毛黎靜,文曉榮,舒 茂
(1.江蘇九旭藥業(yè)有限公司,江蘇 徐州 221200;
2.重慶理工大學(xué) 藥學(xué)與生物工程學(xué)院,重慶 400054)
?
mTOR 抑制劑的三維定量構(gòu)效關(guān)系研究
毛黎靜1,文曉榮2,舒茂2
(1.江蘇九旭藥業(yè)有限公司,江蘇 徐州221200;
2.重慶理工大學(xué) 藥學(xué)與生物工程學(xué)院,重慶400054)
摘要:針對(duì)29個(gè)苯并氮氧雜環(huán)類(lèi)mTOR抑制劑,運(yùn)用比較分子力場(chǎng)分析(CoMFA)和比較分子相似性指數(shù)分析 (CoMSIA)這兩種經(jīng)典的3D- QSAR方法,分別建立相應(yīng)的模型,并對(duì)其進(jìn)行結(jié)構(gòu)和活性關(guān)系的分析。結(jié)果顯示:CoMFA模型和CoMSIA模型的交叉驗(yàn)證系數(shù)q2分別為0.674和0.782,相關(guān)系數(shù)r2分別為0.995和0.932。這兩種模型都顯示出了較好的預(yù)測(cè)性和穩(wěn)定性,其三維等勢(shì)圖也證實(shí)了mTOR抑制劑結(jié)構(gòu)和活性關(guān)系,可為設(shè)計(jì)研究更加有效的mTOR抑制劑提供理論基礎(chǔ)。
關(guān)鍵詞:mTOR抑制劑; mTOR蛋白; 三維定量構(gòu)效關(guān)系
據(jù)WHO報(bào)道,預(yù)計(jì)到2020年全球癌癥病例將會(huì)從2012年的1 200萬(wàn)上升到2 200萬(wàn),成為導(dǎo)致人類(lèi)死亡的重要原因之一。目前,對(duì)于惡性腫瘤治療的方法主要有手術(shù)治療、放射治療、抗癌藥物治療、免疫治療以及中醫(yī)治療等,但效果均不理想。主要原因之一是因?yàn)橐种苿┰谥委熯^(guò)程中仍存在一些弊端。因此,本文在計(jì)算機(jī)輔助藥物設(shè)計(jì)(CADD)的基礎(chǔ)上進(jìn)行結(jié)構(gòu)和活性之間的關(guān)系分析,期望為設(shè)計(jì)更加高效的抑制劑提供理論依據(jù)。
哺乳動(dòng)物雷帕霉素靶蛋白(mTOR)是1991年HEITMAN等從酵母中分離出的一種絲氨酸/蘇氨酸蛋白激酶,屬于磷脂酰肌醇激酶(PIKK)家族,是PI3K/Akt下游信號(hào)通路的一個(gè)重要的效應(yīng)分子[1]。通過(guò)研究發(fā)現(xiàn):在PI3K/Akt/mTOR信號(hào)通路活化后,能夠加快細(xì)胞生長(zhǎng),減少細(xì)胞凋亡,并能促進(jìn)腫瘤細(xì)胞的遷移[2-9]。雷帕霉素及其衍生物(RAD-001、CCI-779)的效應(yīng)研究也說(shuō)明了mTOR信號(hào)通路在腫瘤的形成、生長(zhǎng)過(guò)程中占據(jù)重要地位,這在腦膠質(zhì)瘤、乳腺癌、卵巢癌研究中已有報(bào)道[10-11]。因此,本文針對(duì)29個(gè)苯并氮氧雜環(huán)類(lèi)衍生物進(jìn)行研究,尋求其抑制劑結(jié)構(gòu)與mTOR蛋白活性之間的關(guān)系,為設(shè)計(jì)更加有效的抑制劑提供新的思路。
1研究方法
1.1數(shù)據(jù)來(lái)源及其預(yù)處理
基于29個(gè)苯并氮氧雜環(huán)類(lèi)mTOR抑制劑的結(jié)構(gòu)和活性(活性數(shù)值是pIC50,即IC50的負(fù)對(duì)數(shù)),從各個(gè)活性階段隨機(jī)選取20個(gè)分子作為訓(xùn)練集和9個(gè)分子作為測(cè)試集(表1用*表示),所有的化合物均在SYBYL 2.0中進(jìn)行三維結(jié)構(gòu)的搭建[12-14]。用Tripos力場(chǎng)和MMFF94電荷對(duì)分子進(jìn)行能量最小化計(jì)算,優(yōu)化中將最大重復(fù)次數(shù)設(shè)置為1 000,Gradient設(shè)置為0.005,Color Option改為Force,其余參數(shù)使用默認(rèn)值。將優(yōu)化好的分子重新依次命名保存。選用訓(xùn)練集中活性最高的13號(hào)分子作為模板,采用SYBYL 2.0中的Align database模塊將訓(xùn)練集中所有分子進(jìn)行共同骨架疊合,見(jiàn)圖1。
