仇 滔,宋 鑫,雷 艷,劉興華,梁 虹
(1.北京工業(yè)大學(xué)環(huán)境與能源工程學(xué)院,北京100124;2.北京電動(dòng)車輛協(xié)同創(chuàng)新中心,北京100081;3.北京理工大學(xué)機(jī)械與車輛學(xué)院,北京100081)
柴油機(jī)NOx選擇性催化還原催化箱出口溫度特性及其計(jì)算模型
仇 滔1,2,宋 鑫1,雷 艷1,劉興華3,梁 虹3
(1.北京工業(yè)大學(xué)環(huán)境與能源工程學(xué)院,北京100124;2.北京電動(dòng)車輛協(xié)同創(chuàng)新中心,北京100081;3.北京理工大學(xué)機(jī)械與車輛學(xué)院,北京100081)
在不增加出口溫度傳感器的條件下,為準(zhǔn)確預(yù)測SCR(selective catalytic reduction)催化箱溫度,該文在柴油發(fā)動(dòng)機(jī)臺架上開展SCR系統(tǒng)催化箱的進(jìn)出口溫度特性測試。并基于Mtalab/Simulink模塊對SCR催化箱開展仿真計(jì)算,提出了出口溫度的計(jì)算模型。結(jié)果表明:穩(wěn)態(tài)工況及過渡工況下,催化箱進(jìn)口溫度與出口溫度變化并不相同;過渡工況時(shí),催化箱出口溫度改變過程滯后于入口溫度改變過程;提出的計(jì)算模型在穩(wěn)態(tài)和過渡工況下均對出口排氣溫度有良好的預(yù)測性能,可在不增加出口排溫傳感器前提下,獲得催化箱出口溫度,從而提升了SCR溫度控制精度。同時(shí),該文將提出的算法應(yīng)用到實(shí)際整車試驗(yàn)中,在ESC(European steady-state cycle)和ETC(European transient cycle)標(biāo)準(zhǔn)測試中,NOx的排放量均低于國IV排放法規(guī)限值,試驗(yàn)測試表明該文提出的算法滿足了整車的控制需求。
柴油機(jī);溫度;模型;選擇性催化還原;催化箱溫度;控制策略
仇 滔,宋 鑫,雷 艷,劉興華,梁 虹.柴油機(jī)NOx選擇性催化還原催化箱出口溫度特性及其計(jì)算模型[J].農(nóng)業(yè)工程學(xué)報(bào),2016,32(6):89-94.doi:10.11975/j.issn.1002-6819.2016.06.012 http://www.tcsae.org
Qiu Tao,Song Xin,Lei Yan,Liu Xinghua,Liang Hong.Outlet temperature characteristics for NOx catalyst container of diesel engine SCR system and its calculation model[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2016,32(6):89-94.(in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2016.06.012 http://www.tcsae.org
為滿足日益嚴(yán)格的排放法規(guī),選擇性催化還原技術(shù)(SCR,selective catalytic reduction)已經(jīng)成為降低柴油車NOx排放量的必要技術(shù)[1-2]。催化箱溫度決定了催化劑活性[3-5],對NOx的轉(zhuǎn)換效率和NH3的泄漏控制尤為關(guān)鍵[6]。趙彥光[7]等人的研究發(fā)現(xiàn):在220~350℃之間,隨溫度升高,NOx的轉(zhuǎn)化效率從不到30%升高到95.9%。由此可見,溫度每升高10℃會提高NOx的轉(zhuǎn)化效率約5%。然而,催化劑載體溫度分布并不均勻,催化箱溫度分布與催化箱入口擴(kuò)張角、催化箱內(nèi)壓力、排氣流動(dòng)均勻性以及催化器壁厚等因素緊密相關(guān)[8-11]。另外,催化劑載體的熱容性會導(dǎo)致催化劑載體溫度隨柴油機(jī)工況的變化存在明顯的滯后性,使得催化箱內(nèi)溫度的不均勻性在過渡工況下更加顯著。