• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dilepton from Passage of Jets Through Spherical Expanding QGP?

    2016-05-09 08:54:58YongPingFu傅永平andQinXi郗勤
    Communications in Theoretical Physics 2016年12期
    關(guān)鍵詞:永平

    Yong-Ping Fu(傅永平)and Qin Xi(郗勤)

    School of Physics and Mathematics,Dianxi Science and Technology Normal University,Lincang 677000,China

    1 Introduction

    Relativistic heavy-ion collisions are studied with the aim of producing a strongly interacting matter,the deconfined matter is the so-called quark-gluon plasma(QGP).The photons and dileptons production is considered to be a useful probe for the evolution of the QGP due to their very long mean free path in the hot matter.[1]In relativistic heavy-ion collisions dileptons are produced from the Drell–Yan process,[2]the interactions of thermal partons in the QGP,[3]jets passing through the hot medium(jet-dilepton conversion),[4?5]the hadron interactions in the hadronic gas,[6?7]and the hadronic decays after the freeze-out.[8]

    The jet-dilepton conversion when the jets passing through the QGP also provides a useful tool that enables tomographic study of the QGP.[9?10]The electromagnetic radiation from jets interacting with the thermal partons of the QGP in the(1+1)-dimensional((1+1)D)evolution of the plasma has been investigated.[11?13]The solutions of the relativistic hydrodynamical equations can provide the collective properties of the flow.The Bjorken solution describes an estimate of the(1+1)D cylindrical expansion of the QGP.[14]

    The(1+3)-dimensional((1+3)D)hydrodynamics equations have been studied numerically which assumes cylindrical symmetry along the transverse direction and boost invariant along the longitudinal direction.[15?18]When the initial proper time τ= τiand initial temperature T=Tithe system is thermalized.The QGP temperature T and proper time τ can be numerically calculated.The transverse flow effect of the dilepton production with cylindrical symmetry are shown to be important in the region of low invariant mass.[17]

    In the present work,we derive the hubble-like solutions(τT= τiTi)of(1+3)D relativistic hydrodynamics which favors spherical symmetry,and investigate the initial condition of the temperature T and proper time τ in the spherical evolution.We find the transverse flow effect is also apparent at intermediate and high invariant mass at LHC energies.

    Jets passing through the plasma will lose energies.In the high energy parton collisions,the radiative energy loss is more important than the elastic energy loss.[19]The AMY model is used to investigate the energy loss of the jet-dilepton conversion in the(1+1)D QGP.[4?5,11?12]There are several models of the jet energy loss due to gluon bremsstrahlung in the QGP:Gyulassy–Wang(GW),[19?20]Gyulassy–Levai–Vitev(GLV),[21?22]Baier–Dokshitzer–Mueller–Peigne–Schi ff(BDMPS),[23?24]Guo-Wang(HT),[25?26]Wang–Huang–Sarcevic(WHS),[27?28]and Arnold–Moore–Ya ff e(AMY).[29?30]In this paper we use the WHS and BDMPS models to calculate the energy loss of the jet-dilepton conversion with the(1+3)D spherical symmetry.

    This paper is organized as follows.In Sec.2 we discuss the(1+3)D spherical evolution of the plasma.In Sec.3 we calculate the jet production and jet energy loss.In Sec.4 we discuss the production rate of the jet-dilepton conversion in the spherical expanding QGP.Finally,the numerical results and summary are presented in Secs.5 and 6.

    2(1+3)Dimension Hydrodynamics

    The energy-momentum tensor of the QGP produced in relativistic heavy-ion collisions is given by Tμν=(ε+P)uμuν? Pgμν,where ε and P are the energy density and the pressure,respectively.The four-velocity of the ideal fluid is uμ= γ(1,v),where γ =1/(1? v2)1/2.The space-time coordinate is xμ=(t,r),and the metric tensor is gμν=diag(1,?1,?1,?1).The tensor satisfies(gμν)2=1+d, δii=d,where Greek letters denote Lorentz indices,Latin letters denote three-vector indices,and d is the dimensionality of the space.In(1+3)D ideal fluid,the fluid velocity vector uμ= xμ/τ is Lorentz invariant,the proper time is τ=(t2? r2)1/2,where we denote|r|by r and the space-time rapidity η as η=1/2ln((t+r)/(t?r)),the t and r coordinates as functions of τ and η are t= τ coshη,and r= τ sinhη.Under the condition of spherical expansion of the fire ball,we have the space-time integration as

    where the Jacobian dtdr is related to τdτ dη.

    Now the relativistic hydrodynamic equation ?μTμν=0 for a(1+3)D expansion with spherical symmetry read

    where?uμ/?xμ=(?1)/τ.If the QGP has the longitudinal and transverse expansion,we derive the universal solution of the relativistic hydrodynamics equation as

    where τiand Tiare the initial time and initial temperature of the equilibrium QGP,respectively.In the(1+1)D case,d=1,Eq.(3)is the well-known Bjorken solution.

    In the(1+3)D condition,d=3,we have the Hubblelike solution as

    this solution favors the spherical symmetry.[32]The end of the QGP phase occur at proper time τc= τiTi/Tc,where Tc=160 MeV is the critical temperature of the phase transition.In the(1+1)D cylindrical expansion the QGP cooling time is τc= τi(Ti/Tc)3.The transverse expansion leads to a more rapid cooling of the system.

