其延伸發(fā)展的優(yōu)化算法是一類基于概率統(tǒng)計(jì)的隨機(jī)搜索算法,目前有蟻群算法,粒子群算法(particle swarm optimization,PSO),蛙跳算法shuffled frog leaping algorithm,SFLA),人工魚群算法(artificial fish swarm algorithm,AFSA)等[12]。近幾年有的文獻(xiàn)中提出了混合算法和多目標(biāo)的優(yōu)化,有混合蛙跳算法[13],Relief F和粒子群算法(particle swarm optimization,PSO)相結(jié)合的混合特征選擇方法[14]。運(yùn)用NSGA-Ⅱ遺傳算法進(jìn)行多目標(biāo)優(yōu)化分析[15],蜂群算法[16],粒子群和蜂群混合算法[17]。
人工魚群算法是基于魚群行為開發(fā)的行為主義人工智能算法。
通過模擬魚的覓食、聚群、追尾等行為,設(shè)計(jì)了自下而上的尋優(yōu)算法,其算法流程如圖6所示。在食物濃度等引導(dǎo)下,通過覓食、聚群、追尾行為使得人工魚最終聚集在幾個(gè)局部極值點(diǎn)附近。
圖6 人工魚群算法流程圖Fig.6 Artificial fish swarm algorithm flow chart
單個(gè)人工魚個(gè)體當(dāng)前的位置可以用向量X來(lái)表示,該向量中元素表示人工魚尋求最優(yōu)的控制變量;人工魚當(dāng)前所處位置則由食物濃度Yi表示,其表示最優(yōu)目標(biāo)函數(shù)值;dij=‖Xj-Xi‖則表示人工魚個(gè)體之間的距離,就是向量的范數(shù);擁擠度因子用δ表示;人工魚自動(dòng)的最大步長(zhǎng)值用Step來(lái)表示;人工魚個(gè)體可感知的距離用Visual來(lái)表示。人工魚群算法在開始時(shí)對(duì)魚群進(jìn)行初始化,人工魚個(gè)體通過覓食、聚群、追尾行為進(jìn)行迭代更新目標(biāo)函數(shù)值尋優(yōu),達(dá)到全局優(yōu)化的目的。
1)魚群初始化
在給定范圍內(nèi)產(chǎn)生隨機(jī)數(shù)組,以任一組實(shí)數(shù)作為魚群中的一條人工魚。
2)覓食行為
假設(shè)人工魚所在狀態(tài)為Xi,在感知范圍內(nèi)選擇任一狀態(tài)Xj,對(duì)兩種狀態(tài)的食物濃度進(jìn)行判斷,若yi 式中,Xinext表示人工魚個(gè)體下一步狀態(tài)向量;rand()表示一隨機(jī)數(shù)(0至Step)。 3)群居行為 群居行為通過領(lǐng)域內(nèi)伙伴數(shù)目和食物濃度兩個(gè)參數(shù)進(jìn)行判斷,人工魚前進(jìn)方向?yàn)槭澄镙^多和伙伴數(shù)目不多的方向。人工魚當(dāng)前狀態(tài)為Xi,假設(shè)領(lǐng)域內(nèi)伙伴數(shù)目為nf,且其中心位置Xc,如果Ycnf<δYi成立,則朝伙伴的中心位置方向前進(jìn),否則執(zhí)行覓食行為。 4)追尾行為 人工魚當(dāng)前狀態(tài)為Xi,假設(shè)領(lǐng)域內(nèi)伙伴數(shù)目為nf,伙伴中Yj為最小的伙伴Xj,如果Yjnf<δYi成立,則伙伴Xj的有較高的食物濃度且周圍不太擁擠,則朝伙伴Xj的位置方向前進(jìn),否則執(zhí)行覓食行為。 5)隨機(jī)行為 在執(zhí)行這種行為時(shí),是在其可以看見的視野范圍內(nèi),隨機(jī)選擇一個(gè)位置,并向其游去,這種行為實(shí)際上是覓食行為的一種缺省值。 綜上所述,人工魚群算法通過食物濃度和中心位置處的伙伴數(shù)目來(lái)確定優(yōu)化搜索方向,通過迭代搜索使人工魚聚集在食物濃度密集處,達(dá)到全局優(yōu)化的目的。 人工魚群算法采用啟發(fā)式的搜索策略,是一種廣義領(lǐng)域的搜索算法,可采取串行或并行模式實(shí)現(xiàn)并且算法具備全局收斂能力,對(duì)初值選取和尋優(yōu)函數(shù)無(wú)特殊要求,因此算法的參數(shù)設(shè)置范圍較廣,增強(qiáng)了算法的適應(yīng)性和通用性。算法面向?qū)ο蟮膶?shí)現(xiàn)方式能有效的結(jié)合實(shí)際問題,獲得良好的應(yīng)用效果。文獻(xiàn)[18]應(yīng)用實(shí)數(shù)編碼遺傳算法和人工魚群算法的混合算法對(duì)短期電力系統(tǒng)優(yōu)化調(diào)度,實(shí)現(xiàn)全局和局部搜索最優(yōu)解。組合拍賣的贏家的決心問題是電子商務(wù)的熱點(diǎn)問題,文獻(xiàn)[19]應(yīng)用混合魚群算法來(lái)解決這一問題,試驗(yàn)結(jié)果顯示這是一快速有效的優(yōu)化算法。股票指數(shù)的預(yù)測(cè)在金融領(lǐng)域是一個(gè)熱點(diǎn)問題,文獻(xiàn)[20]建立了徑向基函數(shù)神經(jīng)網(wǎng)絡(luò)來(lái)收集數(shù)據(jù)和預(yù)測(cè)股票指數(shù),應(yīng)用人工魚群算法優(yōu)化徑向基函數(shù)。 經(jīng)過多次試驗(yàn),優(yōu)化時(shí)魚群算法采用的操作參數(shù)如下:種群數(shù)N為100,步長(zhǎng)Step為100,感知距離Visual為20000,最大試探次數(shù)Try_number為100,擁擠度因子δ為9,最大迭代次數(shù)MAXGEN為50。 3.4 平順性優(yōu)化結(jié)果 平順性優(yōu)化分析屬于組合優(yōu)化問題,組合優(yōu)化的對(duì)象則是解空間的中的離散狀態(tài)。組合最優(yōu)化的特點(diǎn)是可行解集合為有限點(diǎn)集,由直觀可知,只要將定義域中有限個(gè)點(diǎn)逐一判別是否滿足約束條件并比較目標(biāo)值的大小,該問題的最優(yōu)解一定存在并且可以得到。