王建昕[9]等人對發(fā)動(dòng)機(jī)冷啟動(dòng)非穩(wěn)態(tài)過程中催化箱溫度的分布特性研究表明:催化箱溫度在發(fā)動(dòng)機(jī)啟動(dòng)過程中,催化箱軸向溫差超過100℃。張紀(jì)元[12]研究表明:如果不考慮催化箱內(nèi)溫度的變化遲滯性,當(dāng)柴油機(jī)由低排溫快速過渡到高排溫度工況時(shí),會導(dǎo)致氨氣逃逸;而由高排溫降低到低排溫工況時(shí),又會導(dǎo)致NOx的還原效率不能充分發(fā)揮。由此可見,預(yù)測SCR催化箱溫度是SCR系統(tǒng)控制策略的關(guān)鍵內(nèi)容之一[13-15]。
為準(zhǔn)確判斷催化箱溫度,在一些高端SCR系統(tǒng)中,催化箱進(jìn)出口都安裝溫度傳感器來同時(shí)獲得催化箱上下游溫度。但是,為了降低成本,目前國產(chǎn)SCR系統(tǒng)控制中一般只在催化箱入口安裝一個(gè)溫度傳感器,并用該溫度來代表整個(gè)催化箱溫度[16]。本文通過試驗(yàn)分析沿排氣軸向上催化箱進(jìn)出口溫度的變化規(guī)律,并根據(jù)催化箱內(nèi)能量的變化規(guī)律,提出出口溫度計(jì)算模型,并與試驗(yàn)對比驗(yàn)證了該模型在穩(wěn)態(tài)和過渡工況下的準(zhǔn)確性。
1.1 系統(tǒng)原理
試驗(yàn)裝置主要分為3個(gè)部分:發(fā)動(dòng)機(jī)、SCR催化箱以及測試采集系統(tǒng)。系統(tǒng)原理如圖1所示,設(shè)備具體參數(shù)如表1所示。
圖1 試驗(yàn)臺架原理圖Fig.1 Principle diagram of test rig
表1 設(shè)備參數(shù)Table 1 Parameter of apparatus
1.2 試驗(yàn)對象
試驗(yàn)所用的催化劑為釩基催化劑(V2O5-WO3/TiO2)。催化箱內(nèi)串聯(lián)布置2個(gè)圓柱形載體,2載體之間間距50 mm。催化箱及載體具體尺寸如表2所示。
表2 催化箱參數(shù)Tab.2 Parameters of catalyst
1.3 溫度測量點(diǎn)布置
催化箱內(nèi)部溫度測點(diǎn)布置如圖2所示。沿催化箱軸向布置5個(gè)測量截面,每個(gè)截面布置17個(gè)熱電偶。5個(gè)截面分別是SCR催化箱入口處A(L=20 mm)、載體1前端面B(L=300 mm)、載體2前端面C(L=502.4 mm)、載體2后端面D(L=604 mm)、催化箱出口處E(L=884 mm)。其中B、C、D截面處熱電偶用高溫膠粘入到方孔式催化劑載體中。催化箱中心位置測點(diǎn)定義為P17,從中心點(diǎn)到壁面,沿著徑向尺寸依次為0.3R(50 mm)、0.6R(100 mm)、0.75R(125mm)、0.9R(150mm)4個(gè)半徑上對稱布置16個(gè)熱電偶。
為保證采集數(shù)據(jù)的可靠性,在測量數(shù)據(jù)之前柴油機(jī)保持在對應(yīng)工況下穩(wěn)定運(yùn)行20 min,工況達(dá)到穩(wěn)定后連續(xù)測量10 min。測試系統(tǒng)的采樣頻率為50 Hz。
圖2 催化箱測點(diǎn)布置Fig.2 Arrangement of measuring points in catalyst container
忽略尿素噴入排氣管水解和熱解造成的能量變化,僅考慮氣體在催化箱內(nèi)軸向上的熱量變化,在催化箱徑向上只考慮壁面的能量損失。柴油機(jī)SCR催化箱內(nèi)部的能量變化主要可以分為以下兩區(qū)域,如圖2(a)所示:
1)載體區(qū)域中,能量變換主要有氣體與催化劑載體之間的對流換熱、載體導(dǎo)熱、載體與毛氈之間的導(dǎo)熱、毛氈與管壁的導(dǎo)熱、管壁的導(dǎo)熱,管壁對外散熱(自然對流換熱、輻射放熱)。
2)自由流體區(qū)域中,柴油機(jī)尾氣經(jīng)過此區(qū)域時(shí)發(fā)生的熱量交換主要包括:氣流與管壁之間產(chǎn)生強(qiáng)制對流換熱,管壁的導(dǎo)熱,管壁與外界環(huán)境對流換熱、輻射放熱。
