• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Role of a1(1260)in π?p →(1260)p and π?p → π?ρ0p Reactions Near Threshold?

    2016-05-09 08:54:56ChenCheng程晨JuJunXie謝聚軍andXuCao曹須
    Communications in Theoretical Physics 2016年12期

    Chen Cheng(程晨),Ju-Jun Xie(謝聚軍),,3,? and Xu Cao(曹須),3

    1Institute of Modern Physics,Chinese Academy of Sciences,Lanzhou 730000,China

    2University of Chinese Academy of Sciences,Beijing 100049,China

    3Research Center for Hadron and CSR Physics,Institute of Modern Physics of CAS and Lanzhou University,Lanzhou 730000,China

    1 Introduction

    Within the picture of classical quark model,the mesons are bound states of quarks and antiquarks.This picture is very successful.Most of the known mesons can be described very well within the quark model.[1]However,it seems that the meson spectrum is much richer than that predicted by the quark model.There is a growing set of experimental observations of resonance-like structures with quantum numbers,which are forbidden for the quark-antiquark system or situated at masses,which cannot be explained by the quark-antiquark model.[2?3]For example,the new observations[4?10]have challenged the conventional wisdom that mesons are made of quarkantiquark pairs in the low energy region.

    In the quark model,the a1(1260)and b1(1235)are ground states of axial-vector resonances with quantum numbers IG(JPC)= 1?(1++)and 1+(1+?),respectively.For a1(1260)resonance,the experimental mass ma1(1260)=(1230±40)MeV is more precisely than its width Γa1(1260)=(250–600)MeV assigned by the Particle Data Group.[1]A recent COMPASS measurement published in 2010[11]provides a much smaller uncertainty of the width Γa1(1260)=367±MeV and mass ma1(1260)=1255±MeV.

    In the chiral unitary approach,the a1(1260)and b1(1235)are composite particles of a vector meson and a pseudoscalar meson in coupled channels.[12?13]Indeed,the a1(1260)is dynamically generated from the K?ˉK and ρπ channels and the couplings of the a1(1260)to these channels can be also obtained at the same time.[13]Based on these results,the radiative decay of a1(1260)meson was studied in Refs.[14–15],where the theoretical calculations agree with the experimental values within uncertainties.On the other hand,the effects of the next-to-leading order chiral potential on the dynamically generated axial-vector mesons were studied in Ref.[16].It was found that the inclusion of the higher-order kernel does not change the results obtained with the leading-order kernel in any significant way,which gives more supports to the dynamical picture of the a1(1260)state.[12?13,16]

    Recently the COMPASS collaboration[9]reported the observation of a resonance-like structure around 1.42 GeV with axial-vector quantum numbers 1?(1++)in the f0(980)π P-wave of the π?π?π+final state,and it was claimed as a signal as a new resonance that was named the“a1(1420)”state with width around 140 MeV.It is very difficult to explain this structure as a new state within the quark model,because the radial excitation of a1(1260)is expected to have a mass above 1650 MeV.Furthermore,it is not expected that the radial excitation state has a width,which is much smaller than the one of the ground state.In Refs.[17–18],the “a1(1420)” state can be explained as a triangle singularity via the decay of a1(1260)into K?ˉK and subsequent re-scattering of the K from the K?decay to form the f0(980)resonance.In Ref.[19],the production of a1states are studied in heavy meson decays,which can also provide insights to the a1(1420)and the future experimental analyses will very probably lead to a deeper understanding of the nature of the a1(1420).

    In this work,we study the role of a1(1260)resonance in the π?p →(1260)p and π?p → ρ0π?p reactions near threshold using an effective Lagrangian approach.Unfortunately,as discussed before,the uncertainty of total decay width of a1(1260)is large and the branch ratio of a1(1260)→ ρπ is unknown,we can not obtain directly the coupling of a1(1260)to the ρπ channel from the partial decay width of a1(1260)resonance.Thus,it is necessary to rely on theoretical schemes.In this calculation,we take the coupling of a1(1260)to the ρπ channel that was obtained in Ref.[13]with the picture that the a1(1260)resonance is dynamically generated from the K?ˉK and ρπ coupled channels.In this respect,our calculations are based on the dynamical picture of the a1(1260)state.We consider the t channel ρ0exchange.The total cross sections of π?p →(1260)p reaction are calculated.It is found that the theoretical calculations for the total cross sections of π?p →(1260)p reaction are in agreement with the experimental data.In addition,the total and differential cross sections for the π?p →(1260)p → ρ0π?p reaction are predicted and could be tested by future experiments.Because the main decay channel of a1(1260)resonance is the ρπ channel,the π?p →(1260)p → ρ0π?p reaction is very useful to deep understanding the nature of a1(1260)state and also the nature of the a1(1420).

    This paper is organized as follows.In Sec.2,formalism and ingredients used in the calculation are given.In Sec.3,the results are presented and discussed.Finally,a short summary is given in the last section.

    2 Formalism and Ingredients

    The combination of effective Lagrangian method and isobar model is an important theoretical approach in describing the meson production processes. In this section,we introduce the theoretical formalism and ingredients for studying the a1(1260)hadronic production in π?p →(1260)p and π?p → ρ0π?p reactions within the effective Lagrangian method and isobar model.