同時(shí)汽車平順性的非線性導(dǎo)致懸架參數(shù)優(yōu)化實(shí)質(zhì)上是一個(gè)非線性多峰的優(yōu)化問題,為了避免局部最優(yōu)的現(xiàn)象和問題,采用帶有隨機(jī)性的進(jìn)化算法是一個(gè)不錯(cuò)的選擇,為此,使用人工魚群智能算法來(lái)求解汽車平順性優(yōu)化問題。 本文在建立整車模型的基礎(chǔ)上,將雙前懸架剛度阻尼作為優(yōu)化變量,以式(7)作為目標(biāo)函數(shù),借助人工魚群智能算法,對(duì)雙前橋懸架參數(shù)進(jìn)行優(yōu)化設(shè)計(jì)。 單個(gè)人工魚個(gè)體當(dāng)前的位置向量X={x1,x2,x3,…xn}對(duì)應(yīng)需要優(yōu)化的懸架參數(shù)設(shè)計(jì)變量X=[K3,K4,C3,C4]T,食物濃度Y表示優(yōu)化目標(biāo)車身座椅處垂直加速度值,種群數(shù)量N表示懸架參數(shù)X在取值范圍內(nèi)可能取值的數(shù)量,步長(zhǎng)Step表示懸架參數(shù)每一次增加或減小的量,感知距離Visual表示每次尋優(yōu)的變量范圍。 優(yōu)化后的懸架特性參數(shù)見表3。 表3 優(yōu)化后懸架力學(xué)特性參數(shù)Tab.3 Optimized suspension mechanical characteristic parameters 優(yōu)化前后不同速度時(shí)座椅垂直方向加速度均方根的對(duì)比見圖7??梢钥闯?,從10~120 km/h范圍內(nèi),加速度均方根平均下降16.82%,在60 km/h時(shí)下降最大,加速度均方根下降21.24%,通過優(yōu)化有效的提升了整車的平順性。 圖7 駕駛員座椅加速度優(yōu)化前后對(duì)比Fig.7 Driver′s seat acceleration compared before and after optimization 1)本文建立9自由度的整車振動(dòng)數(shù)學(xué)模型,運(yùn)用Matlab平臺(tái)編制了仿真程序,通過與試驗(yàn)結(jié)果對(duì)比,可知模型是有效可信的。 2)把人工魚群智能優(yōu)化算法應(yīng)用到重型車平順性分析中。魚群算法是目前交叉學(xué)科中一個(gè)非?;钴S的前沿性研究問題,通過優(yōu)化,座椅垂直方向加速度方均根值在不同車速下均有所降低,從10~120 km/h范圍內(nèi),加速度均方根平均下降16.82%,在60 km/h時(shí)下降最大,加速度均方根下降21.24%,有效提高了重型車的平順性能。 [1]朱位宇.某重型卡車平順性研究及懸架阻尼優(yōu)化設(shè)計(jì)[D].長(zhǎng)沙:湖南大學(xué),2012. Zhu Weiyu.Ride Performance of Heavy Vehicle and the Suspension Damper Optimal Design[D].Changsha:Hunan University,2012.(in Chinese with English abstract.) [2]米承繼,谷正氣,伍文廣,等.基于參數(shù)辨識(shí)的礦用自卸車平順性優(yōu)化[J].機(jī)械工程學(xué)報(bào),2012,48(6):109-115. Mi Chengji,Gu Zhengqi,Wu Wenguang,et al.Mining dump truck ride optimization based on parameter identification[J]. Journal of Mechanical Engineering,2012,48(6):109-115.(in Chinese with English abstract.) [3] 催航.基于微粒群算法的汽車行駛平順性參數(shù)優(yōu)化[D].長(zhǎng)春:吉林大學(xué),2007. Cui Hang.Parameters Optimization of Car Ride Comfort Based on Particle Swarm Optimization[D].Changchun:Jilin University, 2007.(in Chinese with English abstract.) [4]李偉平,王磊,張寶珍,等.基于不確定性和模糊理論的汽車平順性優(yōu)化[J].機(jī)械科學(xué)與技術(shù),2013,32(5):636-640. Li Weiping,Wang Lei,Zhang Baozhen,et al.Optimizing vehicle ride comfort based on uncertainty theory and fuzzy theory[J]. Mechanical Science and Technology for Aerospace Engineering, 2013,32(5):636-640.(in Chinese with English abstract) [5]Pedro J O,Dangor M,Dahunsi O A,et al.Intelligent feedback linearization control of nonlinear electro hydraulic suspension systems using particles warm optimization[J].Applied Soft Computing,2014,24:50-62. [6]Qazi A J,Farooqui U A,Khan A,et al.Optimization of semi-Active suspension system using particle swarm optimization algorithm[J].AASRI Procedia,2013,4:160-166. [7]徐中明,周小林,余烽,等.汽車平順性分析中時(shí)域法和頻域法的對(duì)比[J].汽車工程,2012,4(34):307-310. Xu Zhongming,Zhou Xiaolin,Yu Feng,et al.Comparison between time and frequency domain method in vehicle ride comfort analysis[J].Automotive Engineering,2012,4(34):307-310.