2.1 模型假設(shè)
基于Mtalab/Simulink模塊對SCR催化箱開展仿真計(jì)算,模型假設(shè)如下:
1)載體內(nèi)氣體流動(dòng)為層流;
2)催化器出口處沒有氨泄露且NOx完全反應(yīng);
3)催化箱徑向方向上,氣體與載體的溫度相同;
4)催化器內(nèi)的SCR反應(yīng)簡化為標(biāo)準(zhǔn)反應(yīng)、快速反應(yīng)和NH3直接氧化反應(yīng),其他反應(yīng)忽略不計(jì);
5)忽略氣體內(nèi)能的增加率。
2.2 催化箱出口溫度計(jì)算模型
根據(jù)氣體能量守恒方程,發(fā)動(dòng)機(jī)的排氣能量等于沿排氣軸線上排氣能量的變化量與催化箱內(nèi)氣、壁換熱量之和,如公式(1)所示。
式中mg為排氣流量,kg/s;cpg為排氣定壓比熱容,J/(kg.K);Tg為入口溫度,℃;t為時(shí)間,s;x為催化劑軸線距離,m;kh為傳熱系數(shù),W/(m2.k);Ar為圓桶狀催化箱側(cè)面積,m2;Ts為催化箱內(nèi)表面溫度,℃。
排氣流量mg等于進(jìn)入發(fā)動(dòng)機(jī)進(jìn)氣流量與噴入氣缸的柴油流量之和。
式中mair為發(fā)動(dòng)機(jī)進(jìn)氣質(zhì)量流量,kg/s;mfuel為噴油率,kg/s。
催化箱內(nèi),沿著排氣軸向不同位置的排氣能量是不相同的,發(fā)動(dòng)機(jī)排氣進(jìn)入催化箱后,與催化器內(nèi)表面發(fā)生熱傳遞、熱對流,這一過程中排氣與催化箱內(nèi)表面交換的熱量與氣、固溫差及導(dǎo)熱率有關(guān);排氣在催化劑表面發(fā)生了催化還原反應(yīng)放熱,使排氣能量增大,排氣能量的變化改變了排氣溫度,沿排氣軸向的排氣溫度可由公式(3)表示。
式中ms為催化劑質(zhì)量,kg;cps為催化劑定壓比熱容,J/(kg.K);A為催化箱徑向截面積,m2;Ri為物質(zhì)i的反應(yīng)速率,mol/(L.s);n為NOx排放摩爾數(shù),mol;ΔHi為物質(zhì)i的反應(yīng)放熱量,kJ/mol。公式(3)中負(fù)號表示熱流方向和溫度梯度方向相反;為催化劑表面熱輻射面積,m2;σ為Stephan-Boltzmann常數(shù),W/(m2.K4);ε為催化劑輻射率,W/m2;Te為環(huán)境溫度,℃;λs為載體熱導(dǎo)率,W/(m.K)。
結(jié)合公式(1)、(2)、(3)可以得到催化器入口與出口排氣溫度關(guān)系,如公式(4)所示。
式中Tg,in為SCR催化箱入口排氣溫度,℃;Tg,out為催化箱出口排氣溫度,℃。
其中,催化箱出口溫度計(jì)算模型中推導(dǎo)公式以Simulink模塊形式實(shí)現(xiàn),計(jì)算模型如圖3所示。
圖3 計(jì)算模型Fig.3 Computing model
3.1 穩(wěn)態(tài)工況分析
車輛實(shí)際道路行駛中,由于道路條件的復(fù)雜多變,發(fā)動(dòng)機(jī)負(fù)荷經(jīng)常變動(dòng)。穩(wěn)態(tài)工況分析中,本文選取不同負(fù)荷的3個(gè)穩(wěn)態(tài)工況點(diǎn)進(jìn)行實(shí)驗(yàn)測量和模型計(jì)算,結(jié)果如表3所示。
表3 穩(wěn)態(tài)工況測點(diǎn)Table 3 Steady condition points
由表3可以看出,出口溫度均低于入口溫度,這是由于尾氣在流經(jīng)催化箱過程中,尾氣與催化劑載體的對流換熱、熱傳導(dǎo)以及催化箱與外界環(huán)境的換熱導(dǎo)致尾氣能量的損失所致。用催化箱入口溫度簡單代替催化箱整體溫度(包含催化箱出口溫度)的最大誤差達(dá)到10.1%。而采用計(jì)算模型獲得的出口溫度與實(shí)測催化箱出口溫度最大誤差降低到6.2%。由此可見用入口溫度簡單替代整個(gè)催化箱溫度存在較大偏差,亦不利于溫度控制系統(tǒng)精準(zhǔn)控制。而計(jì)算模型可更好的預(yù)估催化箱出口溫度,使控制系統(tǒng)均衡入口與出口溫度后可更準(zhǔn)確的獲得催化箱溫度,從而更有利于提高溫度控制系統(tǒng)的精度。