    2.1 Feynman Diagrams and Interaction Lagrangian Densities

    The basic tree level Feynman diagrams for the π?p →(1260)p and π?p → ρ0π?p reactions are depicted in Figs.1 and 2,respectively.For these reactions,the tchannel ρ0exchange is considered in this calculation,since the main decay channel of a1(1260)is the ρπ channel.

    To compute the contributions of diagrams shown in Figs.1 and 2,we use the interaction Lagrangian density for the ρNN vertex as in Refs.[20–23],

    where the parameters are taken as commonly used ones:[24?28]gρNN=3.36 and κρ=6.1.

    Fig.1 Feynman diagram for π?p → (1260)p reaction.We show also the definition of the kinematical(p1,p2,p3,p4,and k)that we use in the present calculation.In addition,we use k=p2?p4.

    Fig.2 Feynman diagram for π?p → ρ0π?p reaction.

    In addition,we need also the effective interaction of the a1(1260)ρπ vertex.As mentioned before,in the chiral unitary approach of Ref.[13],the a1(1260)resonance is dynamically generated from the interaction ofand ρπ interactions.One can write down the(1260)vertex as,

    where εμ(ρ)and(a1)are the polarization vectors of ρ and a1(1260).The ga1ρπis the coupling constant of the a1(1260)to the ρπ channel,which is taken to be(?3795,2330)MeV as obtained in Ref.[13].The factorin Eq.(2)accounts for the fact that in the I=1 and I3= ?1 combination of ρπ mesons,

    2.2 Scattering Amplitudes and Cross Sections

    With the effective Lagrangian densities given above,we can straightforwardly construct the invariant scattering amplitude for π?p →(1260)p reaction corresponding to the Feynman diagram in Fig.1:

    where s4,s2,and s3are the polarization variables of final proton,initial proton and a1(1260)resonance,respectively.The ρ-meson propagator Gμν(k)is,

    where mρis the mass of the ρ meson and we take mρ=775.26 MeV.

    In Eq.(4),Fρ(k)is the form factor for ρNN vertex and we take it as in Refs.[20–21],

    with Λρthe cut o ffparameter,which will be discussed in the following.

    Similarly,we can get the invariant scattering amplitude for π?p → π?ρ0p reaction corresponding to the Feynman diagram in Fig.2:

    where s5is the polarization variable of ρ0meson,and Gνσ(q)is the a1(1260)propagator,

    where Γa1and ma1are the width and mass of the a1(1260)resonance,respectively.We take ma1=1230 MeV.For Γa1,as mentioned above,since its value has large uncertainties,we take Γa1=(250,425,and 600)MeV for comparison.

    In Eq.(7),Fa1(q)is the form factor of a1(1260)state.In our present calculation,we adopt the following form as in many previous works:[24?28]

    where Λa1is the cuto ffparameter of a1(1260)resonance.

    The differential cross section in the center of mass frame(c.m.)for the π?p →(1260)p and π?p → ρ0π?p reactions can be derived from the invariant scattering amplitude square|M|2,reading as:

    where W is the invariant mass of the π?p system,whereas,θ denotes the scattering angle of the outgoing(1260)resonance relative to π?beam direction in the c.m.frame.In the above equation,andare the 3-momenta of the initial π?meson and the final a1(1260)mesons,

    where λ(x,y,z)is the K?hlen or triangle function.We take mp=938.27 MeV and mπ?=139.57 MeV in this calculation.

    In the effective Lagrangian approach,the sum over polarizations and the Dirac spinors can be easily done thanks to

    With the formalism and ingredients given above,the calculations of the differential and total cross sections for π?p→ ρ0π?pare straightforward:

    3 Numerical Results and Discussion

    With the formalism and ingredients given above,the total cross section versus the beam momentum(plab)??The relation between W(or s for the case of π?p → π?ρ0p reaction)and plabis:s=of the π?meson for the π?p →(1260)p reaction is evaluated.The numerical results are shown in Fig.3 for beam energies plabfrom just above the production threshold 2.0 GeV to 5.0 GeV together with the experimental data[29?30]for comparison.In Fig.3,the dashed,solid,and dotted curves represent the theoretical results obtained with Λρ=(1.4,1.5,and 1.6)GeV,respectively.One can see that the experimental data can be reproduced with a reasonable value of the cuto ffparameter Λρ=1.5±0.1 GeV.The experimental data from Ref.[29]were measured at plab=3.2 GeV and 4.2 GeV,which can be well reproduced with Λρ=1.5 GeV.However the experimental data from Ref.[30]at plab=3.89 GeV is a few hundredμb larger than the expected value.More experimental measurements are needed to complement the limited data in Refs.[29–30],and give valuable information about the mechanism of this reaction.

    Fig.3 Total cross section of π?p → a?1(1260)p reaction versus the incoming π? beam momentum in the laboratory frame.The circle data points represent the experimental data from Ref.[29],while the square point represents the experimental data from Ref.[30].

