• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dilepton from Passage of Jets Through Spherical Expanding QGP?

    2016-05-09 08:54:58YongPingFu傅永平andQinXi郗勤
    Communications in Theoretical Physics 2016年12期
    關(guān)鍵詞:永平

    Yong-Ping Fu(傅永平)and Qin Xi(郗勤)

    School of Physics and Mathematics,Dianxi Science and Technology Normal University,Lincang 677000,China

    1 Introduction

    Relativistic heavy-ion collisions are studied with the aim of producing a strongly interacting matter,the deconfined matter is the so-called quark-gluon plasma(QGP).The photons and dileptons production is considered to be a useful probe for the evolution of the QGP due to their very long mean free path in the hot matter.[1]In relativistic heavy-ion collisions dileptons are produced from the Drell–Yan process,[2]the interactions of thermal partons in the QGP,[3]jets passing through the hot medium(jet-dilepton conversion),[4?5]the hadron interactions in the hadronic gas,[6?7]and the hadronic decays after the freeze-out.[8]

    The jet-dilepton conversion when the jets passing through the QGP also provides a useful tool that enables tomographic study of the QGP.[9?10]The electromagnetic radiation from jets interacting with the thermal partons of the QGP in the(1+1)-dimensional((1+1)D)evolution of the plasma has been investigated.[11?13]The solutions of the relativistic hydrodynamical equations can provide the collective properties of the flow.The Bjorken solution describes an estimate of the(1+1)D cylindrical expansion of the QGP.[14]

    The(1+3)-dimensional((1+3)D)hydrodynamics equations have been studied numerically which assumes cylindrical symmetry along the transverse direction and boost invariant along the longitudinal direction.[15?18]When the initial proper time τ= τiand initial temperature T=Tithe system is thermalized.The QGP temperature T and proper time τ can be numerically calculated.The transverse flow effect of the dilepton production with cylindrical symmetry are shown to be important in the region of low invariant mass.[17]

    In the present work,we derive the hubble-like solutions(τT= τiTi)of(1+3)D relativistic hydrodynamics which favors spherical symmetry,and investigate the initial condition of the temperature T and proper time τ in the spherical evolution.We find the transverse flow effect is also apparent at intermediate and high invariant mass at LHC energies.

    Jets passing through the plasma will lose energies.In the high energy parton collisions,the radiative energy loss is more important than the elastic energy loss.[19]The AMY model is used to investigate the energy loss of the jet-dilepton conversion in the(1+1)D QGP.[4?5,11?12]There are several models of the jet energy loss due to gluon bremsstrahlung in the QGP:Gyulassy–Wang(GW),[19?20]Gyulassy–Levai–Vitev(GLV),[21?22]Baier–Dokshitzer–Mueller–Peigne–Schi ff(BDMPS),[23?24]Guo-Wang(HT),[25?26]Wang–Huang–Sarcevic(WHS),[27?28]and Arnold–Moore–Ya ff e(AMY).[29?30]In this paper we use the WHS and BDMPS models to calculate the energy loss of the jet-dilepton conversion with the(1+3)D spherical symmetry.

    This paper is organized as follows.In Sec.2 we discuss the(1+3)D spherical evolution of the plasma.In Sec.3 we calculate the jet production and jet energy loss.In Sec.4 we discuss the production rate of the jet-dilepton conversion in the spherical expanding QGP.Finally,the numerical results and summary are presented in Secs.5 and 6.

    2(1+3)Dimension Hydrodynamics

    The energy-momentum tensor of the QGP produced in relativistic heavy-ion collisions is given by Tμν=(ε+P)uμuν? Pgμν,where ε and P are the energy density and the pressure,respectively.The four-velocity of the ideal fluid is uμ= γ(1,v),where γ =1/(1? v2)1/2.The space-time coordinate is xμ=(t,r),and the metric tensor is gμν=diag(1,?1,?1,?1).The tensor satisfies(gμν)2=1+d, δii=d,where Greek letters denote Lorentz indices,Latin letters denote three-vector indices,and d is the dimensionality of the space.In(1+3)D ideal fluid,the fluid velocity vector uμ= xμ/τ is Lorentz invariant,the proper time is τ=(t2? r2)1/2,where we denote|r|by r and the space-time rapidity η as η=1/2ln((t+r)/(t?r)),the t and r coordinates as functions of τ and η are t= τ coshη,and r= τ sinhη.Under the condition of spherical expansion of the fire ball,we have the space-time integration as

    where the Jacobian dtdr is related to τdτ dη.

    Now the relativistic hydrodynamic equation ?μTμν=0 for a(1+3)D expansion with spherical symmetry read

    where?uμ/?xμ=(?1)/τ.If the QGP has the longitudinal and transverse expansion,we derive the universal solution of the relativistic hydrodynamics equation as

    where τiand Tiare the initial time and initial temperature of the equilibrium QGP,respectively.In the(1+1)D case,d=1,Eq.(3)is the well-known Bjorken solution.

    In the(1+3)D condition,d=3,we have the Hubblelike solution as

    this solution favors the spherical symmetry.[32]The end of the QGP phase occur at proper time τc= τiTi/Tc,where Tc=160 MeV is the critical temperature of the phase transition.In the(1+1)D cylindrical expansion the QGP cooling time is τc= τi(Ti/Tc)3.The transverse expansion leads to a more rapid cooling of the system.