圖1 共同骨架疊合
圖2為分子結(jié)構(gòu)。表1為CoMFA和CoMSIA模型的實(shí)驗(yàn)值(pIC50) 與預(yù)測(cè)值 (pIC50)以及差值。
圖2 分子結(jié)構(gòu)
1.2建立3D-QSAR模型
通過(guò)CoMFA[15]和CoMSIA[16-17]兩種方法建立3D-QSAR模型。在建模過(guò)程中,使用一個(gè)以sp3雜化的C+探針來(lái)計(jì)算分子格點(diǎn)空間距離為0.2 nm的分子場(chǎng)。之后進(jìn)行回歸分析,運(yùn)用偏最小二乘法(PLS)以及抽一法(LOO)進(jìn)行相互驗(yàn)證得到模型的主成分?jǐn)?shù)n和交叉驗(yàn)證系數(shù)q2[18-19]。運(yùn)用非交叉驗(yàn)證法得到相關(guān)系數(shù)r2、標(biāo)準(zhǔn)偏差SEE以及F值。最后通過(guò)建立的3D-QSAR模型對(duì)測(cè)試集進(jìn)行活性預(yù)測(cè)。
在建模的過(guò)程中,CoMFA模型使用了立體場(chǎng)和靜電場(chǎng)來(lái)描述,而CoMSIA模型采用立體場(chǎng)、靜電場(chǎng)、疏水場(chǎng)、氫鍵供體場(chǎng)、氫鍵受體場(chǎng)來(lái)描述[20-21]。一般情況下交叉驗(yàn)證系數(shù)q2> 0.5才具有較好的預(yù)測(cè)能力。CoMFA和CoMSIA使用相同的方法進(jìn)行模型的建立。
表1 CoMFA和CoMSIA模型的實(shí)驗(yàn)值與預(yù)測(cè)值以及差值
續(xù)表
Com.R1R2R3R4ActualpIC50CoMFAPredResCoMSIAPredRes21*SO2Men-PrH7.5538.014-0.4617.559-0.00622*SO2MeNHEtH6.6908.105-1.4157.561-0.87123SO2MeClH7.6357.6280.0078.156-0.52124SO2MeBrH8.2848.287-0.0038.1790.10525*SO2MeHMe8.1808.420-0.2408.345-0.16526*SO2MeMeF8.8548.1770.6778.0070.84727*SO2MeEtF8.5388.3270.2118.0870.45128SO2MeHH7.8867.8720.0148.071-0.18529SO2MeMeF8.0047.9840.0208.093-0.089
“*”:text set
2結(jié)果與討論
2.13D-QSAR模型
訓(xùn)練集CoMFA 和 CoMSIA模型的統(tǒng)計(jì)參數(shù)見(jiàn)表2。其中:在CoMFA模型中,相互驗(yàn)證系數(shù)q2=0.674,回歸系數(shù)r2=0.995,最佳成分?jǐn)?shù)為6,標(biāo)準(zhǔn)偏差SEE為0.061,F(xiàn)值為464.980;在CoMSIA模型中,相互驗(yàn)證系數(shù)q2=0.782,回歸系數(shù)r2=0.932,最佳成分?jǐn)?shù)為3,標(biāo)準(zhǔn)偏差SEE為0.210,F(xiàn)值為73.613。這些數(shù)值都說(shuō)明模型是可信的,并且擁有良好的預(yù)測(cè)能力。
2.2模型驗(yàn)證