3.2 過渡工況分析
通過改變發(fā)動(dòng)機(jī)的轉(zhuǎn)速和扭矩實(shí)現(xiàn)工況變化,如圖4所示。其中,在0~54s(t1)時(shí)間內(nèi),發(fā)動(dòng)機(jī)轉(zhuǎn)速保持1 000 rpm,扭矩保持364 N.m;54 s時(shí),發(fā)動(dòng)機(jī)轉(zhuǎn)速從1 000 rpm增加到1 100 rpm,扭矩從364 N.m增加到835 N.m,并保持一段時(shí)間(955 s);1 009 s(t5)時(shí),發(fā)動(dòng)機(jī)轉(zhuǎn)速再次降低到1 000 rpm,扭矩降低到364 N.m并保持。
圖4 過渡工況變化歷程Fig.4 Changing process of transition condition
由圖5瞬態(tài)變化工況可以看出催化箱進(jìn)出口溫度及催化箱出口計(jì)算溫度的變化趨勢,當(dāng)轉(zhuǎn)速瞬間增加時(shí),催化箱出口與入口的最大溫差達(dá)到102℃。在54 s時(shí),由于發(fā)動(dòng)機(jī)工況改變,空速和發(fā)動(dòng)機(jī)工況變化基本同步,但是催化箱進(jìn)出口溫度變化速率明顯比發(fā)動(dòng)機(jī)工況變化速率慢,其中催化箱入口溫度從54 s開始上升,在352 s(t3)時(shí)刻上升到溫度最大值的95%。而催化箱下游溫度并沒有從54 s就開始上升,而是從91 s(t2)時(shí)刻開始上升并在434 s(t4)時(shí)刻上升到最大值的95%。在1009 s時(shí)刻,發(fā)動(dòng)機(jī)工況再次變化,同樣轉(zhuǎn)速、扭矩以及空速能迅速達(dá)到穩(wěn)定狀態(tài),催化箱入口溫度同時(shí)刻開始降低,出口溫度變化時(shí)刻滯后到1089s(t6)才開始降低。入口溫度降低到95%對應(yīng)1439s(t7),出口溫度降低到95%對應(yīng)在1500 s(t8)之后。
圖5 瞬態(tài)工況Fig.5 Transition condition
從試驗(yàn)結(jié)果可以看出,在發(fā)動(dòng)機(jī)工況發(fā)生突變時(shí),由于排氣與催化箱入口處載體需要一定時(shí)間進(jìn)行熱交換,因此催化箱入口溫度雖然同步于發(fā)動(dòng)機(jī)工況變化,但是變化過程需要一定時(shí)間才能完成;由于催化劑載體對氣流流動(dòng)具有較大的阻力,因此催化箱出口溫度響應(yīng)滯后,變化時(shí)刻滯后于入口溫度,而且變化歷程并不完全平行于入口溫度的變化歷程。
由圖6可以看出,計(jì)算模型能夠反應(yīng)溫度響應(yīng)滯后和過渡過程。在溫度開始改變到溫度達(dá)到穩(wěn)定過程中(圖中陰影部分),用入口溫度替代催化箱整體溫度最大誤差(入口替代誤差)高達(dá)32%,而出口排氣溫度實(shí)測值與計(jì)算模型值的最大計(jì)算誤差(模型計(jì)算誤差)不超過6%。由此可見,在不安裝出口溫度傳感器的條件下本文提出的計(jì)算模型對瞬態(tài)過程出口溫度可進(jìn)行良好的預(yù)測,有利于提高溫度控制系統(tǒng)的精度。在溫度下降到穩(wěn)定階段之后,計(jì)算模型的模型計(jì)算誤差略高于入口替代誤差。這是因?yàn)榇呋渑c尾氣經(jīng)過一段時(shí)間的對流及熱傳導(dǎo)的作用,使得催化箱進(jìn)出口溫差減小所致。
圖6 誤差趨勢Fig.6 Deviation
為進(jìn)一步驗(yàn)證本文提出的計(jì)算模型可靠性,將此控制策略應(yīng)用在發(fā)動(dòng)機(jī)型號為WP10.336E40的大運(yùn)重卡上進(jìn)行測試。發(fā)動(dòng)機(jī)參數(shù)如表4所示。
表4 發(fā)動(dòng)機(jī)參數(shù)Tab.4 Engine parameter