    At proper time τiand temperature Tithe initial entropy Siis essentially constant and the system is regarded as thermalized.[17]Since the initial entropy density is related to the initial temperature as[16]

    where the factor gQ=42.25 is the degrees of freedom for the plasma of u,d,s quarks and gluons.Therefore the total entropy is

    the space volume is dV =r2τ dη sinθdθd?.Then we have that the initial entropy per unit rapidity is

    The entropy density and particle multiplicity for the case of spherical expansion have the relation as[15?16]

    where y is the true momentum rapidity.In the(1+3)D expanding QGP,the space-time rapidity η=(1/2)[(t+r)/(t?r)]and the true momentum rapidity y=(1/2)[(E+p)/(E?p)]are correlated.[17]Then we have dy=dη and η=y+,whereis an arbitrary constant.At midrapidity y=0,η=,we define r(η,y=0)=τ.Therefore the initial time and temperature for the(1+3)D spherical expansion are related by the following

    We use the initial temperature Ti= 370 MeV for dN/dy=1260 at RHIC,Ti=636 MeV for dN/dy=2400 at LHC (Pb+Pb,= 2.76 TeV),and Ti=845 MeV for dN/dy=5624 at LHC(Pb+Pb,=5.5 TeV).[11?12,33?34]The numerical results of the initial conditions for y=0 are presented in Table 1.

    Table 1 Initial conditions of the hydrodynamical expansion.

    3 Jet Energy Loss

    The energy loss of jets passing the QGP can be determined by the spectrum of energy loss per unit distance dE/dx.Induced gluon bremsstrahlung is more important than the elastic scattering of partons in the jet energy loss.[23]If an energetic jet hadronizes outside the system,the passing distance is long and the energy loss is large.[19,23,27?28]However,in the jet-dilepton and jet-photon conversion,jets travel only a short distance through the QGP before the jets convert into dileptons and photons.Therefore the energy loss is relatively small in the jet-dilepton and jet-photon conversions.In the central Au+Au collisions at RHIC the energy loss of the jetphoton conversion is just about 20%.[5]

    In this paper we discuss the jets produced at midrapidity and propagated in the transverse direction.The total passing distance of a hadronization jet produced at(r,?)in(1+3)D is? rcos?,where R(τ)is the radius of the expanding QGP.In the(1+1)D Bjorken evolution,the average value ofwhere RA=1.2A1/3fm is the initial radius of the system.[11,28]We consider the spherical expansion,and find that R(τ) ≥ RAand

    In the relativistic heavy-ion collisions,we assume the high energy jet is massless and travels with the speed of light in the transverse direction.[11]The distance of the jets passing through the QGP in the jet-dilepton conversion processes is

    and the average value of the distance of jet-dilepton processes is

    where the lifetime of the QGP phase is△τ= τc?τi.In Table 2 we plot the numerical results of the jet-dilepton distance and hadronization distance,we find that the distance hLi of the jet-dilepton conversion is smaller than the total distance h?Li of hadronization.In the jet-dilepton conversion processes the high energy jets only pass a short distance in the hot matter before the jets convert into dileptons.The distance hLi1+3is smaller than hLi1+1at RHIC and LHC energies due to the transverse flow effect.

    Table 2 The average value of the distance covered by the jet during the passage of the jet-dilepton conversion and total distance in(1+1)D and(1+3)D expanding QGP,respectively.

    In Refs.[9,27–28]the authors use the WHS model to calculate the modification of the jet fragmentation function due to the energy loss.This model is a good tool to study the parton energy loss and multiple final-state scatterings.[28]The yield dNjet/d2p⊥dyjetfor a jet passing through the QGP can be written as

    where△E=nεais the energy loss,E⊥is the transverse energy of the produced jet,εais the average energy loss per scattering.p′⊥is the transverse momentum of the parton,and p⊥=p′⊥?△E.The energy-loss in the medium of a finite size L is given by BDMPS:[23]

    where ca=4/3 for quarks and 3 for gluon,μ2=4παsT2,μ is the Debye mass of the medium,λgis the gluon mean free path.The quark mean free path is λq=9λg/4.[27?28]

    The initial jets production dN0jet/d2p′⊥dyjetin the relativistic heavy-ion collisions(A+B→jets+X)can be written as[35]

    where TAA=9A2/8πis the nuclear thickness for central collisions.[4?5]The momentum fractions with the rapidity are given by=x1/(1?x2)and xb=xax2/(xa?x1),where the variables areis the center of mass energy of the colliding nucleons.Kjetis the pQCD correction factor to take into account the next-to-leading order(NLO)effects,we use Kjet=1.7 for RHIC and 1.6 for LHC.[30]The parton distribution for the nucleus is given by

    where Z is the number of protons,A is the number of nucleons,(xa,Q2)is the nuclear modification function.[36]The functions fa/p(xa,Q2)and fa/n(xa,Q2)are the parton distributions of the proton and neutron,respectively.[37]is the cross section of parton collisions at leading order,these processes are:qˉq→q′ˉq′,qq′→qq′,qˉq′→qˉq′,qq→qq,qˉq→qˉq,qg→qg,and gg→qˉq.[38]

    4 Jet-Dilepton Conversion

    The production rate of the jet-dilepton conversion is given by[13]

    where the cross section of the quark annihilation is σ(M)=1PThe jet-dilepton conversion is sensitive to the choice of the minimum value of p.We use the limit|p|≥ 4 GeV in Eq.(16).[11?12]The phasespace distribution function for a jet,assuming the constant transverse density of nucleus,is as follows[39]where gq=6 is the spin and color degeneracy of the quarks(and antiquarks),V=4πτ3is the volume of the spherical expanding QGP.