    At proper time τiand temperature Tithe initial entropy Siis essentially constant and the system is regarded as thermalized.[17]Since the initial entropy density is related to the initial temperature as[16]

    where the factor gQ=42.25 is the degrees of freedom for the plasma of u,d,s quarks and gluons.Therefore the total entropy is

    the space volume is dV =r2τ dη sinθdθd?.Then we have that the initial entropy per unit rapidity is

    The entropy density and particle multiplicity for the case of spherical expansion have the relation as[15?16]

    where y is the true momentum rapidity.In the(1+3)D expanding QGP,the space-time rapidity η=(1/2)[(t+r)/(t?r)]and the true momentum rapidity y=(1/2)[(E+p)/(E?p)]are correlated.[17]Then we have dy=dη and η=y+,whereis an arbitrary constant.At midrapidity y=0,η=,we define r(η,y=0)=τ.Therefore the initial time and temperature for the(1+3)D spherical expansion are related by the following

    We use the initial temperature Ti= 370 MeV for dN/dy=1260 at RHIC,Ti=636 MeV for dN/dy=2400 at LHC (Pb+Pb,= 2.76 TeV),and Ti=845 MeV for dN/dy=5624 at LHC(Pb+Pb,=5.5 TeV).[11?12,33?34]The numerical results of the initial conditions for y=0 are presented in Table 1.

    Table 1 Initial conditions of the hydrodynamical expansion.

    3 Jet Energy Loss

    The energy loss of jets passing the QGP can be determined by the spectrum of energy loss per unit distance dE/dx.Induced gluon bremsstrahlung is more important than the elastic scattering of partons in the jet energy loss.[23]If an energetic jet hadronizes outside the system,the passing distance is long and the energy loss is large.[19,23,27?28]However,in the jet-dilepton and jet-photon conversion,jets travel only a short distance through the QGP before the jets convert into dileptons and photons.Therefore the energy loss is relatively small in the jet-dilepton and jet-photon conversions.In the central Au+Au collisions at RHIC the energy loss of the jetphoton conversion is just about 20%.[5]

    In this paper we discuss the jets produced at midrapidity and propagated in the transverse direction.The total passing distance of a hadronization jet produced at(r,?)in(1+3)D is? rcos?,where R(τ)is the radius of the expanding QGP.In the(1+1)D Bjorken evolution,the average value ofwhere RA=1.2A1/3fm is the initial radius of the system.[11,28]We consider the spherical expansion,and find that R(τ) ≥ RAand

    In the relativistic heavy-ion collisions,we assume the high energy jet is massless and travels with the speed of light in the transverse direction.[11]The distance of the jets passing through the QGP in the jet-dilepton conversion processes is

    and the average value of the distance of jet-dilepton processes is

    where the lifetime of the QGP phase is△τ= τc?τi.In Table 2 we plot the numerical results of the jet-dilepton distance and hadronization distance,we find that the distance hLi of the jet-dilepton conversion is smaller than the total distance h?Li of hadronization.In the jet-dilepton conversion processes the high energy jets only pass a short distance in the hot matter before the jets convert into dileptons.The distance hLi1+3is smaller than hLi1+1at RHIC and LHC energies due to the transverse flow effect.

    Table 2 The average value of the distance covered by the jet during the passage of the jet-dilepton conversion and total distance in(1+1)D and(1+3)D expanding QGP,respectively.

    In Refs.[9,27–28]the authors use the WHS model to calculate the modification of the jet fragmentation function due to the energy loss.This model is a good tool to study the parton energy loss and multiple final-state scatterings.[28]The yield dNjet/d2p⊥dyjetfor a jet passing through the QGP can be written as

    where△E=nεais the energy loss,E⊥is the transverse energy of the produced jet,εais the average energy loss per scattering.p′⊥is the transverse momentum of the parton,and p⊥=p′⊥?△E.The energy-loss in the medium of a finite size L is given by BDMPS:[23]

    where ca=4/3 for quarks and 3 for gluon,μ2=4παsT2,μ is the Debye mass of the medium,λgis the gluon mean free path.The quark mean free path is λq=9λg/4.[27?28]

    The initial jets production dN0jet/d2p′⊥dyjetin the relativistic heavy-ion collisions(A+B→jets+X)can be written as[35]

    where TAA=9A2/8πis the nuclear thickness for central collisions.[4?5]The momentum fractions with the rapidity are given by=x1/(1?x2)and xb=xax2/(xa?x1),where the variables areis the center of mass energy of the colliding nucleons.Kjetis the pQCD correction factor to take into account the next-to-leading order(NLO)effects,we use Kjet=1.7 for RHIC and 1.6 for LHC.[30]The parton distribution for the nucleus is given by

    where Z is the number of protons,A is the number of nucleons,(xa,Q2)is the nuclear modification function.[36]The functions fa/p(xa,Q2)and fa/n(xa,Q2)are the parton distributions of the proton and neutron,respectively.[37]is the cross section of parton collisions at leading order,these processes are:qˉq→q′ˉq′,qq′→qq′,qˉq′→qˉq′,qq→qq,qˉq→qˉq,qg→qg,and gg→qˉq.[38]

    4 Jet-Dilepton Conversion

    The production rate of the jet-dilepton conversion is given by[13]

    where the cross section of the quark annihilation is σ(M)=1PThe jet-dilepton conversion is sensitive to the choice of the minimum value of p.We use the limit|p|≥ 4 GeV in Eq.(16).[11?12]The phasespace distribution function for a jet,assuming the constant transverse density of nucleus,is as follows[39]where gq=6 is the spin and color degeneracy of the quarks(and antiquarks),V=4πτ3is the volume of the spherical expanding QGP.