發(fā)動(dòng)機(jī)原機(jī)NOx排放量,ESC(european steady-state cycle)和ETC(european transient cycle)工況下測試結(jié)果及國四排放限值如表5所示。
表5 ESC及ETC測試Tab.5 ESC and ETC testing
測試結(jié)果如表6所示,由測試結(jié)果可以看出,本文提出的催化箱出口溫度預(yù)測計(jì)算方法不僅滿足國四法規(guī)對重型卡車NOx的排放要求,同時(shí)也滿足了相應(yīng)的控制要求。
表6 驗(yàn)證結(jié)果Tab.6 Verification result
通過試驗(yàn)獲得了催化箱進(jìn)出口溫度的變化規(guī)律。并且提出催化箱出口溫度的計(jì)算模型。結(jié)論如下:
1)穩(wěn)態(tài)工況下,由于沿催化箱軸向及徑向能量的損失,出口溫度低于入口溫度,最低溫差25℃;
2)過渡工況下,出口測量溫度變化相對于入口測量溫度變化響應(yīng)時(shí)刻滯后,且與入口溫度最大溫差達(dá)到102℃。
3)由于催化箱出口溫度與入口溫度穩(wěn)態(tài)時(shí)最大誤差10.1%,瞬態(tài)時(shí)最大誤差45%,因此不能簡單用催化箱入口溫度代替出口溫度以及整個(gè)催化箱溫度。
4)計(jì)算模型在穩(wěn)態(tài)工況和過渡工況下對出口溫度有較好的計(jì)算精度。相對于現(xiàn)有簡單用入口溫度代替出口溫度的控制方式,能夠提高出口溫度的預(yù)測精度,尤其是提高了在過渡工況下的預(yù)測精度,從而提升SCR系統(tǒng)的控制質(zhì)量。
[1]Lei Z,Han B,Yang K,et al.Influence of H2O on the lowtemperatureNH3-SCRofNOoverV2O5/ACcatalyst:anexperimental and modeling study[J].Chemical Engineering Journal,2013, 215:651-657.
[2]Hou Yaqin,Ca Guoqin,Huang Zhanggen,et al.Effect of HCl on V2O5/AC catalyst for NO reduction by NH3at low temperatures [J].Chemical engineering journal,2014,247:59-65.
[3]De La Torre U,Pereda-Ayo B,González-Velasco J R.Cu-zeolite NH3-SCR catalysts for NOx removal in the combined NSR-SCR technology[J].Chemical Engineering Journal,2012,207:10-17.
[4]Raj R,Harold M P,Balakotaiah V.Kinetic modeling of NO selective reduction With C3H6over Cu-SSZ13 monolithic catalyst [J].Chemical Engineering Journal,2014,254:452-462.
[5]Chen Zhaohui,Zhang Wei,Chen Guisheng,et al.Influence of exhaust temperature and catalytic substrate properties on diesel exhaust[J].Transactions of the Chinese Society of Agricultural Engineering,2014,30(9):42-49.
[6]Tronconi E,Nova I,Ciardelli C,et al.Redox features in the catalytic mechanism of the"standard"and"fast"NH3-SCR of NOxover a V-based catalyst investigated by dynamicmethods[J]. Journal of Catalysis,2007,245(1):1-10.