    The production rate of thermal dileptons from the QGP can be written as[3,40]

    Because we are interested in jets produced at midrapidity(yjet=0),we only consider dileptons produced at midrapidity(y=0).The yield as a function of invariant mass M and dilepton rapidity y is given by the(1+3)D space-time integration d4x=r2τ dτdy sinθdθd? as

    In the jet-dilepton conversion processes the jet only propagates in the pure QGP phase,therefore we limit the τ integration as[τi,τc].

    5 Results and Discussions

    The numerical results of thermal dileptons produced from the QGP at RHIC and LHC energies are presented in Fig.1.In the central Au+Au collisions at200 GeV we choose the initial temperature of the(1+3)D spherical expanding QGP Ti=370 MeV.[11?12]Then we have the initial time

    and the critical time τc= τiTi/Tc=3.33 fm/c.In the(1+1)D Bjorken expansion the initial time[15]

    is 0.26 fm/c and the critical time τc=τi(Ti/Tc)3is 3.22 fm/c at RHIC.The life time of the QGP phase of the(1+3)D expansion(△τ1+3=1.89 fm/c)is smaller than the one of the(1+1)D case(△τ1+1=2.96 fm/c)at RHIC energy.At LHC we have △τ1+3=3.092 fm/c,△τ1+1=5.442 fm/c,and △τ1+3=4.453 fm/c,△τ1+1=12.873 fm/c corresponding to Ti=636 MeV and Ti=845 MeV,respectively.The initial conditions at RHIC and LHC are calculated in Table 1.

    The comparisons of the thermal dileptons and the jetdilepton conversion from the(1+1)D cylindrical expanding and(1+3)D spherical expanding QGP are given in Figs.1 and 2,respectively.The transverse flow of the spherical expansion reduces the yields from low to high invariant mass and the reduction is largest at low invariant mass,the transverse flow effect is still important at intermediate and large mass. In Fig.1 the reduction of thermal dileptons is in the region of M<2.5 GeV for Ti=370 MeV,M<4.5 GeV for Ti=636 MeV and M<6 GeV for Ti=845 MeV.The thermal production is suppressed by a factor~2 at M~2 GeV for Ti=845 MeV.In Fig.2 the reduction of the jetdilepton conversion is in the region of M<7 GeV for Ti=370 MeV,M<13.5 GeV for Ti=636 MeV and M<16 GeV for Ti=845 MeV.We find a factor~2 of suppression at M~4 GeV for Ti=845 MeV.

    Fig.1 The results of thermal dileptons produced from the QGP phase at RHIC and LHC energies.In central Au+Au collisions at=200 GeV the initial temperature is Ti=370 MeV.In central Pb+Pb collisions at=2.76 TeV and 5.5 TeV,the initial temperature is Ti=636 MeV and Ti=845 MeV,respectively.The dashed line means the thermal dileptoons produced from the cylindrical expanding QGP without transverse flow(1+1D).The solid line means thermal dileptons produced from spherical expanding QGP(1+3D).

    Fig.2 Dileptons originating from the passage of the jets passing through the QGP at RHIC and LHC energies.Dashed line:jet-dilepton conversion without transverse flow;solid line:jet-dilepton conversion with transverse flow of the spherical expansion.The jet energy loss is included.

    In Figs.3,4,and 5,we plot the numerical results for dileptons from QGP,Drell–Yan process and jet-dilepton conversions in the spherical expanding QGP at RHIC and LHC energies,respectively.In Fig.3 we find the contribution of the jet-dilepton conversion is not important at RHIC.However the jet-dilepton conversion is comparable to that of the thermal contribution and Drell–Yan process at LHC energies.The jet-dilepton conversion becomes a dominant source in the region of 4.5 GeV

    Fig.3 Dilepton yield for central Au+Au collisions at=200 GeV.Solid line:thermal dileptons produced from the spherical expanding QGP;dashed line:Drell—Yan contribution;dash-dotted line:dileptons produced by the jet-dilepton conversion.The energy loss is considered.

    Fig.4 Same as Fig.3 but for central Pb+Pb collisions at=2.76 TeV.

    The energy loss effect of the jet-dilepton conversion is presented in Fig.6 at RHIC and LHC.The energy loss rate△E/Ejet∝ M?2,this implies that the energy loss effect suppresses the jet-dilepton spectrum,and the suppression decreases with increasing invariant mass M.The energy loss rate depends on the propagating distance L of the jet.In Table 2 we find that hLiLHC>hLiRHIC,the large value of L corresponds to the increase of the energy loss rate.The energy loss is much larger at LHC energies.At RHIC dileptons are reduced by about 23%for M=1 GeV,and 10%for M=4 GeV.These results agree with the numerical results from the AMY approach.[12]In central Pb+Pb collisions atTeV the energy loss is about 13%and 7%at M=4.5 GeV and 5.5 GeV,respectively.Atthe energy loss is about 6%at M=7 GeV and 2%at M=9 GeV.

    The cˉc(bˉb)pairs produced from the initial hard parton collisions can fragment into D(B)andˉD(ˉB)charm(bottom)mesons.The decay of open charm and bottom mesons is the main background of the thermal and D-Y dileptons.In Refs.[41–43]the authors study the energy loss of heavy quarks and the Parton-Hadron-String Dynamics transport model,and find that the production of the dileptons from the the decays of DˉD and BˉB mesons is smaller than the thermal dileptons in the intermediate and high invariant mass region at LHC.This provides a good window to measure the jet-dilepton conversion in the high invariant mass region.

    Fig.5 Same as Fig.3 but for central Pb+Pb collisions at=5.5 TeV.