    Based on the results of the process of π?p →(1260)p,we investigate the reaction of π?p →(1260)p → ρ0π?p.The theoretical calculations of the total cross sections of this reaction are shown in Fig.4,where we take Λa1= Λρ=1.5 GeV for simplicity.It is worth to mention that the numerical results are not sensitive to the value of Λa1.In Fig.4,the dashed,solid,and dotted curves are obtained with Γa1=(250,425,and 600)MeV,respectively.

    In addition to the total cross sections of π?p →(1260)p → ρ0π?p reaction,we calculate also the differential cross section for this reaction as a function of Mρπat plab=4 GeV.The theoretical results are shown in Fig.5,where the dashed,solid,and dotted curves are obtained with Γa1=(250,425,and 600)MeV,respectively.The numerical results shown in Figs.4 and 5 could be tested by the future experiments.

    Fig.5 Invariant mass distributions dσ/dMρπ of π?p →(1260)p → ρ0π?p reaction at plab=4 GeV.

    It is worth to mention that though the effective Lagrangian approach is a convenient tool to catch the qualitative features of the π?p →and π?p →(1260)p → π?ρ0p reactions,it is not consistent with the unitary requirements,which in principle are important for extracting the parameters of the excited states from the analysis of the experimental data,[31?33]especially for those reactions involving many intermediate couple channels and three-particle final states.[34?35]In this work,basing on phenomenological Lagrangians,we consider only the tree-diagram contributions,in which the unitarity condition is not ensured and coupled channel effects are not taken into account.However,our model can give a reasonable description of the experimental data in the considered energy region for the reaction of π?p →(1260)p reaction.Meanwhile,our calculation o ff ers some important clues for the mechanisms of the π?p →(1260)p and π?p →(1260)p → π?ρ0p reactions and makes a first effort to study the role of a1(1260)resonance in these relevant reactions.Furthermore,including such unitarity condition and the coupled channel effects,the scattering amplitudes would become more complex due to additional parameters,and we can not determine or constrain these parameters.Hence,we will leave these contributions to future studies when more experimental data become available.

    4 Summary

    In this work,we have investigated the π?p →(1260)p and π?p → a?1(1260)p → π?ρ0p reactions near threshold within an effective Lagrangian approach.The t-channel ρ0meson exchange process is considered with the assumption that the a1(1260)resonance was dynamically generated from the coupledand ρπ channels,from where we can get the coupling of a1(1260)to ρπ channel.The total cross section of π?p →(1260)p is calculated with the coupling constant of the a1(1260)to ρπ channel obtained from the chiral unitary theory and a reasonable value of cut o ffparameter Λρ.It is found that the experimental measurement for the π?p → a?1(1260)p reaction can be fairly reproduced.

    Furthermore,the total and differential cross sections of π?p →(1260)p → π?ρ0p reaction are also predicted based on the results of the study of the π?p →(1260)p.Because the width of a1(1260)resonance has large uncertainty,we take different values of Γa1for comparison.It is expected that our model calculations can be tested by future experiments.

    Finally,we would like to stress that,thanks to the important role played by the t-channel ρ0exchange in the π?p →(1260)p reaction,one can reproduce the available experimental data with a reasonable value of the cut o ffparameter in the form factors.The π?p →(1260)p and π?p →(1260)p → π?ρ0p reactions are important for the study of the a1(1260)resonance.More and accurate data for these reactions will provide valuable information on the reaction mechanisms and can be used to test our model calculations,which should be tied to the nature of the a1(1260)state.This work provides a vision in this direction.

    One of us(C.C.)would like to thank Yin Huang for helpful discussions.We thank Satoshi Nakamura for useful discussions.

    [1]K.A.Olive,et al.,[Particle Data Group Collaboration],Chin.Phys.C 38(2014)090001;doi:10.1088/1674-1137/38/9/090001.

    [2]E.Klempt and A.Zaitsev,Phys.Rept.454(2007)1;doi:10.1016/j.physrep.2007.07.006;[arXiv:0708.4016[hepph]].

    [3]N.Brambilla,et al.,Eur.Phys.J.C 74(2014)2981;doi:10.1140/epjc/s10052-014-2981-5[arXiv:1404.3723[hep-ph]].

    [4]S.K.Choi et al.,[Belle Collaboration],Phys.Rev.Lett.91(2003)262001;[hep-ex/0309032].

    [5]D.Acosta,et al.,[CDF Collaboration],Phys.Rev.Lett.93(2004)072001;[hep-ex/0312021].

    [6]V.M.Abazov,et al.,[D0 Collaboration],Phys.Rev.Lett.93(2004)162002;[hep-ex/0405004].

    [7]M.Ablikim,et al.,[BESIII Collaboration],Phys.Rev.Lett.110(2013)252001;[arXiv:1303.5949[hep-ex]].

    [8]Z.Q.Liu,et al.,[Belle Collaboration],Phys.Rev.Lett.110(2013)252002;[arXiv:1304.0121[hep-ex]].

    [9]C.Adolph,et al.[COMPASS Collaboration],Phys.Rev.Lett.115 (2015) 082001; doi:10.1103/Phys RevLett.115.082001[arXiv:1501.05732[hep-ex]].