    The production rate of thermal dileptons from the QGP can be written as[3,40]

    Because we are interested in jets produced at midrapidity(yjet=0),we only consider dileptons produced at midrapidity(y=0).The yield as a function of invariant mass M and dilepton rapidity y is given by the(1+3)D space-time integration d4x=r2τ dτdy sinθdθd? as

    In the jet-dilepton conversion processes the jet only propagates in the pure QGP phase,therefore we limit the τ integration as[τi,τc].

    5 Results and Discussions

    The numerical results of thermal dileptons produced from the QGP at RHIC and LHC energies are presented in Fig.1.In the central Au+Au collisions at200 GeV we choose the initial temperature of the(1+3)D spherical expanding QGP Ti=370 MeV.[11?12]Then we have the initial time

    and the critical time τc= τiTi/Tc=3.33 fm/c.In the(1+1)D Bjorken expansion the initial time[15]

    is 0.26 fm/c and the critical time τc=τi(Ti/Tc)3is 3.22 fm/c at RHIC.The life time of the QGP phase of the(1+3)D expansion(△τ1+3=1.89 fm/c)is smaller than the one of the(1+1)D case(△τ1+1=2.96 fm/c)at RHIC energy.At LHC we have △τ1+3=3.092 fm/c,△τ1+1=5.442 fm/c,and △τ1+3=4.453 fm/c,△τ1+1=12.873 fm/c corresponding to Ti=636 MeV and Ti=845 MeV,respectively.The initial conditions at RHIC and LHC are calculated in Table 1.

    The comparisons of the thermal dileptons and the jetdilepton conversion from the(1+1)D cylindrical expanding and(1+3)D spherical expanding QGP are given in Figs.1 and 2,respectively.The transverse flow of the spherical expansion reduces the yields from low to high invariant mass and the reduction is largest at low invariant mass,the transverse flow effect is still important at intermediate and large mass. In Fig.1 the reduction of thermal dileptons is in the region of M<2.5 GeV for Ti=370 MeV,M<4.5 GeV for Ti=636 MeV and M<6 GeV for Ti=845 MeV.The thermal production is suppressed by a factor~2 at M~2 GeV for Ti=845 MeV.In Fig.2 the reduction of the jetdilepton conversion is in the region of M<7 GeV for Ti=370 MeV,M<13.5 GeV for Ti=636 MeV and M<16 GeV for Ti=845 MeV.We find a factor~2 of suppression at M~4 GeV for Ti=845 MeV.

    Fig.1 The results of thermal dileptons produced from the QGP phase at RHIC and LHC energies.In central Au+Au collisions at=200 GeV the initial temperature is Ti=370 MeV.In central Pb+Pb collisions at=2.76 TeV and 5.5 TeV,the initial temperature is Ti=636 MeV and Ti=845 MeV,respectively.The dashed line means the thermal dileptoons produced from the cylindrical expanding QGP without transverse flow(1+1D).The solid line means thermal dileptons produced from spherical expanding QGP(1+3D).

    Fig.2 Dileptons originating from the passage of the jets passing through the QGP at RHIC and LHC energies.Dashed line:jet-dilepton conversion without transverse flow;solid line:jet-dilepton conversion with transverse flow of the spherical expansion.The jet energy loss is included.

    In Figs.3,4,and 5,we plot the numerical results for dileptons from QGP,Drell–Yan process and jet-dilepton conversions in the spherical expanding QGP at RHIC and LHC energies,respectively.In Fig.3 we find the contribution of the jet-dilepton conversion is not important at RHIC.However the jet-dilepton conversion is comparable to that of the thermal contribution and Drell–Yan process at LHC energies.The jet-dilepton conversion becomes a dominant source in the region of 4.5 GeV

    Fig.3 Dilepton yield for central Au+Au collisions at=200 GeV.Solid line:thermal dileptons produced from the spherical expanding QGP;dashed line:Drell—Yan contribution;dash-dotted line:dileptons produced by the jet-dilepton conversion.The energy loss is considered.

    Fig.4 Same as Fig.3 but for central Pb+Pb collisions at=2.76 TeV.

    The energy loss effect of the jet-dilepton conversion is presented in Fig.6 at RHIC and LHC.The energy loss rate△E/Ejet∝ M?2,this implies that the energy loss effect suppresses the jet-dilepton spectrum,and the suppression decreases with increasing invariant mass M.The energy loss rate depends on the propagating distance L of the jet.In Table 2 we find that hLiLHC>hLiRHIC,the large value of L corresponds to the increase of the energy loss rate.The energy loss is much larger at LHC energies.At RHIC dileptons are reduced by about 23%for M=1 GeV,and 10%for M=4 GeV.These results agree with the numerical results from the AMY approach.[12]In central Pb+Pb collisions atTeV the energy loss is about 13%and 7%at M=4.5 GeV and 5.5 GeV,respectively.Atthe energy loss is about 6%at M=7 GeV and 2%at M=9 GeV.

    The cˉc(bˉb)pairs produced from the initial hard parton collisions can fragment into D(B)andˉD(ˉB)charm(bottom)mesons.The decay of open charm and bottom mesons is the main background of the thermal and D-Y dileptons.In Refs.[41–43]the authors study the energy loss of heavy quarks and the Parton-Hadron-String Dynamics transport model,and find that the production of the dileptons from the the decays of DˉD and BˉB mesons is smaller than the thermal dileptons in the intermediate and high invariant mass region at LHC.This provides a good window to measure the jet-dilepton conversion in the high invariant mass region.