    Fig.6 E ff ect of jet energy loss on the jet-dilepton conversion at RHIC and LHC energies.The solid lines include the jet energy loss,while the dashed lines do not.

    6 Summary

    We have studied the hydrodynamic equations with spherical symmetry,and calculated the large mass dilepton produced from the jet-dilepton conversion,QGP and Drell–Yan at RHIC and LHC.We presented the temperature evolution equation,which favors the spherical symmetry of fire ball.We have found that the transverse flow effect from the spherical expanding QGP leads to a smaller life time of the QGP phase,and suppresses the production of jet-dileptons and thermal dileptons from low to high invariant mass region.We have found that the energy loss is small when the invariant mass is increasing.The new energy loss framework of jet-dilepton conversion has been presented by using the WHS and BDMPS models.

    We thank Prof.D.K.Srivastava for helpful suggestions about the transverse expansion of the plasma and energy loss of the jets in the jet-dilepton conversions.

    [1]E.V.Shuryak,Phys.Lett.B 78(1978)150.

    [2]S.D.Drell and T.M.Yan,Phys.Rev.Lett.25(1970)316.

    [3]K.Kajantie,J.Kapusta,L.McLerran,and A.Mekjian,Phys.Rev.D 34(1986)2746.

    [4]R.J.Fries,B.Muller,and D.K.Srivastava,Phys.Rev.Lett.90(2003)132301.

    [5]R.J.Fries,B.Muller,and D.K.Srivastava,Phys.Rev.C 72(2005)041902.

    [6]C.Gale and P.Lichard,Phys.Rev.D 49(1994)3338.

    [7]C.M.Hung and E.V.Shuryak,Phys.Rev.C 56(1997)453.

    [8]E.L.Bratkovskaya and W.Cassing,Nucl.Phys.A 619(1997)413.

    [9]E.Wang and X.N.Wang,Phys.Rev.Lett.89(2002)162301.

    [10]M.Gyulassy,P.Levai,and I.Vitev,Phys.Lett.B 538(2002)282.

    [11]D.K.Srivastava,C.Gale,and R.J.Fries,Phys.Rev.C 67(2003)034903.

    [12]S.Turbide,C.Gale,D.K.Srivastava,and R.J.Fries,Phys.Rev.C 74(2006)014903.

    [13]Y.P.Fu and Y.D.Li,Nucl.Phys.A 865(2011)76;Y.P.Fu and Y.D.Li,Chin.Phys.Lett.27(2010)101202.

    [14]J.D.Bjorken,Phys.Rev.D 27(1983)140.

    [15]R.C.Hwa and K.Kajantie,Phys.Rev.D 32(1985)1109.

    [16]H.V.Gersdor ff,L.McLerran,M.Kataja,and P.V.Ruuskanen,Phys.Rev.D 34(1986)794.

    [17]K.Kajantie,M.Kataja,L.McLerran,and P.V.Ruuskanen,Phys.Rev.D 34(1986)811.

    [18]J.Alam,D.K.Srivastava,B.Sinha,and D.N.Basu,Phys.Rev.D 48(1993)1117.

    [19]X.N.Wang,M.Gyulassy,and M.Plumer,Phys.Rev.D 51(1995)3436.

    [20]M.Gyulassy and X.N.Wang,Nucl.Phys.B 420(1994)583.

    [21]M.Gyulassy,P.Levai,and I.Vitev,Phys.Rev.Lett.85(2000)5535.

    [22]M.Gyulassy,P.Levai,and I.Vitev,Nucl.Phys.B 571(2000)197.

    [23]R.Baier,Y.L.Dokshitzer,A.H.Mueller,S.Peigne,and D.Schi ff,Nucl.Phys.B 483(1997)291.

    [24]R.Baier,Y.L.Dokshitzer,A.H.Mueller,S.Peigne,and D.Schi ff,Nucl.Phys.B 484(1997)265.

    [25]X.F.Guo and X.N.Wang,Phys.Rev.Lett.85(2000)3591.

    [26]X.N.Wang and X.F.Guo,Nucl.Phys.A 696(2001)788.

    [27]X.N.Wang,Z.Huang,and I.Sarcevic,Phys.Rev.Lett.77(1996)231.

    [28]X.N.Wang and Z.Huang,Phys.Rev.C 55(1997)3047.

    [29]P.Arnold,G.D.Moore,and L.Ya ff e,J.High Energy Phys.11(2001)057.

    [30]S.Turbide,C.Gale,S.Jeon,and G.D.Moore,Phys.Rev.C 72(2005)14906.

    [31]G.Y.Qin,J.Ruppert,C.Gale,S.Jeon,and G.D.Moore,Phys.Rev.C 80(2009)54909.

    [32]M.I.Nagy,Phys.Rev.C 83(2011)054901.

    [33]J.Kapusta,L.D.Mclerran,and D.K.Srivastava,Phys.Lett.B 283(1992)145.

    [34]V.Kumar,P.Shukla,and R.Vogt,Phys.Rev.C 86(2012)054907.

    [35]J.F.Owens,Rev.Mod.Phys.59(1987)465.

    [36]K.J.Eskola,V.J.Kolhinen,and C.A.Salgado,Eur.Phys.J.C 9(1999)61.

    [37]D.Stump,J.Huston,J.Pumplin,et al.,J.High Energy Phys.10(2003)725.

    [38]B.L.Combridge,J.Kripfganz,and J.Ranft,Phys.Lett.B 70(1977)234.

    [39]Z.Lin and M.Gyulassy,Phys.Rev.C 51(1995)2177.

    [40]R.Rapp and E.Shuryak,Phys.Lett.B 473(2000)13.