(in Chinese with English abstract) [8]李曉磊.一種新型的智能優(yōu)化方法一人工魚群算法[D].杭州:浙江大學(xué),2002. Li Xiaolei.A New Intelligent Optimization Method-Artificial Fish School Algorithm[D].Hangzhou:Zhejiang University,2002. (in Chinese with English abstract) [9]聞邦椿.機(jī)械振動(dòng)理論及應(yīng)用[M].劉樹英,陳照波,等.北京:高等教育出版社,2009. [10]檀潤(rùn)華.路面對(duì)汽車激勵(lì)的時(shí)域模型建立及計(jì)算機(jī)仿真[J].中國(guó)公路學(xué)報(bào),1998,11(3):96-102. Tan Runhua.The mathematical models in time domain for the road disturbances and the simulation[J].China Journal of Highway and Transport,1998,11(3):96-102.(in Chinese with English abstract) [11]陳新志.基于穩(wěn)健性的半掛汽車列車平順性優(yōu)化設(shè)計(jì)技術(shù)研究[D].太原:太原理工大學(xué),2014. Chen Xinzhi.Robust Optimization Design for Ride Comfort of Articulated Vehicle[D].Taiyuan:Taiyuan University of Technology, 2014.(in Chinese with English abstract) [12]王聯(lián)國(guó).人工魚群算法及其應(yīng)用研究[D].蘭州:蘭州理工大學(xué),2009. Wang Lianguo.The Research of Artificial Fish Swarm Algorithm anditsApplication[D].Lanzhou:LanzhouUniversityofTechnology, 2009.(in Chinese with English abstract) [13]郭小燕,劉學(xué)錄,王聯(lián)國(guó),等.基于混合蛙跳算法的土地利用格局優(yōu)化[J].農(nóng)業(yè)工程學(xué)報(bào),2015,31(24),281-288. Guo Xiaoyan,Liu Xuelu,Wang Lianguo,et al.Land use pattern optimization based on shuffled frog leaping algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2015,31(24),281-288.(in Chinese with English abstract) [14]肖艷,姜琦剛,王斌,等.基于Relief F和PSO混合特征選擇的面向?qū)ο笸恋乩梅诸怺J].農(nóng)業(yè)工程學(xué)報(bào),2016,32(4):211-216. Xiao Yan,Jiang Qigang,Wang Bin,et al.Object based land-use classification based on hybrid feature selection method of combining Relief F and PSO[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2016,32(4):211-216.(in Chinese with English abstract.) [15]王春林,葉劍,曾成,等.基于NSGA-Ⅱ遺傳算法高比轉(zhuǎn)速混流泵多目標(biāo)優(yōu)化設(shè)計(jì)[J].農(nóng)業(yè)工程學(xué)報(bào),2015,31(18),100-106. Wang Chunlin,Ye Jian,Zeng Cheng,et al.Multi-objective optimum design of high specific speed mixed-flow pump based on NSGA-Ⅱgenetic algorithm[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2015,31(18),100-106.(in Chinese with English abstract) [16]徐龍琴,李乾川,劉雙印,等.基于集合經(jīng)驗(yàn)?zāi)B(tài)分解和人工蜂群算法的工廠化養(yǎng)殖pH值預(yù)測(cè)[J].農(nóng)業(yè)工程學(xué)報(bào),2016,32(3):202-209. Xu Longqin,Li Qianchuan,Liu Shuangyin,et al.Prediction of pH value in industrialized aquaculture based on ensemble empirical mode decomposition and improved artificial bee colony algorithm[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2016,32 (3):202-209.(in Chinese with English abstract) [17]陳述,邵東國(guó),李浩鑫,等.基于粒子群人工蜂群算法的灌區(qū)渠-塘-田優(yōu)化調(diào)配耦合模型[J].