    Fig.5 Same as Fig.3 but for central Pb+Pb collisions at=5.5 TeV.

    Fig.6 E ff ect of jet energy loss on the jet-dilepton conversion at RHIC and LHC energies.The solid lines include the jet energy loss,while the dashed lines do not.

    6 Summary

    We have studied the hydrodynamic equations with spherical symmetry,and calculated the large mass dilepton produced from the jet-dilepton conversion,QGP and Drell–Yan at RHIC and LHC.We presented the temperature evolution equation,which favors the spherical symmetry of fire ball.We have found that the transverse flow effect from the spherical expanding QGP leads to a smaller life time of the QGP phase,and suppresses the production of jet-dileptons and thermal dileptons from low to high invariant mass region.We have found that the energy loss is small when the invariant mass is increasing.The new energy loss framework of jet-dilepton conversion has been presented by using the WHS and BDMPS models.

    We thank Prof.D.K.Srivastava for helpful suggestions about the transverse expansion of the plasma and energy loss of the jets in the jet-dilepton conversions.

    [1]E.V.Shuryak,Phys.Lett.B 78(1978)150.

    [2]S.D.Drell and T.M.Yan,Phys.Rev.Lett.25(1970)316.

    [3]K.Kajantie,J.Kapusta,L.McLerran,and A.Mekjian,Phys.Rev.D 34(1986)2746.

    [4]R.J.Fries,B.Muller,and D.K.Srivastava,Phys.Rev.Lett.90(2003)132301.

    [5]R.J.Fries,B.Muller,and D.K.Srivastava,Phys.Rev.C 72(2005)041902.

    [6]C.Gale and P.Lichard,Phys.Rev.D 49(1994)3338.

    [7]C.M.Hung and E.V.Shuryak,Phys.Rev.C 56(1997)453.

    [8]E.L.Bratkovskaya and W.Cassing,Nucl.Phys.A 619(1997)413.

    [9]E.Wang and X.N.Wang,Phys.Rev.Lett.89(2002)162301.

    [10]M.Gyulassy,P.Levai,and I.Vitev,Phys.Lett.B 538(2002)282.

    [11]D.K.Srivastava,C.Gale,and R.J.Fries,Phys.Rev.C 67(2003)034903.

    [12]S.Turbide,C.Gale,D.K.Srivastava,and R.J.Fries,Phys.Rev.C 74(2006)014903.

    [13]Y.P.Fu and Y.D.Li,Nucl.Phys.A 865(2011)76;Y.P.Fu and Y.D.Li,Chin.Phys.Lett.27(2010)101202.

    [14]J.D.Bjorken,Phys.Rev.D 27(1983)140.

    [15]R.C.Hwa and K.Kajantie,Phys.Rev.D 32(1985)1109.

    [16]H.V.Gersdor ff,L.McLerran,M.Kataja,and P.V.Ruuskanen,Phys.Rev.D 34(1986)794.

    [17]K.Kajantie,M.Kataja,L.McLerran,and P.V.Ruuskanen,Phys.Rev.D 34(1986)811.

    [18]J.Alam,D.K.Srivastava,B.Sinha,and D.N.Basu,Phys.Rev.D 48(1993)1117.

    [19]X.N.Wang,M.Gyulassy,and M.Plumer,Phys.Rev.D 51(1995)3436.

    [20]M.Gyulassy and X.N.Wang,Nucl.Phys.B 420(1994)583.

    [21]M.Gyulassy,P.Levai,and I.Vitev,Phys.Rev.Lett.85(2000)5535.

    [22]M.Gyulassy,P.Levai,and I.Vitev,Nucl.Phys.B 571(2000)197.

    [23]R.Baier,Y.L.Dokshitzer,A.H.Mueller,S.Peigne,and D.Schi ff,Nucl.Phys.B 483(1997)291.

    [24]R.Baier,Y.L.Dokshitzer,A.H.Mueller,S.Peigne,and D.Schi ff,Nucl.Phys.B 484(1997)265.

    [25]X.F.Guo and X.N.Wang,Phys.Rev.Lett.85(2000)3591.

    [26]X.N.Wang and X.F.Guo,Nucl.Phys.A 696(2001)788.

    [27]X.N.Wang,Z.Huang,and I.Sarcevic,Phys.Rev.Lett.77(1996)231.

    [28]X.N.Wang and Z.Huang,Phys.Rev.C 55(1997)3047.

    [29]P.Arnold,G.D.Moore,and L.Ya ff e,J.High Energy Phys.11(2001)057.

    [30]S.Turbide,C.Gale,S.Jeon,and G.D.Moore,Phys.Rev.C 72(2005)14906.

    [31]G.Y.Qin,J.Ruppert,C.Gale,S.Jeon,and G.D.Moore,Phys.Rev.C 80(2009)54909.

    [32]M.I.Nagy,Phys.Rev.C 83(2011)054901.

    [33]J.Kapusta,L.D.Mclerran,and D.K.Srivastava,Phys.Lett.B 283(1992)145.

    [34]V.Kumar,P.Shukla,and R.Vogt,Phys.Rev.C 86(2012)054907.

    [35]J.F.Owens,Rev.Mod.Phys.59(1987)465.

    [36]K.J.Eskola,V.J.Kolhinen,and C.A.Salgado,Eur.Phys.J.C 9(1999)61.

    [37]D.Stump,J.Huston,J.Pumplin,et al.,J.High Energy Phys.10(2003)725.