    [41]G.D.Moore and D.Teaney,Phys.Rev.C 71(2005)064904.

    [42]Z.Lin,R.Vogt,and X.N.Wang,Phys.Rev.C 57(1998)899.

    [43]O.Linnyk,W.Cassing,J.Manninen,E.L.Bratkovskaya,P.B.Gossiaux,J.Aichelin,T.Song,and C.M.Ko,Phys.Rev.C 87(2013)014905.

    猜你喜歡
    永平
    教師節(jié)
    給爸爸捶背
    老城舊影 永平門
    紅巖春秋(2022年11期)2022-05-30 16:00:02
    例談元素及化合物知識(shí)復(fù)習(xí)策略
    踢球
    流蘇樹(shù)與美國(guó)流蘇樹(shù)園林綠化前景探討
    認(rèn)識(shí)形近字
    五絕·晚秋晚風(fēng)
    小刺猬的秘密
    段永平:從企業(yè)家到幕后教父
    亚洲精品日韩av片在线观看| 三级毛片av免费| 成年女人毛片免费观看观看9| 日本三级黄在线观看| 97超碰精品成人国产| 亚洲av二区三区四区| 人人妻,人人澡人人爽秒播| 国产一区亚洲一区在线观看| 亚洲欧美清纯卡通| 老女人水多毛片| 国产午夜精品论理片| 嫩草影视91久久| 久久精品影院6| 嫩草影院入口| 色av中文字幕| 亚洲av二区三区四区| 97人妻精品一区二区三区麻豆| 久久久精品94久久精品| 51国产日韩欧美| 啦啦啦观看免费观看视频高清| 成人高潮视频无遮挡免费网站| 国产精品综合久久久久久久免费| 亚洲国产欧美人成| 99热6这里只有精品| 亚洲三级黄色毛片| 成人av一区二区三区在线看| 亚洲18禁久久av| 在线观看午夜福利视频| 乱码一卡2卡4卡精品| 伦理电影大哥的女人| 亚洲精品成人久久久久久| 听说在线观看完整版免费高清| 别揉我奶头~嗯~啊~动态视频| 国产在线精品亚洲第一网站| 1000部很黄的大片| 床上黄色一级片| 男人和女人高潮做爰伦理| 在线播放国产精品三级| 日本黄色视频三级网站网址| 我的女老师完整版在线观看| 国产精品嫩草影院av在线观看| 99热这里只有精品一区| 国产黄片美女视频| 国产不卡一卡二| 日日干狠狠操夜夜爽| 久久精品国产99精品国产亚洲性色| 18+在线观看网站| 久久久久久九九精品二区国产| 亚洲熟妇中文字幕五十中出| 国产黄色视频一区二区在线观看 | 中国国产av一级| 国产亚洲av嫩草精品影院| 校园春色视频在线观看| 欧美不卡视频在线免费观看| 免费电影在线观看免费观看| 国内精品宾馆在线| 国产av麻豆久久久久久久| 永久网站在线| 国国产精品蜜臀av免费| 免费在线观看成人毛片| 色5月婷婷丁香| 婷婷精品国产亚洲av在线| 亚洲内射少妇av| 国产精品嫩草影院av在线观看| 黄色欧美视频在线观看| 亚洲精品在线观看二区| 免费看美女性在线毛片视频| 免费看日本二区| 特级一级黄色大片| 国产伦精品一区二区三区视频9| 少妇猛男粗大的猛烈进出视频 | 国产伦一二天堂av在线观看| av中文乱码字幕在线| 国产一区二区激情短视频| 黄色视频,在线免费观看| 免费看美女性在线毛片视频| 精品99又大又爽又粗少妇毛片| 淫妇啪啪啪对白视频| 99精品在免费线老司机午夜| 联通29元200g的流量卡| 精品久久久噜噜| 俺也久久电影网| 国产单亲对白刺激| 赤兔流量卡办理| 悠悠久久av| 国产蜜桃级精品一区二区三区| 日本a在线网址| 99热全是精品| 可以在线观看毛片的网站| 黄色一级大片看看| 久久精品人妻少妇| 精品久久国产蜜桃| 久99久视频精品免费| 国内精品久久久久精免费| 国产成人freesex在线 | 99视频精品全部免费 在线| 久久精品91蜜桃| 国产一区二区在线观看日韩| 久久综合国产亚洲精品| 国产中年淑女户外野战色| 亚洲丝袜综合中文字幕| 日本黄色视频三级网站网址| 高清日韩中文字幕在线| 日韩av在线大香蕉| 桃色一区二区三区在线观看| 免费人成在线观看视频色| 欧美区成人在线视频| avwww免费| 国产黄色小视频在线观看| 最近手机中文字幕大全| 在线免费十八禁| 久久综合国产亚洲精品| 美女cb高潮喷水在线观看| 成人漫画全彩无遮挡| 国产成人影院久久av| 国产精品一区www在线观看| 内地一区二区视频在线| 久久精品国产亚洲av天美| 18+在线观看网站| 亚洲成人av在线免费| 日日啪夜夜撸| 91麻豆精品激情在线观看国产| 丰满乱子伦码专区| 午夜福利视频1000在线观看| 如何舔出高潮| 免费人成在线观看视频色| 在线观看66精品国产| 欧美又色又爽又黄视频| 