    [10]V.M.Abazov et al.,[D0 Collaboration],Phys.Rev.Lett. 117 (2016) 022003; doi:10.1103/PhysRev Lett.117.022003[arXiv:1602.07588[hep-ex]].

    [11]M.Alekseev et al.,[COMPASS Collaboration],Phys.Rev.Lett.104(2010)241803;doi:10.1103/PhysRev Lett.104.241803[arXiv:0910.5842[hep-ex]].

    [12]M.F.M.Lutz and E.E.Kolomeitsev,Nucl.Phys.A 730(2004) 392; doi:10.1016/j.nuclphysa.2003.11.009[nuclth/030 7039].

    [13]L.Roca,E.Oset,and J.Singh,Phys.Rev.D 72(2005)014002; doi:10.1103/PhysRevD.72.014002[hepph/05 03273].

    [14]L.Roca,A.Hosaka,and E.Oset,Phys.Lett.B 658(2007)17;doi:10.1016/j.physletb.2007.10.035[hepph/0611075].

    [15]H.Nagahiro,L.Roca,A.Hosaka,and E.Oset,Phys.Rev.D 79 (2009)014015;doi:10.1103/Phys RevD.79.014015[arXiv:0809.0943[hep-ph]].

    [16]Y.Zhou,X.L.Ren,H.X.Chen,andL.S.Geng,Phys.Rev.D 90(2014)014020;doi:10.1103/PhysRev D.90.014020[arXiv:1404.6847[nucl-th]].

    [17]M.Mikhasenko, B. Ketzer, and A.Sarantsev,Phys.Rev.D 91 (2015)094015;doi:10.1103/Phys RevD.91.094015[arXiv:1501.07023[hep-ph]].

    [18]F.Aceti,L.R.Dai,and E.Oset,arXiv:1606.06893[hepph].

    [19]W.Wang and Z.X.Zhao,Eur.Phys.J.C 76(2016)59; doi:10.1140/epjc/s10052-016-3900-8[arXiv:1511.06998[hep-ph]].

    [20]R.Machleidt,K.Holinde,and C.Elster,Phys.Rept.149(1987)1;doi:10.1016/S0370-1573(87)80002-9.

    [21]R.Machleidt,Adv.Nucl.Phys.19(1989)189.

    [22]M.Doring,C.Hanhart,F.Huang,S.Krewald,U.G.Meissner,and D.Ronchen,Nucl.Phys.A 851(2011) 58; doi:10.1016/j.nuclphysa.2010.12.010[arXiv:1009.3781[nucl-th]].

    [24]K.Tsushima,A.Sibirtsev,and A.W.Thomas,Phys.Rev.C 62(2000)064904;doi:10.1103/PhysRevC.62.064904[nucl-th/0004011].

    [25]A.M.Gasparyan,J.Haidenbauer,C.Hanhart,and J.Speth,Phys.Rev.C 68(2003)045207;doi:10.1103/Phys RevC.68.045207[nucl-th/0307072].

    [26]J.J.Xie and B.S.Zou,Phys.Lett.B 649(2007)405;doi:10.1016/j.physletb.2007.04.035[nucl-th/0701021].

    [27]J.J.Xie,B.S.Zou,and H.C.Chiang,Phys.Rev.C 77 (2008) 015206; doi:10.1103/PhysRevC.77.015206[arXiv:0705.3950[nucl-th]].

    [29]S.U.Chung,O.I.Dahl,J.Kirz,and D.H.Miller,Phys.Rev.165(1968)1491;doi:10.1103/PhysRev.165.1491.

    [30]P.G.Wohlmut,K.Abe,A.D.Johnson,and V.J.Stenger,Nucl.Phys.B 18(1970)505;doi:10.1016/0550-3213(70)90132-X.

    [31]H.Kamano,B.Julia-Diaz,T.S.H.Lee,A.Matsuyama,and T.Sato,Phys.Rev.C 80(2009)065203;doi:10.1103/PhysRevC.80.065203[arXiv:0909.1129[nuclth]].

    [32]N.Suzuki,B.Julia-Diaz,H.Kamano,T.S.H.Lee,A.Matsuyama,and T.Sato,Phys.Rev.Lett.104(2010)042302;doi:10.1103/PhysRevLett.104.042302[arXiv:0909.1356[nucl-th]].

    [33]S.X.Nakamura,H.Kamano,T.S.H.Lee,and T.Sato,Phys.Rev.D 86 (2012)114012;doi:10.1103/Phys RevD.86.114012[arXiv:1209.3402[hep-ph]].

    [34]H.Kamano,B.Julia-Diaz,T.S.H.Lee,A.Matsuyama,and T.Sato,Phys.Rev.C 79(2009)025206;doi:10.1103/PhysRevC.79.025206[arXiv:0807.2273[nuclth]].

    [35]H.Kamano,S.X.Nakamura,T.S.H.Lee,and T.Sato,Phys.Rev.D 84 (2011)114019;doi:10.1103/Phys RevD.84.114019[arXiv:1106.4523[hep-ph]].