對(duì)CoMFA 和CoMSIA模型的實(shí)驗(yàn)值和預(yù)測(cè)值進(jìn)行線性回歸分析(圖3)可以發(fā)現(xiàn):實(shí)驗(yàn)值與預(yù)測(cè)值有較好的擬合度,表明實(shí)驗(yàn)值與預(yù)測(cè)值之間存在良好的相關(guān)性。
表2 訓(xùn)練集CoMFA 和CoMSIA 模型的統(tǒng)計(jì)參數(shù)
2.3CoMFA 和 CoMSIA模型結(jié)果分析
圖4是用活性最高的化合物13為模板來(lái)分析CoMFA和COMSIA模型的三維等勢(shì)圖。圖4(a)為CoMFA立體場(chǎng)和靜電場(chǎng)下的等勢(shì)圖,其中立體場(chǎng)和靜電場(chǎng)的貢獻(xiàn)分別是39.8%和60.2%,由此可知在CoMFA模型中靜電場(chǎng)占據(jù)主要地位。圖4(a)中黃色表示增大基團(tuán)活性降低,綠色表示增大基團(tuán)會(huì)增加活性,從圖中可以看出:R1位取代基苯并咪唑的2號(hào)位添加1個(gè)甲基后活性增大,如化合物13的活性大于12;相對(duì)于化合物9和10,在咪唑環(huán)的NH位(黃色區(qū)域)添加甲基后活性減小。圖中紅色代表增加帶負(fù)電基團(tuán)有利于增加活性,藍(lán)色代表帶正電基團(tuán)有利于增加活性。R1位取代基苯并咪唑基的NH位置的不同導(dǎo)致活性發(fā)生差異。 如化合物12號(hào)的活性大于化合物11,化合物07的活性大于化合物08的活性。在這個(gè)模型中靜電場(chǎng)的貢獻(xiàn)達(dá)到了60.2%,在今后的設(shè)計(jì)中應(yīng)以此為焦點(diǎn)。
圖3 3D-QSAR模型中訓(xùn)練集和測(cè)試集實(shí)驗(yàn)值
圖4(b)、(c)、(d)分別對(duì)應(yīng)的是CoMSIA 模型立體場(chǎng)和靜電場(chǎng)、CoMSIA 模型疏水場(chǎng)、CoMSIA 模型氫鍵供體和受體場(chǎng)三維等勢(shì)圖。圖4(b)中靜電場(chǎng)和立體場(chǎng)顏色的表示意義同COMFA一樣。通過(guò)對(duì)比可以發(fā)現(xiàn):立體場(chǎng)和靜電場(chǎng)等勢(shì)域在這兩個(gè)模型中的分布大致相同。圖4(c)中黃色區(qū)域代表添加疏水基團(tuán)可以增加分子的活性,灰色區(qū)域?yàn)槭杷焕麉^(qū)域。如R2位上替換為憎水基團(tuán)后,活性變強(qiáng),如02,07,08號(hào)化合物的活性分別大于01,09,10號(hào)化合物的活性。圖4(d)中藍(lán)綠色代表增加氫鍵供體有利于增加活性,紫色相反,紫紅色表示增加氫鍵供體有利于活性增加,紅色與之相反。如化合物10在NH位用甲基取代H后活性小于化合物09。在CoMSIA模型中,氫鍵供體的貢獻(xiàn)值為42.8%,因此應(yīng)該著重在氫鍵供體方面修飾分子。
圖4 三維等勢(shì)圖
3結(jié)束語(yǔ)
本文通過(guò)對(duì)29個(gè)苯并氮氧雜環(huán)類(lèi)mTOR抑制劑進(jìn)行三維定量構(gòu)效關(guān)系的研究分析,得到兩個(gè)穩(wěn)定且具有較好預(yù)測(cè)能力的CoMFA和CoMSIA模型。通過(guò)兩種模型的三維等勢(shì)圖確定了在R1位取代基苯并咪唑的2號(hào)位增大基團(tuán)或者替換為憎水基團(tuán)后活性增大,反之活性降低。在R1位取代基苯并咪唑的NH位增加氫鍵供體后會(huì)降低化合物的活性。
參考文獻(xiàn):
[1]HEITMAN J,MOVVA N R,HALL M N.Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast[J].Science,1991,253(5022):905-909.