農(nóng)業(yè)工程學(xué)報(bào),2014,30 (20):90-97. Chen Shu,Shao Dongguo,Li Haoxin,et al.Coupled allocation model for optimizing water in canal-pond-field based on artificial bee colony and particle swarm algorithm[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2014,30(20):90-97.(in Chinese with English abstract) [18]Na Fang,Jianzhong Zhou,Rui Zhang,et al.A hybrid of real coded genetic algorithm and artificial fish swarm algorithm forshort-term optimal hydrothermal scheduling[J].Electrical Power and Energy Systems,2014,62:617-629. [19]Genrang Zhenga,Zheng Chun Linb.A winner determination algorithm for combinatorial auctions based on hybrid artificial fish swarm algorithm[J].Physics Procedia,2012,25:1666-1670. [20]Wei Shen,Xiaopen Guo,Chao Wu,et al.Forecasting stock indices using radial basis function neural networks optimized by artificial fish swarm algorithm[J].Knowledge-Based Systems, 2011,24:378-385. Vehicle ride comfort analysis and optimization based on artificial fish swarm algorithm Fan Zhengwu,Wang Tie,Chen Zhi Ride comfort is of great importance feature for the heavy truck,its optimization can improve the driver's driving conditions to reduce fatigue,and make the goods safer.Primary factors that can influence ride comfort are form and parameters of suspension,which are suspension stiffness,suspension damp and their combination.When the form of suspension is confirmed,more reasonable parameters can be selected by optimization method to improve ride comfort.Ride comfort optimization analysis belongs to the combinatorial optimization problem,at the same time,the nonlinear characteristics in optimization is essentially a nonlinear multimodal optimization problem.In this paper,at first,a ninedegree of freedom vehicle vibration model was established;Vehicle driver seat acceleration simulation tests were conducted with different vehicle speed.Also,both time and frequency domain analysis was implemented with MATLAB software development platform.On the whole,with the increase of the speed of the vehicle,the acceleration root-mean-square of vehicle driver seat became larger,so the vehicle ride comfort performance reduced.Especially at low speed and high acceleration change is more obvious.But in 40~80 km/h,the acceleration change quite gentle.That means to achieve the better economy and the vehicle ride comfort performance,the vehicle speed keeping in a medium speed is better.Based on C level road and the speed of 70 km/h,with an eight by four dump truck as experimental object,the ride comfort tests were conducted,moreover the test results compared with the results of simulation.The compared results showed that the simulation and the test were very close.And then,today technology was coming to a stage of intersection,infiltration,and interaction with