    免费黄网站久久成人精品| 亚洲精品一二三| 日韩成人av中文字幕在线观看| 久久久精品94久久精品| av免费在线看不卡| 色吧在线观看| 一级毛片 在线播放| av又黄又爽大尺度在线免费看| 成人国产麻豆网| 国产国语露脸激情在线看| 99热国产这里只有精品6| 婷婷色综合大香蕉| 久久99蜜桃精品久久| 亚洲精品视频女| 黄片无遮挡物在线观看| 国产成人精品婷婷| 99久久综合免费| 精品国产国语对白av| 色播在线永久视频| 午夜老司机福利剧场| 色视频在线一区二区三区| 夫妻午夜视频| 黑人猛操日本美女一级片| 欧美精品av麻豆av| 大片电影免费在线观看免费| 99久久中文字幕三级久久日本| 日韩制服骚丝袜av| 久久久久久伊人网av| 久久久久视频综合| 欧美精品国产亚洲| 午夜久久久在线观看| 一级毛片电影观看| av天堂久久9| 亚洲欧美一区二区三区久久| 一二三四中文在线观看免费高清| 精品一区在线观看国产| 成人18禁高潮啪啪吃奶动态图| 久久久精品94久久精品| 一级毛片 在线播放| 大码成人一级视频| 久久这里只有精品19| 日韩中字成人| 性少妇av在线| 午夜福利一区二区在线看| 人妻少妇偷人精品九色| 久久韩国三级中文字幕| 丰满少妇做爰视频| 亚洲精品日本国产第一区| 国产 精品1| 美女国产高潮福利片在线看| 少妇精品久久久久久久| 黄色配什么色好看| 日本wwww免费看| av在线播放精品| 激情视频va一区二区三区| 一区二区日韩欧美中文字幕| 国产精品国产三级专区第一集| 国产精品三级大全| 亚洲精品成人av观看孕妇| 国产淫语在线视频| 1024视频免费在线观看| 欧美日韩视频高清一区二区三区二| 免费黄色在线免费观看| 成年女人在线观看亚洲视频| 日韩av不卡免费在线播放| 中文精品一卡2卡3卡4更新| 性色avwww在线观看| 日韩制服丝袜自拍偷拍| 欧美日韩综合久久久久久| 又大又黄又爽视频免费| 亚洲国产欧美网| 成年av动漫网址| 看免费成人av毛片| 久久这里只有精品19| 欧美日韩视频高清一区二区三区二| 久久久久人妻精品一区果冻| av又黄又爽大尺度在线免费看| 亚洲精品国产一区二区精华液| 国产精品 欧美亚洲| 搡老乐熟女国产| 我的亚洲天堂| 最近的中文字幕免费完整| 美女中出高潮动态图| 在线看a的网站| 在线观看三级黄色| 老司机影院成人| 在线观看一区二区三区激情| 交换朋友夫妻互换小说| 黑人猛操日本美女一级片| 最近2019中文字幕mv第一页| 精品视频人人做人人爽| 亚洲一区二区三区欧美精品| 男女边吃奶边做爰视频| 日韩一区二区三区影片| 久久久国产欧美日韩av| 国产av精品麻豆| 极品人妻少妇av视频| 日日摸夜夜添夜夜爱| 久热久热在线精品观看| 在线精品无人区一区二区三| 少妇被粗大猛烈的视频| 国产免费一区二区三区四区乱码| 亚洲欧美色中文字幕在线| 日本-黄色视频高清免费观看| 免费不卡的大黄色大毛片视频在线观看| 久久午夜福利片| 伊人久久国产一区二区| 永久网站在线| 精品视频人人做人人爽| 伊人亚洲综合成人网| 自拍欧美九色日韩亚洲蝌蚪91| 不卡av一区二区三区| 午夜影院在线不卡| 亚洲欧美一区二区三区黑人 | 亚洲三区欧美一区| 国产精品国产av在线观看| 久久免费观看电影| 在线观看国产h片| 人妻系列 视频| 免费看不卡的av| 青草久久国产| 久久久久久久久免费视频了| 99久久人妻综合| 国产av精品麻豆| 中文字幕色久视频| 亚洲欧美中文字幕日韩二区| 午夜福利,免费看| 香蕉国产在线看| 2018国产大陆天天弄谢| 久久久久精品性色| 久久久精品免费免费高清| 日韩av在线免费看完整版不卡| 欧美另类一区| 国产乱来视频区| 熟女av电影| 亚洲美女黄色视频免费看| 亚洲,一卡二卡三卡| 精品99又大又爽又粗少妇毛片| 国产成人精品在线电影| 日韩av免费高清视频| 9热在线视频观看99| 少妇被粗大的猛进出69影院| 制服诱惑二区| 亚洲色图综合在线观看| 丝瓜视频免费看黄片| 日本免费在线观看一区| 中文精品一卡2卡3卡4更新| 亚洲欧美一区二区三区国产| 免费大片黄手机在线观看| 少妇人妻 视频| 亚洲国产最新在线播放| 国产免费又黄又爽又色| 久久久亚洲精品成人影院| 精品一区在线观看国产| 婷婷色av中文字幕| 精品少妇黑人巨大在线播放| 中文字幕色久视频| 