[2]冀靜.mTOR信號(hào)通路與腫瘤的研究進(jìn)展[J].西安交通大學(xué)學(xué)報(bào)(醫(yī)學(xué)版),2010,31(1):1-9.
[3]陸建國(guó).mTOR信號(hào)通路與腫瘤研究進(jìn)展[J].現(xiàn)代醫(yī)藥衛(wèi)生,2015,31(2):199-202.
[4]KOEHLER M F,BERGERON P,BLACKWOOD E,et al.Potent,selective,and orally bioavailable inhibitors of the mammalian target of rapamycin kinase domain exhibiting single agent antiproliferative activity[J].Journal of medicinal chemistry,2012,55(24):10958-10971.
[5]LIU Q,WANG J,KANG,et al,Discovery of 9-(6-aminopyridin-3-yl)-1-(3-(trifluoromethyl)phenyl) benzo[h][1,6] naphthyridin-2(1H)-one (Torin2) as a potent,selective,and orally available mammalian target of rapamycin (mTOR) inhibitor for treatment of cancer[J].Journal of medicinal chemistry,2011,54(5):1473-1480.
[6]MORTENSEN D S,PERRIN-NINKOVIC S M,SHEVLIN G,et al.Optimization of a Series of Triazole Containing Mammalian Target of Rapamycin (mTOR) Kinase Inhibitors and the Discovery of CC-115[J].Journal of medicinal chemistry,2015,58(14):5599-5608.
[7]POULSEN A,NAGARAJ H,LEE A,et al,Structure and ligand-based design of mTOR and PI3-kinase inhibitors leading to the clinical candidates VS-5584 (SB2343) and SB2602[J].Journal of chemical information and modeling,2014,54(11):3238-3250.
[8]SAURAT T,BURON F,RODRIGUES N,et al.Design,synthesis,and biological activity of pyridopyrimidine scaffolds as novel PI3K/mTOR dual inhibitors[J].Journal of medicinal chemistry,2014,57(3):613- 631.
[9]SEIXAS J D,LUENGO-ARRATTA S A,DIAZ R,et al.Establishment of a structure-activity relationship of 1H-imidazo[4,5-c]quinoline-based kinase inhibitor NVP-BEZ235 as a lead for African sleeping sickness[J].Journal of medicinal chemistry,2014,57(11):4834- 4848.
[10]CHOE G,HORVATH S,CLOUGHESY T F,et al.Analysis of the phosphatidylinositol 3’-kinase signaling pathway in glioblastoma patients in vivo[J].Cancer research,2003,63 (11):2742-2846.
[11]NEVE R M,HOLBRO T,HYNES N E.Distinct roles for phosphoinositide 3-kinase,mitogen-activated protein kinase and p38 MAPK in mediating cell cycle progression of breast cancer cells[J].Oncogene,2002,21(29):4567-4576.
[12]TAKAKEUCHI C S,KIM B G,BLAZEY C M,et al.Discovery of a novel class of highly potent,selective,ATP-competitive,and orally bioavailable inhibitors of the mammalian target of rapamycin (mTOR) [J].Journal of medicinal chemistry,2013,56(6):2218-2234.
[13]NAGANATHAN S,ANDERSEN D L,ANDERSEN N G,et al.Process Development and Scale-Up of a Benzoxazepine-Containing Kinase Inhibitor[J].Organic Process Research & Development,2015,19(7):721-734.