日日撸夜夜添| 亚洲国产精品成人综合色| 麻豆av噜噜一区二区三区| 国产欧美日韩精品一区二区| 亚洲专区国产一区二区| 日本色播在线视频| 丰满人妻一区二区三区视频av| 国产精品日韩av在线免费观看| 亚洲精品影视一区二区三区av| 国产亚洲欧美98| av专区在线播放| 国产高清不卡午夜福利| 精品久久久久久久久亚洲| 一级毛片久久久久久久久女| 少妇熟女欧美另类| 亚洲欧美日韩高清在线视频| 女同久久另类99精品国产91| 一区福利在线观看| or卡值多少钱| 日本欧美国产在线视频| 中出人妻视频一区二区| 亚洲精华国产精华液的使用体验 | 又黄又爽又免费观看的视频| 欧美三级亚洲精品| 色噜噜av男人的天堂激情| 国产一区二区在线av高清观看| 亚洲五月天丁香| 国产人妻一区二区三区在| 国产久久久一区二区三区| 小蜜桃在线观看免费完整版高清| 国产熟女欧美一区二区| 久久国产乱子免费精品| 久久久久久久午夜电影| 一本久久中文字幕| 男人狂女人下面高潮的视频| 黄色欧美视频在线观看| 国内精品一区二区在线观看| 日韩av不卡免费在线播放| 久久久久久国产a免费观看| 精品一区二区三区视频在线| 又黄又爽又刺激的免费视频.| 成人亚洲欧美一区二区av| 精品国产三级普通话版| 亚洲最大成人av| 非洲黑人性xxxx精品又粗又长| 天堂av国产一区二区熟女人妻| 久久热精品热| 国产一区二区激情短视频| 免费搜索国产男女视频| 精品久久久久久久久久久久久| 亚洲人成网站在线播放欧美日韩| 香蕉av资源在线| 久久6这里有精品| 欧洲精品卡2卡3卡4卡5卡区| 精品少妇黑人巨大在线播放 | 成人无遮挡网站| 别揉我奶头~嗯~啊~动态视频| 亚洲在线自拍视频| 欧美一区二区精品小视频在线| 有码 亚洲区| 在线免费十八禁| 日韩大尺度精品在线看网址| 少妇丰满av| 老司机影院成人| 成人性生交大片免费视频hd| 亚洲av五月六月丁香网| 91久久精品国产一区二区三区| 久久久久性生活片| 赤兔流量卡办理| 1000部很黄的大片| 十八禁网站免费在线| 日韩av在线大香蕉| 高清毛片免费看| 内射极品少妇av片p| 男人舔奶头视频| 99国产精品一区二区蜜桃av| 亚洲av中文字字幕乱码综合| 九九久久精品国产亚洲av麻豆| 乱系列少妇在线播放| 日韩在线高清观看一区二区三区| 亚洲精品色激情综合| 久久精品国产亚洲网站| 夜夜看夜夜爽夜夜摸| 中文字幕熟女人妻在线| 亚洲av成人精品一区久久| 日韩欧美精品v在线| 日本一二三区视频观看| 看免费成人av毛片| 欧美性猛交╳xxx乱大交人| 国产在视频线在精品| 国产三级中文精品| 好男人在线观看高清免费视频| 两性午夜刺激爽爽歪歪视频在线观看| 变态另类丝袜制服| 久久久久精品国产欧美久久久| 悠悠久久av| av在线播放精品| 黄色欧美视频在线观看| 日日撸夜夜添| 精品午夜福利视频在线观看一区| 久久久久久九九精品二区国产| 免费搜索国产男女视频| 国产免费男女视频| 成年女人永久免费观看视频| 亚洲精品乱码久久久v下载方式| 亚洲精品日韩在线中文字幕 | 一级av片app| 成年女人看的毛片在线观看| 天美传媒精品一区二区| 久久久欧美国产精品| 亚洲av.av天堂| 久久精品国产亚洲网站| 国产精品综合久久久久久久免费| 高清毛片免费观看视频网站| 婷婷亚洲欧美| 天美传媒精品一区二区| 免费一级毛片在线播放高清视频| 国产精品免费一区二区三区在线| 色av中文字幕| 午夜福利18| 99在线视频只有这里精品首页| 免费无遮挡裸体视频| 欧美一区二区国产精品久久精品| 亚洲欧美日韩高清在线视频| 国产私拍福利视频在线观看| 亚洲人成网站在线播| 亚洲激情五月婷婷啪啪| 午夜免费激情av| 亚洲,欧美,日韩| 国产高清视频在线观看网站| 最近最新中文字幕大全电影3| 18禁黄网站禁片免费观看直播| 精品一区二区三区视频在线| 成年女人看的毛片在线观看| 日韩欧美精品免费久久| 成人永久免费在线观看视频| 国产一区二区三区在线臀色熟女| 日韩一区二区视频免费看| 久久这里只有精品中国| 老司机福利观看| 天天躁夜夜躁狠狠久久av| 高清毛片免费观看视频网站| av福利片在线观看| 免费人成视频x8x8入口观看| 欧美+日韩+精品| 国产欧美日韩精品亚洲av| 蜜桃久久精品国产亚洲av| 最好的美女福利视频网| 国产麻豆成人av免费视频| 在线a可以看的网站| 美女xxoo啪啪120秒动态图| 国产成人a区在线观看| 午夜a级毛片| 97超级碰碰碰精品色视频在线观看| 九九在线视频观看精品| 成人无遮挡网站| 少妇熟女aⅴ在线视频| 国产精品日韩av在线免费观看| 国产又黄又爽又无遮挡在线| 搡女人真爽免费视频火全软件 | 1000部很黄的大片| 99久国产av精品国产电影| 