在线观看www视频免费| 日韩,欧美,国产一区二区三区| 国产极品天堂在线| 一级毛片 在线播放| 亚洲人成电影观看| 久久久久久人人人人人| 亚洲三区欧美一区| 韩国精品一区二区三区| 美女午夜性视频免费| av有码第一页| 超色免费av| av免费在线看不卡| 日日爽夜夜爽网站| 亚洲五月色婷婷综合| 老女人水多毛片| 免费在线观看完整版高清| 久久99一区二区三区| 欧美日韩一级在线毛片| 日韩三级伦理在线观看| 男男h啪啪无遮挡| 亚洲国产欧美日韩在线播放| 亚洲人成77777在线视频| 亚洲一级一片aⅴ在线观看| 下体分泌物呈黄色| 久久av网站| 国产国语露脸激情在线看| 最近手机中文字幕大全| 18禁国产床啪视频网站| 亚洲综合色惰| 亚洲综合精品二区| 久久人人97超碰香蕉20202| 亚洲国产看品久久| 大码成人一级视频| 五月天丁香电影| 国产成人aa在线观看| videos熟女内射| 最近中文字幕2019免费版| 久久久久精品久久久久真实原创| 黑人欧美特级aaaaaa片| 夜夜骑夜夜射夜夜干| 久久久久久人人人人人| 亚洲精品久久成人aⅴ小说| 亚洲成人av在线免费| 男女免费视频国产| 成人国产麻豆网| 日本av手机在线免费观看| 久久久久网色| 日日啪夜夜爽| 黄片小视频在线播放| 亚洲av欧美aⅴ国产| 99久久中文字幕三级久久日本| 大片免费播放器 马上看| 久久久久久人人人人人| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产有黄有色有爽视频| 国产麻豆69| 成人18禁高潮啪啪吃奶动态图| 一二三四在线观看免费中文在| 国产亚洲av片在线观看秒播厂| 国产免费现黄频在线看| 欧美精品一区二区免费开放| 观看美女的网站| 九九爱精品视频在线观看| 国产成人精品在线电影| 日韩人妻精品一区2区三区| 国产精品亚洲av一区麻豆 | 亚洲成av片中文字幕在线观看 | 欧美日韩亚洲高清精品| 国产xxxxx性猛交| 国产av精品麻豆| 成人国产av品久久久| 狠狠婷婷综合久久久久久88av| 看非洲黑人一级黄片| 青青草视频在线视频观看| 在现免费观看毛片| 国产深夜福利视频在线观看| 宅男免费午夜| 超色免费av| 搡老乐熟女国产| 久久久久精品性色| 美女午夜性视频免费| 熟女电影av网| 99热国产这里只有精品6| 天堂8中文在线网| 最近的中文字幕免费完整| 青春草视频在线免费观看| 最近中文字幕2019免费版| 又粗又硬又长又爽又黄的视频| 啦啦啦啦在线视频资源| 边亲边吃奶的免费视频| 丰满少妇做爰视频| 久久久久国产网址| 久久人人爽av亚洲精品天堂| 两个人免费观看高清视频| 免费播放大片免费观看视频在线观看| 啦啦啦啦在线视频资源| 国产精品 国内视频| 青春草亚洲视频在线观看| 成年av动漫网址| 18在线观看网站| 久久精品国产综合久久久| 亚洲男人天堂网一区| 可以免费在线观看a视频的电影网站 | 国产av国产精品国产| 久久精品熟女亚洲av麻豆精品| 国产极品粉嫩免费观看在线| 亚洲成人一二三区av| 寂寞人妻少妇视频99o| 日本av手机在线免费观看| 午夜免费观看性视频| 亚洲欧洲国产日韩| 一边摸一边做爽爽视频免费| 满18在线观看网站| 中文字幕av电影在线播放| 两个人免费观看高清视频| 99久久中文字幕三级久久日本| 999精品在线视频| 伊人亚洲综合成人网| 精品久久久精品久久久| 久久久国产精品麻豆| 亚洲精品国产色婷婷电影| 老女人水多毛片| 欧美bdsm另类| 晚上一个人看的免费电影| 老鸭窝网址在线观看| 大片免费播放器 马上看| 国产成人一区二区在线| 久久影院123| 日本欧美视频一区| 成人国产av品久久久| 在线观看一区二区三区激情| 久久久久久伊人网av| 蜜桃国产av成人99| 日韩人妻精品一区2区三区| 春色校园在线视频观看| 日本黄色日本黄色录像| 成人漫画全彩无遮挡| 欧美在线黄色| 亚洲av男天堂| 乱人伦中国视频| 成人手机av| 国产片特级美女逼逼视频| 人人妻人人澡人人爽人人夜夜| 久久综合国产亚洲精品| 午夜免费男女啪啪视频观看| 亚洲内射少妇av| tube8黄色片| 欧美日韩一级在线毛片| 女的被弄到高潮叫床怎么办| 国产一区二区三区av在线| 国产 精品1| 黄频高清免费视频| 性色avwww在线观看| 女性生殖器流出的白浆| 啦啦啦视频在线资源免费观看| 午夜福利一区二区在线看| 亚洲国产欧美在线一区| 一个人免费看片子| 日韩精品有码人妻一区| 啦啦啦啦在线视频资源| 日本av免费视频播放| 人妻人人澡人人爽人人| 欧美最新免费一区二区三区| 好男人视频免费观看在线| 国产在线视频一区二区| 亚洲精品久久午夜乱码| 亚洲,欧美精品.