    [38]B.L.Combridge,J.Kripfganz,and J.Ranft,Phys.Lett.B 70(1977)234.

    [39]Z.Lin and M.Gyulassy,Phys.Rev.C 51(1995)2177.

    [40]R.Rapp and E.Shuryak,Phys.Lett.B 473(2000)13.

    [41]G.D.Moore and D.Teaney,Phys.Rev.C 71(2005)064904.

    [42]Z.Lin,R.Vogt,and X.N.Wang,Phys.Rev.C 57(1998)899.

    [43]O.Linnyk,W.Cassing,J.Manninen,E.L.Bratkovskaya,P.B.Gossiaux,J.Aichelin,T.Song,and C.M.Ko,Phys.Rev.C 87(2013)014905.

    猜你喜歡
    永平
    教師節(jié)
    給爸爸捶背
    老城舊影 永平門
    紅巖春秋(2022年11期)2022-05-30 16:00:02
    例談元素及化合物知識(shí)復(fù)習(xí)策略
    踢球
    流蘇樹(shù)與美國(guó)流蘇樹(shù)園林綠化前景探討
    認(rèn)識(shí)形近字
    五絕·晚秋晚風(fēng)
    小刺猬的秘密
    段永平:從企業(yè)家到幕后教父
    一二三四中文在线观看免费高清| 国产日韩欧美视频二区| 波多野结衣一区麻豆| 欧美激情国产日韩精品一区| 亚洲av综合色区一区| 国产亚洲最大av| 午夜福利网站1000一区二区三区| 天天影视国产精品| 久久97久久精品| 男女下面插进去视频免费观看 | 国产成人精品在线电影| 女人被躁到高潮嗷嗷叫费观| av免费在线看不卡| 夫妻午夜视频| 精品人妻熟女毛片av久久网站| av免费观看日本| 一边摸一边做爽爽视频免费| 国产成人免费观看mmmm| 欧美精品一区二区大全| 国产成人一区二区在线| 在线精品无人区一区二区三| 人妻一区二区av| 不卡视频在线观看欧美| a级片在线免费高清观看视频| 80岁老熟妇乱子伦牲交| 91成人精品电影| 国产精品久久久久久精品电影小说| 亚洲欧洲精品一区二区精品久久久 | 国产精品久久久久久av不卡| 岛国毛片在线播放| 黄色毛片三级朝国网站| 日韩,欧美,国产一区二区三区| 激情五月婷婷亚洲| 不卡视频在线观看欧美| 亚洲国产最新在线播放| 国产成人精品福利久久| 国产亚洲精品久久久com| 成人毛片a级毛片在线播放| 亚洲欧美日韩另类电影网站| 丰满迷人的少妇在线观看| 日韩制服骚丝袜av| 国产永久视频网站| 女性生殖器流出的白浆| 欧美老熟妇乱子伦牲交| 九草在线视频观看| 成年女人在线观看亚洲视频| 三上悠亚av全集在线观看| 9热在线视频观看99| 午夜福利视频精品| 国国产精品蜜臀av免费| 欧美日韩视频精品一区| 国产精品久久久久久久电影| 久久狼人影院| 国产成人欧美| 99热6这里只有精品| 精品久久国产蜜桃| freevideosex欧美| 成人亚洲精品一区在线观看| 成人午夜精彩视频在线观看| 老熟女久久久| 国产精品一二三区在线看| 国产精品嫩草影院av在线观看| 久久ye,这里只有精品| 成人国语在线视频| 日韩中字成人| 满18在线观看网站| 久久久国产精品麻豆| 久热这里只有精品99| 国产xxxxx性猛交| 国产精品久久久久久精品古装| 99久久综合免费| www.色视频.com| 久久久国产欧美日韩av| √禁漫天堂资源中文www| 久久久久久久久久成人| 精品少妇久久久久久888优播| 欧美变态另类bdsm刘玥| 国产一区亚洲一区在线观看| 亚洲第一av免费看| √禁漫天堂资源中文www| 亚洲精品久久成人aⅴ小说| 丰满乱子伦码专区| 久久毛片免费看一区二区三区| 久久午夜综合久久蜜桃| 日本黄色日本黄色录像| 日韩免费高清中文字幕av| 婷婷色麻豆天堂久久| 晚上一个人看的免费电影| 一二三四中文在线观看免费高清| 狂野欧美激情性xxxx在线观看| av又黄又爽大尺度在线免费看| 大香蕉久久成人网| 边亲边吃奶的免费视频| 天天躁夜夜躁狠狠久久av| 欧美日韩成人在线一区二区| 成人毛片60女人毛片免费| 久久久国产精品麻豆| 欧美老熟妇乱子伦牲交| 成人综合一区亚洲| 九九爱精品视频在线观看| 国产日韩欧美视频二区| 亚洲欧美中文字幕日韩二区| 久久精品国产综合久久久 | 中文字幕人妻丝袜制服| 国产毛片在线视频| 成年女人在线观看亚洲视频| 亚洲伊人色综图| 久热久热在线精品观看| 亚洲精品第二区| 亚洲精品av麻豆狂野| 欧美国产精品一级二级三级| 