亚洲色图av天堂| 乱人视频在线观看| 亚洲人成网站在线观看播放| 国产高清视频在线观看网站| 久久久久久久亚洲中文字幕| 久久中文看片网| 极品教师在线视频| 亚洲欧美精品自产自拍| 露出奶头的视频| 成人av在线播放网站| 亚洲欧美成人精品一区二区| 3wmmmm亚洲av在线观看| 亚洲va在线va天堂va国产| 日日摸夜夜添夜夜添小说| 一级毛片aaaaaa免费看小| 久久久国产成人精品二区| 欧美人与善性xxx| 亚洲自偷自拍三级| 欧美成人免费av一区二区三区| 人妻夜夜爽99麻豆av| 男女边吃奶边做爰视频| 欧美3d第一页| 老熟妇乱子伦视频在线观看| 国产黄a三级三级三级人| 熟女人妻精品中文字幕| 免费av不卡在线播放| 亚洲av一区综合| 久久久精品大字幕| www日本黄色视频网| 国产美女午夜福利| 婷婷精品国产亚洲av| av在线天堂中文字幕| 国产色爽女视频免费观看| av国产免费在线观看| 老司机影院成人| 搞女人的毛片| 高清日韩中文字幕在线| 久久精品国产亚洲网站| 亚洲精品一卡2卡三卡4卡5卡| 99在线人妻在线中文字幕| 国产中年淑女户外野战色| 欧美高清成人免费视频www| 久久久成人免费电影| 一边摸一边抽搐一进一小说| 亚洲人成网站在线观看播放| 99久久中文字幕三级久久日本| 最近的中文字幕免费完整| 精品一区二区三区视频在线观看免费| 欧美激情在线99| 中文资源天堂在线| 99热只有精品国产| 国产精品伦人一区二区| 色哟哟哟哟哟哟| 免费人成视频x8x8入口观看| 国产在线男女| av免费在线看不卡| 人妻久久中文字幕网| 亚洲激情五月婷婷啪啪| 亚洲国产欧美人成| 最新在线观看一区二区三区| h日本视频在线播放| 国产一区二区亚洲精品在线观看| 欧美高清性xxxxhd video| 亚洲电影在线观看av| 国产一区亚洲一区在线观看| 99热全是精品| 免费观看在线日韩| 日日摸夜夜添夜夜爱| 91在线观看av| 97超视频在线观看视频| 干丝袜人妻中文字幕| 日韩欧美 国产精品| 女人十人毛片免费观看3o分钟| 成人精品一区二区免费| 亚洲av.av天堂| 欧美中文日本在线观看视频| 免费观看在线日韩| 欧美zozozo另类| 日韩一区二区视频免费看| 国产精品久久久久久精品电影| 欧美xxxx性猛交bbbb| 人人妻人人澡人人爽人人夜夜 | 九九在线视频观看精品| 久久精品影院6| 久久精品国产亚洲网站| 精品福利观看| 搡老妇女老女人老熟妇| 国产午夜精品论理片| a级毛片免费高清观看在线播放| 99精品在免费线老司机午夜| 淫秽高清视频在线观看| 久久久久久久久久成人| 91在线精品国自产拍蜜月| 黄色配什么色好看| 亚洲高清免费不卡视频| 高清午夜精品一区二区三区 | av在线老鸭窝| 97超视频在线观看视频| 欧美潮喷喷水| 露出奶头的视频| 亚洲国产日韩欧美精品在线观看| 亚洲av第一区精品v没综合| 伊人久久精品亚洲午夜| 99久久无色码亚洲精品果冻| 中文亚洲av片在线观看爽| 国产亚洲av嫩草精品影院| 国产成人精品久久久久久| 亚洲欧美日韩高清专用| 又粗又爽又猛毛片免费看| 狂野欧美白嫩少妇大欣赏| 亚洲精品在线观看二区| 亚洲欧美精品综合久久99| 搡老岳熟女国产| 国产爱豆传媒在线观看| 久久人人爽人人片av| 久久人人精品亚洲av| 韩国av在线不卡| 国产三级在线视频| 亚洲人成网站在线播| 色综合亚洲欧美另类图片| 国产精品永久免费网站| 国产精品一区二区三区四区久久| 美女被艹到高潮喷水动态| 综合色av麻豆| 久久精品国产亚洲av涩爱 | 日本撒尿小便嘘嘘汇集6| 国产午夜精品久久久久久一区二区三区 | 性欧美人与动物交配| www日本黄色视频网| 亚洲国产精品久久男人天堂| 日韩三级伦理在线观看| 波多野结衣巨乳人妻| 最近视频中文字幕2019在线8| 特级一级黄色大片| 国产精品久久视频播放| 麻豆久久精品国产亚洲av| 最近2019中文字幕mv第一页| 少妇人妻一区二区三区视频| 亚洲久久久久久中文字幕| 久久精品国产清高在天天线| 成人一区二区视频在线观看| 听说在线观看完整版免费高清| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲高清免费不卡视频| 精品一区二区三区人妻视频| 国产日本99.