[7]趙彥光,胡靜,陳鎮(zhèn),等.重型柴油機(jī)NOx尿素SCR混合器的設(shè)計(jì)與試驗(yàn)研究[J].內(nèi)燃機(jī)工程,2012,33(1):32-37. Zhao yanguang,Hu jing,Chen zheng,et al.Dsign and experiment of mixter in NOx urea-selective catalyst reduction system forheavy duty diesel engine[J].Chinese Internal Combustion Engine Engineering,2012,33(1):32-37.(in Chinese with English abstract)
[8] 帥石金,王建昕,莊人雋,等.車用催化轉(zhuǎn)化器的非穩(wěn)態(tài)升溫特性[J].農(nóng)業(yè)機(jī)械學(xué),2001,32(5):22-25. Shuai Shijin,Wang Jianxin,Zhuang Renjun,et al.Unsteady warm-up characteristics of automotive catalytic converters[J]. Transactions of The Chinese Society of Agricultural Machinery, 2001,32(5):22-25.(in Chinese with English abstract)
[9]王建昕,帥石金,倪春健,等.車用催化轉(zhuǎn)化器非穩(wěn)態(tài)溫度場的試驗(yàn)研究[J].內(nèi)燃機(jī)學(xué)報(bào),2001,19(6):541-546. Wang Jianxin,Shuai Shijin,Ni Chunjian,et al.Experimental investigation of unsteady temperature fields of automotive catalytic converters[J].Transactions of CSICE,2001,19(6): 541-546.(in Chinese with English abstract)
[10]劉軍,蘇清祖.排氣催化轉(zhuǎn)化器氣流分布的數(shù)值模擬和試驗(yàn)[J].農(nóng)業(yè)工程學(xué)報(bào),2003,19(1):95-98. Liu Jun,Su Qingzu.Numerical simulation and testing research on flow distribution in catalytic converter[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2003,19(1):95-98.(in Chinese with English abstract)
[11]辛喆,王順喜,張寅,等.Urea-SCR催化器壓力損失及其對柴油機(jī)性能的影響[J].農(nóng)業(yè)工程學(xué)報(bào),2011,27(8):169-173. Xin Zhe,Wang Shunxi,Zhang Yin,et al.Pressure loss of urea-SCR converter and its influence on diesel engine performance[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2011,27(8):169-173.(in Chinese with English abstract)
[12]張紀(jì)元.重型柴油機(jī)SCR系統(tǒng)應(yīng)用技術(shù)研究[D].濟(jì)南:山東大學(xué),2013. Zhang Jiyuan.Study on Application Technology of SCR System for Heavy-duty Diesel Engines[D].Jinan:Shandong university,2013.
[13]陶漢國.柴油機(jī)Urea-SCR系統(tǒng)控制策略研究[D].武漢:武漢理工大學(xué),2009. Tao hanguo.Study on Control Strategy of SCR System in Diesel Engine[D].Wuhan:Wuhan university of technology,2009.
[14]劉傳寶.柴油機(jī)氨基SCR系統(tǒng)控制策略與匹配研究 [D].武漢:武漢理工大學(xué),2013.Liu Chuanbao.Research on Control Strategy and Matching of Amino SCR System of Diesel Engine[D].Wuhan:Wuhan university of technology,2013.
[15]劉傳寶,顏伏伍,胡杰,等.柴油機(jī)SCR后處理系統(tǒng)控制策略[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,44(11):6-11. Liu Chuanbao,Yan Fuwu,Hu Jie,et al.SCR post-processing system control strategy of diesel Engine[J].Transactions of the Chinese Society for Agricultural Machinery,2013,44(11):6-11. (in Chinese with English abstract)
[16]Willems F,Cloudt R,Eijnden E V D,et al.Is closed-loop SCR control required to meet future emission targets?[C]//SAE Paper, 2007,4.