multi-subjects.More and more issues on complexity,non-linearity,and system have come to us.To deal with such complexity of system,conventional techniques have become incapable,and to seek an optimization algorithm, which adapt to large-scale parallel with intelligent characteristics,has been a primary research target of related subjects. The artificial fish algorithm was proposed to optimize ride comfort.The artificial fish swarm algorithm (AFSA),a new method based on animal behaviors and the typical application of behaviorism artificial intelligence,was proposed by an internal scholar in recent years.It used the operators such as prey,swarm,follow and random behavior.The algorithm parameters,such as population,step size,sense of distance,the largest try-number,crowded degree coefficient and the largest number of iterations,has a great impact on the performance of the convergence.At the end,the artificial fish algorithm was used to optimize ride comfort by reasonable selection of the suspension parameters.The objective function was the acceleration root-mean-square of vehicle driver seat to be minimized.The decision variables were front suspension stiffness and damp.Moreover AFSA need to set up the appropriate algorithm parameters.For example,population scale, step size,sense of distance,the largest try-number,crowded degree coefficient and the largest number of iterations was 100, 100,20 000,100,9 and 50.Where the population scale N was called the number of possible values of suspension parameters within the value range,step size was suspension parameters increasing or decreasing the amount of each iteration,and sense of distance visual was variables scope of each iteration.Optimization results show that the acceleration root-mean-square average fell by 16.82%,the biggest fell by 21.24%in 60 km/h,so it effectively improves the ride comfort h performance of heavy vehicles. ariculturel machinery;models;optimization;comfort;optimization analysis;artificial fish algorithm;application 10.11975/j.issn.1002-6819.2016.06.015 U461.4 A 1002-6819(2016)-06-0107-08 2015-09-12 2016-01-25 山西省高新技術(shù)產(chǎn)業(yè)化項(xiàng)目(2011-2368);太原理工大學(xué)?;饒F(tuán)隊(duì)項(xiàng)目(2014TD033) 范政武(1976-),男(漢),博士生,主要研究方向是車輛現(xiàn)代設(shè)計(jì)理論與方法。太原市迎澤西大街79號(hào)太原理工大學(xué)齒輪研究所030024。Email:fanzhengwu2008@126.com ※通信作者:王 鐵(1957-),男(漢),博士、教授。中國(guó)機(jī)械工程學(xué)會(huì)高級(jí)會(huì)員/失效分析專家、全國(guó)齒輪標(biāo)準(zhǔn)化技術(shù)委員會(huì)委員、山西省機(jī)械工程學(xué)會(huì)常務(wù)理事兼副秘書長(zhǎng)。博士研究生導(dǎo)師,主要研究方向是汽車現(xiàn)代設(shè)計(jì)與汽車動(dòng)力學(xué)。太原市迎澤西大街79號(hào)太原理工大學(xué)齒輪研究所030024。Email:wangtie57@163.com4 結(jié)論
(Department of Vehicle Engineering,Taiyuan University of Technology,Taiyuan 030024,China)
農(nóng)業(yè)工程學(xué)報(bào)2016年6期