免费观看| 97人妻精品一区二区三区麻豆| 欧洲精品卡2卡3卡4卡5卡区| 精品午夜福利在线看| 麻豆一二三区av精品| 听说在线观看完整版免费高清| 日韩,欧美,国产一区二区三区 | 免费看美女性在线毛片视频| h日本视频在线播放| 美女cb高潮喷水在线观看| 亚洲成人久久性| 日本撒尿小便嘘嘘汇集6| www日本黄色视频网| 国产乱人偷精品视频| 亚洲熟妇中文字幕五十中出| 久久亚洲国产成人精品v| 婷婷色综合大香蕉| 国内久久婷婷六月综合欲色啪| 深夜精品福利| 中文字幕av在线有码专区| 偷拍熟女少妇极品色| 白带黄色成豆腐渣| 午夜福利视频1000在线观看| 在线观看av片永久免费下载| 女人被狂操c到高潮| 男女做爰动态图高潮gif福利片| 国产精品一区二区免费欧美| 97在线视频观看| 熟妇人妻久久中文字幕3abv| 一级毛片我不卡| 国内少妇人妻偷人精品xxx网站| 麻豆乱淫一区二区| 国产精品av视频在线免费观看| 国产aⅴ精品一区二区三区波| 天堂√8在线中文| 在线播放无遮挡| 亚洲国产精品成人综合色| 亚洲国产高清在线一区二区三| 国产麻豆成人av免费视频| 91av网一区二区| 级片在线观看| 淫秽高清视频在线观看| 成年版毛片免费区| 在线免费十八禁| 国产真实伦视频高清在线观看| 99久久成人亚洲精品观看| 国产精品免费一区二区三区在线| 成人精品一区二区免费| 色播亚洲综合网| 亚洲电影在线观看av| 久久人人爽人人片av| 日韩精品有码人妻一区| 成人一区二区视频在线观看| 嫩草影院新地址| 女同久久另类99精品国产91| 在线免费观看不下载黄p国产| 看非洲黑人一级黄片| 国产色爽女视频免费观看| 淫秽高清视频在线观看| 黄色日韩在线| 久99久视频精品免费| av国产免费在线观看| 国产精品一区二区免费欧美| 美女xxoo啪啪120秒动态图| 亚洲专区国产一区二区| 美女 人体艺术 gogo| 一区福利在线观看| 日韩一区二区视频免费看| 91在线精品国自产拍蜜月| 精品一区二区三区视频在线观看免费| 国产精品一二三区在线看| 精品一区二区免费观看| 午夜免费男女啪啪视频观看 | 国产高潮美女av| 国产精品伦人一区二区| 亚洲18禁久久av| 久久久久久久久久成人| 国产亚洲av嫩草精品影院| 国产精品福利在线免费观看| 国产av一区在线观看免费| 国产精品三级大全| 免费无遮挡裸体视频| 成人av在线播放网站| 3wmmmm亚洲av在线观看| 成人一区二区视频在线观看| 日日摸夜夜添夜夜爱| 99久久久亚洲精品蜜臀av| 性欧美人与动物交配| 国产精品免费一区二区三区在线| 尾随美女入室| 午夜福利视频1000在线观看| 欧美日韩在线观看h| 国产又黄又爽又无遮挡在线| 深爱激情五月婷婷| 亚洲人成网站在线播放欧美日韩| a级毛色黄片| 国产成人91sexporn| 免费av观看视频| 六月丁香七月| 亚洲精品亚洲一区二区| 色尼玛亚洲综合影院| 成年女人永久免费观看视频| 一个人看的www免费观看视频| 亚洲电影在线观看av| 欧美色欧美亚洲另类二区| 久久精品国产清高在天天线| 国产午夜精品论理片| 免费观看的影片在线观看| 国产真实伦视频高清在线观看| 国产在线精品亚洲第一网站| 搡老妇女老女人老熟妇| 国产女主播在线喷水免费视频网站 | 一区二区三区高清视频在线| 校园春色视频在线观看| 欧美一区二区国产精品久久精品| 欧美最新免费一区二区三区| 日本撒尿小便嘘嘘汇集6| 国产精品一及| av在线亚洲专区| 99久国产av精品国产电影| 亚洲成人中文字幕在线播放| 欧美潮喷喷水| 精品久久久久久久末码| 亚洲精品一区av在线观看| 男女那种视频在线观看| 在线观看美女被高潮喷水网站| 亚洲中文字幕日韩| 国产v大片淫在线免费观看| 少妇的逼好多水| 日韩精品中文字幕看吧| 热99re8久久精品国产| 看非洲黑人一级黄片| 亚洲av中文字字幕乱码综合| 97热精品久久久久久| 最好的美女福利视频网| 淫妇啪啪啪对白视频| 女人十人毛片免费观看3o分钟| 久久热精品热| av黄色大香蕉| 欧美日韩乱码在线| 91久久精品电影网| 内地一区二区视频在线| 乱人视频在线观看| 国内精品美女久久久久久| 99久国产av精品| 成年女人永久免费观看视频| 欧美日韩综合久久久久久| 99热全是精品| 日韩精品有码人妻一区| 淫妇啪啪啪对白视频| 在线观看美女被高潮喷水网站| 国产免费一级a男人的天堂| 成年女人毛片免费观看观看9| 国产蜜桃级精品一区二区三区| 免费观看精品视频网站| av视频在线观看入口| 97碰自拍视频| 日本一本二区三区精品| 日韩av在线大香蕉| 国产av在哪里看| 亚洲av成人精品一区久久| 免费人成视频x8x8入口观看| av中文乱码字幕在线| 日韩大尺度精品在线看网址| 亚洲av熟女| 久久久久久九九精品二区国产| 精品人妻一区二区三区麻豆 | a级一级毛片免费在线观看| 亚洲精品影视一区二区三区av| 午夜影院日韩av| 亚洲在线观看片| 亚洲五月天丁香| 日韩欧美精品v在线| 国产激情偷乱视频一区二区| 午夜免费激情av| 色噜噜av男人的天堂激情| 国产亚洲精品av在线| 麻豆成人午夜福利视频| 一进一出好大好爽视频| 内射极品少妇av片p|