| 亚洲精品国产一区二区精华液| 久久久国产欧美日韩av| 视频在线观看一区二区三区| 综合色丁香网| 中国国产av一级| 欧美bdsm另类| 色婷婷久久久亚洲欧美| 欧美老熟妇乱子伦牲交| 日韩中字成人| 久久久久久久久久久免费av| 欧美亚洲 丝袜 人妻 在线| 母亲3免费完整高清在线观看 | 最新的欧美精品一区二区| 免费在线观看黄色视频的| 精品国产国语对白av| 欧美日韩亚洲高清精品| 欧美黄色片欧美黄色片| 在线精品无人区一区二区三| 制服丝袜香蕉在线| 免费播放大片免费观看视频在线观看| 又黄又粗又硬又大视频| 妹子高潮喷水视频| 国产成人精品一,二区| 日本免费在线观看一区| 久久99蜜桃精品久久| www.熟女人妻精品国产| 在线观看免费视频网站a站| 大陆偷拍与自拍| 热re99久久国产66热| 免费黄频网站在线观看国产| 26uuu在线亚洲综合色| 欧美 日韩 精品 国产| 亚洲第一区二区三区不卡| 亚洲国产欧美网| 少妇被粗大的猛进出69影院| 久久这里只有精品19| 秋霞在线观看毛片| 人人妻人人爽人人添夜夜欢视频| 中文字幕最新亚洲高清| 久久久欧美国产精品| 男女边吃奶边做爰视频| 男女无遮挡免费网站观看| 最黄视频免费看| 久久久久久人人人人人| 久久久亚洲精品成人影院| 欧美日韩精品网址| 伊人亚洲综合成人网| 啦啦啦中文免费视频观看日本| 精品人妻熟女毛片av久久网站| 人人妻人人澡人人看| 18禁观看日本| 亚洲人成电影观看| 亚洲av综合色区一区| 精品人妻偷拍中文字幕| 欧美 亚洲 国产 日韩一| 免费女性裸体啪啪无遮挡网站| 成人漫画全彩无遮挡| 国产精品不卡视频一区二区| 菩萨蛮人人尽说江南好唐韦庄| 中文字幕亚洲精品专区| 久久久久久久久久久久大奶| 欧美精品亚洲一区二区| 欧美最新免费一区二区三区| 一本久久精品| 中文字幕人妻丝袜制服| 国产av国产精品国产| 国产成人精品福利久久| 97在线视频观看| 一区二区日韩欧美中文字幕| 久久精品人人爽人人爽视色| 夜夜骑夜夜射夜夜干| 亚洲第一区二区三区不卡| 久久精品久久精品一区二区三区| 亚洲成色77777| 精品一区在线观看国产| 欧美+日韩+精品| 亚洲综合色惰| 日韩视频在线欧美| 免费av中文字幕在线| 丝袜喷水一区| 最近最新中文字幕免费大全7| 丰满饥渴人妻一区二区三| 午夜av观看不卡| 热re99久久国产66热| 大陆偷拍与自拍| 亚洲一级一片aⅴ在线观看| 国产日韩欧美亚洲二区| 国产一区二区在线观看av| 建设人人有责人人尽责人人享有的| 亚洲av中文av极速乱| av国产久精品久网站免费入址| 熟女电影av网| 免费观看性生交大片5| 成人免费观看视频高清| 亚洲内射少妇av| 新久久久久国产一级毛片| 中文字幕色久视频| 九九爱精品视频在线观看| 色婷婷av一区二区三区视频| 蜜桃国产av成人99| 日韩一卡2卡3卡4卡2021年| 午夜老司机福利剧场| 欧美xxⅹ黑人| 国产精品一区二区在线不卡| 99国产精品免费福利视频| 久久精品久久精品一区二区三区| 两个人免费观看高清视频| 国产精品一区二区在线不卡| 亚洲三级黄色毛片| 制服人妻中文乱码| 三上悠亚av全集在线观看| 国产麻豆69| 丝袜喷水一区| 久久这里只有精品19| 老女人水多毛片| 午夜av观看不卡| 男人舔女人的私密视频| 母亲3免费完整高清在线观看 | 久久这里有精品视频免费| www.熟女人妻精品国产| 蜜桃在线观看..