国产欧美另类精品又又久久亚洲欧美| 欧美日韩精品成人综合77777| 国产福利在线免费观看视频| 老司机影院毛片| 亚洲,欧美,日韩| 成年动漫av网址| 日韩精品免费视频一区二区三区 | 国产成人精品一,二区| 丝瓜视频免费看黄片| 另类精品久久| 激情视频va一区二区三区| 亚洲欧美一区二区三区国产| 下体分泌物呈黄色| 国产 精品1| 欧美国产精品va在线观看不卡| 9191精品国产免费久久| 观看美女的网站| 两个人看的免费小视频| 狂野欧美激情性xxxx在线观看| 九色成人免费人妻av| 久久人人爽人人爽人人片va| 一本色道久久久久久精品综合| 日本vs欧美在线观看视频| 又大又黄又爽视频免费| 26uuu在线亚洲综合色| 婷婷色综合大香蕉| 亚洲熟女精品中文字幕| 在线观看免费日韩欧美大片| 国产黄频视频在线观看| 久久久久久伊人网av| 少妇的丰满在线观看| 一本色道久久久久久精品综合| 七月丁香在线播放| 99热国产这里只有精品6| 国产一区二区三区av在线| 超色免费av| 母亲3免费完整高清在线观看 | 欧美亚洲日本最大视频资源| 欧美3d第一页| 激情视频va一区二区三区| 热re99久久精品国产66热6| 欧美成人午夜精品| 久久久久国产精品人妻一区二区| 丝袜脚勾引网站| 一二三四在线观看免费中文在 | 久久精品国产亚洲av天美| 在线亚洲精品国产二区图片欧美| 久热久热在线精品观看| 日韩一区二区三区影片| 狂野欧美激情性bbbbbb| 国产黄色视频一区二区在线观看| 亚洲欧美中文字幕日韩二区| 亚洲国产色片| 99热这里只有是精品在线观看| 欧美成人午夜精品| 热99国产精品久久久久久7| 美女福利国产在线| 久久99热这里只频精品6学生| 激情五月婷婷亚洲| xxx大片免费视频| 日本wwww免费看| 美女主播在线视频| 亚洲欧洲国产日韩| 欧美bdsm另类| 在线观看免费日韩欧美大片| 日产精品乱码卡一卡2卡三| 亚洲欧美一区二区三区黑人 | 人妻 亚洲 视频| 久久精品aⅴ一区二区三区四区 | 成人影院久久| av天堂久久9| 狂野欧美激情性xxxx在线观看| 亚洲国产精品一区三区| 成人漫画全彩无遮挡| 青青草视频在线视频观看| 国产日韩一区二区三区精品不卡| 中国国产av一级| 国产精品女同一区二区软件| 国产成人a∨麻豆精品| 王馨瑶露胸无遮挡在线观看| av在线播放精品| 两个人看的免费小视频| 久久人人爽av亚洲精品天堂| 少妇猛男粗大的猛烈进出视频| 成人国产麻豆网| 国产麻豆69| 国产一区二区在线观看av| 国产精品秋霞免费鲁丝片| 视频区图区小说| 又大又黄又爽视频免费| 日韩精品有码人妻一区| 制服诱惑二区| av播播在线观看一区| 一级,二级,三级黄色视频| 成人毛片60女人毛片免费| 最近最新中文字幕大全免费视频 | 久久久久久久大尺度免费视频| 少妇猛男粗大的猛烈进出视频| 国产片内射在线| 制服人妻中文乱码| 久久热在线av| xxxhd国产人妻xxx| 国产免费视频播放在线视频| 美女福利国产在线| 色视频在线一区二区三区| 制服诱惑二区| 校园人妻丝袜中文字幕| 三级国产精品片| 2022亚洲国产成人精品| 免费高清在线观看日韩| 亚洲人成77777在线视频| 最近最新中文字幕大全免费视频 | 国产一区二区三区综合在线观看 | 男女国产视频网站| 亚洲欧美日韩卡通动漫| av电影中文网址| 亚洲精品国产av蜜桃| 色5月婷婷丁香| 精品一品国产午夜福利视频| 久久av网站| 国产男女超爽视频在线观看| 亚洲国产精品一区二区三区在线| 国产黄频视频在线观看| 看非洲黑人一级黄片| 亚洲综合色惰| 亚洲国产欧美在线一区| 欧美精品国产亚洲| 欧美精品av麻豆av| 久久97久久精品| 久久午夜福利片| 国产 精品1| 18禁动态无遮挡网站| 新久久久久国产一级毛片| 午夜免费观看性视频| 国产精品.久久久| 中文欧美无线码| 精品一区二区免费观看| 日韩中文字幕视频在线看片| 亚洲精品,欧美精品| 亚洲成人av在线免费| 午夜免费男女啪啪视频观看| 三上悠亚av全集在线观看| 美女国产高潮福利片在线看| 欧美国产精品一级二级三级| 日本与韩国留学比较| 香蕉丝袜av| 久久毛片免费看一区二区三区| 亚洲精品中文字幕在线视频| 午夜福利影视在线免费观看| 成人漫画全彩无遮挡| 国产熟女午夜一区二区三区| 香蕉丝袜av| 亚洲性久久影院| videos熟女内射| 久久精品夜色国产| 男男h啪啪无遮挡| 激情五月婷婷亚洲| 日韩三级伦理在线观看| av播播在线观看一区| 插逼视频在线观看| 免费高清在线观看视频在线观看| 精品国产一区二区久久| 亚洲内射少妇av| 91精品国产国语对白视频| 三上悠亚av全集在线观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产精品女同一区二区软件| av电影中文网址| 