Outlet temperature characteristics for NOx catalyst container of diesel engine SCR system and its calculation model
Qiu Tao1,2,Song Xin1,Lei Yan1,Liu Xinghua3,Liang Hong3
(1.CollegeofEnvironmentandEnergyEngineering,BeijingUniversityofTechnology,Beijing100124,China;2.CollaborativeInnovationCenterof Electric Vehicles in Beijing,Beijing 100081,China;3.College of Mechanical and Vehicle,Beijing Institute of Technology,Beijing 100081,China)
The selective catalytic reduction(SCR)technology is considered as a highly efficient and promising aftertreatment technology for deducing the diesel engine NOx emission.The temperature inside an SCR catalyst container is important for NOx conversion efficiency and SCR control precision.Accurate prediction for the temperature of the SCR catalyst under the condition of transient loads has important influence on the NOx conversion efficiency.In order to gain the detail of the temperature distribution inside the SCR catalyst container,this work designs 5 test plates with thermocouples which are mounted inside the SCR catalyst container in different places.These 5 test plates contain a serial of thermocouples located in different position to test the temperature distribution inside the SCR catalyst container.These 5 plates are orderly located from the inlet to the outlet of the container,and in each plate,there are totally 17 test points successively along 2 diameters which are respectively the horizontal and vertical directions.During the experiment,the diesel engine with the SCR system is tested under the varied operation engine speeds and loads to supply the SCR catalyst container with exhaust gases of different temperatures and mass flow rates.In addition,a mathematic model is proposed to predict the catalyst temperature at the outlet based on the tested inlet temperature data of the SCR catalyst container.The mathematic model is solved based on a program which is compiled by Matlab/Simulink codes.The experimental results show that under the steady conditions,the temperature inside the SCR catalyst container decreases from the inlet to the outlet of the container along the axial direction.The reason is that as the exhaust gas flows through the SCR catalyst container,the thermal energy of the exhaust gas decreases due to the thermal energy exchanges such as heat convection, heat conduction between the exhaust gas and the catalyst carrier,the container wall,as well as the environmental atmosphere.The experimental results also show that the outlet temperature is lower than the inlet temperature,and the maximum deviation between the tested inlet temperature and outlet temperature is 10.1%.However,the model-predicting outlet temperature has a better deviation of 6.2%with the tested outlet temperature.Under the conditions of transient operation,the downstream temperature of the catalyst container shows a delay of temperature increasing.As the engine speeds and loads change,firstly the inlet temperature rises,but the downstream temperature doesn′t increase together with the inlet temperature,and it begins to rise after 40 s.The downstream temperature reaches its 95%of the maximum after nearly 380 s.The reason of this temperature-increasing delay is that the thermal energy transfer from the exhaust gas to the SCR catalyst especially under the transient condition takes much time,and the narrow catalyst holes cause flow resistances to the exhaust gas.This temperature-increasing delay is also demonstrated by the mathematic model.In addition,the model predicts that the outlet temperature under the transient condition has a deviation of less than 6%which is better than the deviation between the tested inlet temperature and the outlet temperature(32%).Therefore,the inlet temperature of the SCR catalyst container is not suitable to be simply adopted as the outlet one for the purpose of the SCR system control strategy, because there is great deviation between the inlet temperature and outlet temperature under both steady and transient operation conditions.In this work,the proposed mathematic model shows good calculation precision when predicting the outlet temperature under both steady and transient operation conditions.Compared with the simple method of adopting the inlet temperature as the outlet one,this model for predicting outlet temperature has better control precision especially under transient conditions,which is good for SCR system control strategy.The control algorithm is applied to the SCR system of a heavy-duty diesel vehicle,and the vehicle is tested based on the ESC(European steady-state cycle)and ETC(European transient cycle)test standards.The tests show that NOx emission is lower than the limit of the China IV emission standard, which demonstrates the proposed algorithm meets the control requirements of the vehicle.
diesel engine;temperature;models;selective catalytic reduction;catalytic box temperature;control strategy
10.11975/j.issn.1002-6819.2016.06.012
TK421.5
A
1002-6819(2016)-06-0089-06
2015-09-17
2016-01-23
北京市教委促進(jìn)人才培養(yǎng)綜合改革基金項(xiàng)目(JZ005011201401)
仇 滔,男,湖南岳陽人,副教授,博士。主要從事內(nèi)燃機(jī)電子控制,燃油系統(tǒng)匹配,尾氣治理研究。北京 北京工業(yè)大學(xué)環(huán)境與能源工程學(xué)院,100124。Email:qiutao@bjut.edu.cn