| 美女xxoo啪啪120秒动态图| 国产精品二区激情视频| 高清不卡的av网站| 国产高清不卡午夜福利| 久久久久精品性色| 在线观看免费日韩欧美大片| 国产精品久久久久久久久免| 亚洲伊人久久精品综合| 国产免费又黄又爽又色| 久久久久人妻精品一区果冻| 日韩熟女老妇一区二区性免费视频| 99九九在线精品视频| 在线看a的网站| 侵犯人妻中文字幕一二三四区| 亚洲精品,欧美精品| 最新中文字幕久久久久| 午夜日韩欧美国产| 亚洲国产毛片av蜜桃av| 精品一品国产午夜福利视频| 美女国产视频在线观看| 青春草视频在线免费观看| 一级毛片 在线播放| 在线观看免费视频网站a站| freevideosex欧美| 97人妻天天添夜夜摸| 亚洲精品一二三| 精品午夜福利在线看| 精品人妻在线不人妻| 国产一区二区在线观看av| 欧美在线黄色| 亚洲av电影在线观看一区二区三区| 亚洲三级黄色毛片| 在线观看美女被高潮喷水网站| 热99久久久久精品小说推荐| 啦啦啦在线免费观看视频4| 亚洲第一av免费看| av免费在线看不卡| av线在线观看网站| 日产精品乱码卡一卡2卡三| 欧美日韩精品网址| 中文字幕人妻熟女乱码| 超碰97精品在线观看| 国产一区二区三区av在线| 精品亚洲乱码少妇综合久久| 人人妻人人澡人人看| 午夜影院在线不卡| 国产成人91sexporn| 涩涩av久久男人的天堂| 国产视频首页在线观看| 美女午夜性视频免费| 亚洲情色 制服丝袜| 欧美日本中文国产一区发布| 国产男女内射视频| 欧美日本中文国产一区发布| 亚洲情色 制服丝袜| 国产高清不卡午夜福利| 丝袜美足系列| 男女免费视频国产| 欧美亚洲日本最大视频资源| 国产免费福利视频在线观看| 激情视频va一区二区三区| 日本vs欧美在线观看视频| 亚洲精品第二区| 亚洲欧美成人综合另类久久久| 国产成人精品一,二区| xxx大片免费视频| 亚洲精品一二三| 夫妻午夜视频| 看十八女毛片水多多多| 久久久久网色| 亚洲精品aⅴ在线观看| 999精品在线视频| 少妇的丰满在线观看| av在线app专区| 女人精品久久久久毛片| 美女中出高潮动态图| 熟女少妇亚洲综合色aaa.| 国产在线视频一区二区| 国产成人av激情在线播放| 在线天堂最新版资源| 亚洲精品第二区| 午夜日本视频在线| 日日啪夜夜爽| 精品国产一区二区久久| 在线观看人妻少妇| 久久热在线av| 久久狼人影院| 国产成人免费无遮挡视频| 最近中文字幕2019免费版| 美女福利国产在线| 91午夜精品亚洲一区二区三区| 亚洲国产精品成人久久小说| 国产精品偷伦视频观看了| 久久精品国产a三级三级三级| 亚洲av成人精品一二三区| 国产乱来视频区| 亚洲美女黄色视频免费看| 欧美av亚洲av综合av国产av | 少妇的丰满在线观看| 亚洲少妇的诱惑av| 国产视频首页在线观看| 国产av精品麻豆| 国产精品久久久久久av不卡| 亚洲精品日韩在线中文字幕| 免费看av在线观看网站| 欧美bdsm另类| 国产av一区二区精品久久| 国产av国产精品国产| 90打野战视频偷拍视频| 亚洲欧美一区二区三区国产| 国产av精品麻豆| 国产精品一二三区在线看| 成人国语在线视频| 免费黄频网站在线观看国产| 色视频在线一区二区三区| 大话2 男鬼变身卡| 国语对白做爰xxxⅹ性视频网站| 免费人妻精品一区二区三区视频| 亚洲国产毛片av蜜桃av| 一本—道久久a久久精品蜜桃钙片| 青春草视频在线免费观看| 一二三四中文在线观看免费高清| 日韩av不卡免费在线播放| av电影中文网址| 91aial.com中文字幕在线观看| 一个人免费看片子| 一级片'在线观看视频| 欧美日本中文国产一区发布| 黑人欧美特级aaaaaa片| 99精国产麻豆久久婷婷| 三级国产精品片| 男人操女人黄网站| 男女午夜视频在线观看| 日韩成人av中文字幕在线观看| 永久网站在线| 黄网站色视频无遮挡免费观看| 久久久久视频综合| 日本黄色日本黄色录像| 91精品伊人久久大香线蕉| 国产极品天堂在线| 999久久久国产精品视频| 欧美精品一区二区免费开放| 亚洲国产成人一精品久久久| 国产精品偷伦视频观看了| 亚洲精品国产av蜜桃| 亚洲人成电影观看| 啦啦啦啦在线视频资源| 亚洲一码二码三码区别大吗| 青春草国产在线视频| 99国产综合亚洲精品| 亚洲精品日本国产第一区| 亚洲精品美女久久av网站| 男男h啪啪无遮挡| 亚洲精品一二三| 久久综合国产亚洲精品| 精品少妇一区二区三区视频日本电影 | 在线看a的网站| 亚洲av电影在线观看一区二区三区| 亚洲成av片中文字幕在线观看 | 天天躁狠狠躁夜夜躁狠狠躁| 99久久中文字幕三级久久日本| 国产一级毛片在线| 欧美人与性动交α欧美精品济南到 | 亚洲欧美一区二区三区黑人 | 亚洲四区av| 成人黄色视频免费在线看| 国产精品久久久av美女十八| 日日摸夜夜添夜夜爱| 丝袜人妻中文字幕| 精品亚洲乱码少妇综合久久|