欧美丝袜亚洲另类| 男人添女人高潮全过程视频| 在线天堂中文资源库| 一级片免费观看大全| 精品一区二区免费观看| 久久午夜综合久久蜜桃| 日韩欧美精品免费久久| 国产69精品久久久久777片| 免费在线观看完整版高清| 久久婷婷青草| 看十八女毛片水多多多| 这个男人来自地球电影免费观看 | 另类精品久久| 精品一品国产午夜福利视频| 五月开心婷婷网| 亚洲激情五月婷婷啪啪| 黑人高潮一二区| 啦啦啦视频在线资源免费观看| 日韩 亚洲 欧美在线| 极品少妇高潮喷水抽搐| 色5月婷婷丁香| 国产免费一级a男人的天堂| 少妇人妻 视频| 国产精品女同一区二区软件| 久久久久网色| 精品亚洲乱码少妇综合久久| 亚洲成av片中文字幕在线观看 | 水蜜桃什么品种好| 老熟女久久久| 成年人免费黄色播放视频| 日韩av不卡免费在线播放| 久久这里只有精品19| 国产成人a∨麻豆精品| 麻豆精品久久久久久蜜桃| 国产成人精品一,二区| 黄色配什么色好看| 天天躁夜夜躁狠狠久久av| av免费在线看不卡| 91精品国产国语对白视频| 少妇 在线观看| 国产日韩欧美亚洲二区| 不卡视频在线观看欧美| 伊人亚洲综合成人网| 亚洲精品乱久久久久久| 9色porny在线观看| 我要看黄色一级片免费的| 999精品在线视频| 精品视频人人做人人爽| 黄色配什么色好看| 日韩一本色道免费dvd| 又大又黄又爽视频免费| 久久综合国产亚洲精品| 啦啦啦啦在线视频资源| 欧美变态另类bdsm刘玥| 久久国产精品大桥未久av| 中文欧美无线码| 国产精品欧美亚洲77777| 亚洲精品av麻豆狂野| a 毛片基地| 十八禁高潮呻吟视频| 捣出白浆h1v1| 天天操日日干夜夜撸| 亚洲综合色惰| 亚洲欧美日韩卡通动漫| 中文乱码字字幕精品一区二区三区| 久久久a久久爽久久v久久| videosex国产| 精品国产乱码久久久久久小说| 黄色怎么调成土黄色| 欧美成人午夜精品| 两个人免费观看高清视频| 人成视频在线观看免费观看| 最黄视频免费看| 91在线精品国自产拍蜜月| 亚洲成人一二三区av| 免费在线观看完整版高清| 1024视频免费在线观看| 国产成人精品婷婷| 性色avwww在线观看| 久久精品国产亚洲av天美| 国产欧美亚洲国产| 大香蕉久久成人网| 狂野欧美激情性xxxx在线观看| 欧美人与性动交α欧美软件 | 纵有疾风起免费观看全集完整版| 99久久中文字幕三级久久日本| 美女福利国产在线| 国产精品蜜桃在线观看| 考比视频在线观看| 国国产精品蜜臀av免费| 99久国产av精品国产电影| 日韩制服丝袜自拍偷拍| 伦理电影大哥的女人| av免费观看日本| 国产综合精华液| 一边摸一边做爽爽视频免费| 久久久精品免费免费高清| 男女下面插进去视频免费观看 | 亚洲精品成人av观看孕妇| 另类亚洲欧美激情| 男女下面插进去视频免费观看 | av线在线观看网站| 成人免费观看视频高清| 亚洲欧美成人综合另类久久久| 国产综合精华液| 丝袜在线中文字幕| 十八禁网站网址无遮挡| 欧美人与性动交α欧美精品济南到 | 在线观看www视频免费| 国产精品人妻久久久久久| 日韩精品有码人妻一区| 美女国产高潮福利片在线看| 欧美老熟妇乱子伦牲交| 91aial.com中文字幕在线观看| 在线观看国产h片| 久热久热在线精品观看| 色94色欧美一区二区| 极品人妻少妇av视频| 99久久精品国产国产毛片| 国产色爽女视频免费观看| 亚洲欧美一区二区三区黑人 | 久久久久精品久久久久真实原创| 久久久久国产网址| 91国产中文字幕| 成人国产av品久久久| 自拍欧美九色日韩亚洲蝌蚪91| 男女国产视频网站| 久久 成人 亚洲| 成人无遮挡网站| 麻豆精品久久久久久蜜桃| 国产高清三级在线| 久久精品国产亚洲av涩爱| 寂寞人妻少妇视频99o| av在线观看视频网站免费| 极品人妻少妇av视频| 久久ye,这里只有精品| 校园人妻丝袜中文字幕| 2021少妇久久久久久久久久久| 侵犯人妻中文字幕一二三四区| 亚洲国产精品国产精品| 久热这里只有精品99| 亚洲人成77777在线视频| 日本色播在线视频| av卡一久久| av黄色大香蕉| 成人毛片a级毛片在线播放| 亚洲精品国产色婷婷电影| 飞空精品影院首页| 天堂中文最新版在线下载| √禁漫天堂资源中文www| 水蜜桃什么品种好| 91精品三级在线观看| 国产成人91sexporn| 黄色视频在线播放观看不卡| 中国美白少妇内射xxxbb| 26uuu在线亚洲综合色| 婷婷色综合www| 亚洲国产精品999| 搡女人真爽免费视频火全软件| 亚洲四区av| 中国美白少妇内射xxxbb| 又大又黄又爽视频免费| 精品一区二区三区视频在线| 国产成人一区二区在线| 