[14]ZHENG S,ZHONG Q,XI Y,et al.Modification and biological evaluation of thiazole derivatives as novel inhibitors of metastatic cancer cell migration and invasion[J].Journal of medicinal chemistry,2014,57(15):6653- 6667.
[15]CRAMER R D,PATTERSON D E,BUNCE J D.Comparative molecular field analysis (CoMFA).1.Effect of shape on binding of steroids to carrier proteins[J].Journal of the American Chemical Society,1988,110(18):5959-5967.
[16]KLEBE G,ABRAHAM U,MIETZNER T.Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity[J].Journal of medicinal chemistry,1994,37(24):4130- 4146.
[17]BOHM M,St RZEBECHER J,KLEBE G.Three-dimensional quantitative structure-activity relationship analyses using comparative molecular field analysis and comparative molecular similarity indices analysis to elucidate selectivity differences of inhibitors binding to trypsin,thrombin,and factor Xa[J].Journal of medicinal chemistry,1999,42(3):458- 477.
[18]XIE A,SIVAPRAKASAM P,DOERKSEN R J.3D-QSAR analysis of antimalarial farnesyltransferase inhibitors based on a 2,5-diaminobenzophenone scaffold[J].Bioorganic & medicinal chemistry,2006,14(21):7311-7323.
[19]BUSH B L,NACHBAR R B.Sample-distance partial least squares:PLS optimized for many variables,with application to CoMFA[J].Journal of computer-aided molecular design,1993,7(5):587- 619.
[20]ALMERICO A M,TUTONE M,LAURIA A.Receptor-guided 3D-QSAR approach for the discovery of c-kit tyrosine kinase inhibitors[J].Journal of molecular modeling,2012,18(7):2885-2895.
[21]AKAMATSU M.Current state and perspectives of 3D-QSAR[J].Current topics in medicinal chemistry,2002,2(12):1381-1394.
(責(zé)任編輯何杰玲)
3D-QSAR Studies on Thiazole Derivatives as mTOR Protein Inhibitors
MAO Li-jing1,WEN Xiao-rong2, SHU Mao2
(1.Jiangsu Jiuxu Pharmaceutical Co., Ltd., Xuzhou 221200, China; 2.College of Pharmacy and Biological Engineering, Chongqing University of Technology, Chongqing 400054, China)
Abstract:On 29 benzene oxygen and nitrogen heterocyclic mTOR inhibitors, comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were performed on a series of mTOR protein inhibitors, and the CoMFA and CoMSIA model were built to carriy on the three-dimensional quantitative structure-activity relationship studies. The result show that the coefficients of cross-validation q2 and non cross-validation r2 for CoMFA model are 0.674 and 0.995 respectively, and for CoMSIA model are 0.782 and 0.932 respectively. Both models have good predictive capability and stability. Its 3 d isopotential map also confirmed the mTOR inhibitors relationship between structure and activity, which provides theoretical basis for more efficient design research of mTOR inhibitor.
Key words:mTOR inhibitor; mTOR protein; 3D-QSAR
中圖分類(lèi)號(hào):TQ464
文獻(xiàn)標(biāo)識(shí)碼:A 1674-8425(2016)03-0074-06
doi:10.3969/j.issn.1674-8425(z).2016.03.013
作者簡(jiǎn)介:毛黎靜(1977—),女,主要從事現(xiàn)代中藥制劑新劑型及脂肪乳注射劑的研究工作;舒茂(1975—),男,副教授,主要從事計(jì)算機(jī)輔助藥物設(shè)計(jì)。
收稿日期:2015-12-26
引用格式:毛黎靜,文曉榮,舒茂.mTOR 抑制劑的三維定量構(gòu)效關(guān)系研究[J].重慶理工大學(xué)學(xué)報(bào)(自然科學(xué)),2016(3):74-79.
Citation format:MAO Li-jing,WEN Xiao-rong, SHU Mao.3D-QSAR Studies on Thiazole Derivatives as mTOR Protein Inhibitors[J].Journal of Chongqing University of Technology(Natural Science),2016(3):74-79.