精品一区二区三区四区五区乱码 | 免费观看a级毛片全部| 日韩免费高清中文字幕av| 欧美老熟妇乱子伦牲交| 国产一区二区在线观看av| 女性被躁到高潮视频| 亚洲成av片中文字幕在线观看 | 午夜视频国产福利| 街头女战士在线观看网站| 久久久久久久久久人人人人人人| 大香蕉久久成人网| 久久精品国产综合久久久 | 亚洲国产av影院在线观看| 成年人午夜在线观看视频| 久久av网站| 22中文网久久字幕| 美女国产视频在线观看| 国产精品女同一区二区软件| 精品一区二区三区视频在线| 国产乱人偷精品视频| 亚洲性久久影院| 国产精品 国内视频| 日韩大片免费观看网站| 在线观看免费高清a一片| 一级黄片播放器| 免费少妇av软件| 在线天堂最新版资源| 99香蕉大伊视频| 久久热在线av| 亚洲五月色婷婷综合| 国产色爽女视频免费观看| 亚洲性久久影院| 大香蕉久久网| 成年美女黄网站色视频大全免费| 狠狠婷婷综合久久久久久88av| 国产探花极品一区二区| 国产又色又爽无遮挡免| 午夜免费男女啪啪视频观看| 亚洲国产看品久久| 免费黄网站久久成人精品| 久久亚洲国产成人精品v| 久久人妻熟女aⅴ| 国产成人91sexporn| 在线观看免费高清a一片| 日本91视频免费播放| 亚洲欧美精品自产自拍| 久久影院123| 精品亚洲成国产av| 欧美精品一区二区免费开放| 又黄又粗又硬又大视频| 国产成人一区二区在线| 精品午夜福利在线看| 丝袜在线中文字幕| av播播在线观看一区| 青春草国产在线视频| 亚洲精品aⅴ在线观看| 精品久久久精品久久久| 亚洲国产看品久久| 在线观看免费日韩欧美大片| 99九九在线精品视频| 18禁国产床啪视频网站| 成人国产麻豆网| 99热6这里只有精品| 99国产综合亚洲精品| 国产精品女同一区二区软件| 亚洲第一av免费看| 少妇人妻 视频| 国产乱来视频区| 男女免费视频国产| www.色视频.com| 在线 av 中文字幕| 久久久国产精品麻豆| 在线观看国产h片| 男人添女人高潮全过程视频| 国产一区二区在线观看日韩| a 毛片基地| 黑丝袜美女国产一区| 黄色怎么调成土黄色| 精品国产一区二区三区四区第35| 欧美人与性动交α欧美精品济南到 | 久久免费观看电影| 久久精品国产综合久久久 | 久久午夜综合久久蜜桃| 国产高清三级在线| 国产国语露脸激情在线看| 国产精品国产三级国产专区5o| 国产免费福利视频在线观看| 嫩草影院入口| 十八禁网站网址无遮挡| 91久久精品国产一区二区三区| 少妇精品久久久久久久| 久久精品久久久久久噜噜老黄| 韩国高清视频一区二区三区| 大话2 男鬼变身卡| 午夜91福利影院| 久久久久久久久久成人| 久久久精品94久久精品| 国产亚洲av片在线观看秒播厂| 欧美精品一区二区免费开放| 最近的中文字幕免费完整| 国产成人精品久久久久久| 精品卡一卡二卡四卡免费| 黄色一级大片看看| 黄片播放在线免费| 蜜桃在线观看..| 一级片'在线观看视频| 丁香六月天网| 人人妻人人澡人人看| 妹子高潮喷水视频| 2022亚洲国产成人精品| 美女国产高潮福利片在线看| 99精国产麻豆久久婷婷| 亚洲,一卡二卡三卡| 国产探花极品一区二区| 欧美性感艳星| 欧美老熟妇乱子伦牲交| 丰满乱子伦码专区| 在线观看免费视频网站a站| 99热网站在线观看| 九九爱精品视频在线观看| 五月伊人婷婷丁香| 麻豆精品久久久久久蜜桃| 少妇的逼水好多| 国产麻豆69| 97人妻天天添夜夜摸| 国产毛片在线视频| www.色视频.com| 亚洲人与动物交配视频| 成年人免费黄色播放视频| 亚洲精品乱久久久久久| 久久人人爽人人片av| 免费av不卡在线播放| 午夜久久久在线观看| 欧美 日韩 精品 国产| 天堂中文最新版在线下载| 国产日韩一区二区三区精品不卡| 亚洲美女搞黄在线观看| 亚洲一码二码三码区别大吗| 国精品久久久久久国模美| 国产淫语在线视频| 欧美bdsm另类| 日韩 亚洲 欧美在线| videosex国产| 欧美另类一区| 国产在线一区二区三区精| 一级片免费观看大全| 91精品伊人久久大香线蕉| av视频免费观看在线观看| 亚洲欧洲国产日韩| 水蜜桃什么品种好| 男女啪啪激烈高潮av片| 少妇 在线观看| 2022亚洲国产成人精品| 人妻系列 视频| 黄片无遮挡物在线观看| 久久久精品区二区三区| 国产一区二区三区av在线| 亚洲国产欧美日韩在线播放| 看非洲黑人一级黄片| 熟妇人妻不卡中文字幕| 少妇人妻 视频| 十八禁高潮呻吟视频| 色婷婷av一区二区三区视频| 新久久久久国产一级毛片| 我的女老师完整版在线观看| 一级爰片在线观看| 国产男人的电影天堂91| 午夜免费观看性视频| 男女国产视频网站| 日韩成人伦理影院| xxxhd国产人妻xxx| 成人亚洲精品一区在线观看|