• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Role of a1(1260)in π?p →(1260)p and π?p → π?ρ0p Reactions Near Threshold?

    2016-05-09 08:54:56ChenCheng程晨JuJunXie謝聚軍andXuCao曹須
    Communications in Theoretical Physics 2016年12期

    Chen Cheng(程晨),Ju-Jun Xie(謝聚軍),,3,? and Xu Cao(曹須),3

    1Institute of Modern Physics,Chinese Academy of Sciences,Lanzhou 730000,China

    2University of Chinese Academy of Sciences,Beijing 100049,China

    3Research Center for Hadron and CSR Physics,Institute of Modern Physics of CAS and Lanzhou University,Lanzhou 730000,China

    1 Introduction

    Within the picture of classical quark model,the mesons are bound states of quarks and antiquarks.This picture is very successful.Most of the known mesons can be described very well within the quark model.[1]However,it seems that the meson spectrum is much richer than that predicted by the quark model.There is a growing set of experimental observations of resonance-like structures with quantum numbers,which are forbidden for the quark-antiquark system or situated at masses,which cannot be explained by the quark-antiquark model.[2?3]For example,the new observations[4?10]have challenged the conventional wisdom that mesons are made of quarkantiquark pairs in the low energy region.

    In the quark model,the a1(1260)and b1(1235)are ground states of axial-vector resonances with quantum numbers IG(JPC)= 1?(1++)and 1+(1+?),respectively.For a1(1260)resonance,the experimental mass ma1(1260)=(1230±40)MeV is more precisely than its width Γa1(1260)=(250–600)MeV assigned by the Particle Data Group.[1]A recent COMPASS measurement published in 2010[11]provides a much smaller uncertainty of the width Γa1(1260)=367±MeV and mass ma1(1260)=1255±MeV.

    In the chiral unitary approach,the a1(1260)and b1(1235)are composite particles of a vector meson and a pseudoscalar meson in coupled channels.[12?13]Indeed,the a1(1260)is dynamically generated from the K?ˉK and ρπ channels and the couplings of the a1(1260)to these channels can be also obtained at the same time.[13]Based on these results,the radiative decay of a1(1260)meson was studied in Refs.[14–15],where the theoretical calculations agree with the experimental values within uncertainties.On the other hand,the effects of the next-to-leading order chiral potential on the dynamically generated axial-vector mesons were studied in Ref.[16].It was found that the inclusion of the higher-order kernel does not change the results obtained with the leading-order kernel in any significant way,which gives more supports to the dynamical picture of the a1(1260)state.[12?13,16]

    Recently the COMPASS collaboration[9]reported the observation of a resonance-like structure around 1.42 GeV with axial-vector quantum numbers 1?(1++)in the f0(980)π P-wave of the π?π?π+final state,and it was claimed as a signal as a new resonance that was named the“a1(1420)”state with width around 140 MeV.It is very difficult to explain this structure as a new state within the quark model,because the radial excitation of a1(1260)is expected to have a mass above 1650 MeV.Furthermore,it is not expected that the radial excitation state has a width,which is much smaller than the one of the ground state.In Refs.[17–18],the “a1(1420)” state can be explained as a triangle singularity via the decay of a1(1260)into K?ˉK and subsequent re-scattering of the K from the K?decay to form the f0(980)resonance.In Ref.[19],the production of a1states are studied in heavy meson decays,which can also provide insights to the a1(1420)and the future experimental analyses will very probably lead to a deeper understanding of the nature of the a1(1420).

    In this work,we study the role of a1(1260)resonance in the π?p →(1260)p and π?p → ρ0π?p reactions near threshold using an effective Lagrangian approach.Unfortunately,as discussed before,the uncertainty of total decay width of a1(1260)is large and the branch ratio of a1(1260)→ ρπ is unknown,we can not obtain directly the coupling of a1(1260)to the ρπ channel from the partial decay width of a1(1260)resonance.Thus,it is necessary to rely on theoretical schemes.In this calculation,we take the coupling of a1(1260)to the ρπ channel that was obtained in Ref.[13]with the picture that the a1(1260)resonance is dynamically generated from the K?ˉK and ρπ coupled channels.In this respect,our calculations are based on the dynamical picture of the a1(1260)state.We consider the t channel ρ0exchange.The total cross sections of π?p →(1260)p reaction are calculated.It is found that the theoretical calculations for the total cross sections of π?p →(1260)p reaction are in agreement with the experimental data.In addition,the total and differential cross sections for the π?p →(1260)p → ρ0π?p reaction are predicted and could be tested by future experiments.Because the main decay channel of a1(1260)resonance is the ρπ channel,the π?p →(1260)p → ρ0π?p reaction is very useful to deep understanding the nature of a1(1260)state and also the nature of the a1(1420).

    This paper is organized as follows.In Sec.2,formalism and ingredients used in the calculation are given.In Sec.3,the results are presented and discussed.Finally,a short summary is given in the last section.

    2 Formalism and Ingredients

    The combination of effective Lagrangian method and isobar model is an important theoretical approach in describing the meson production processes. In this section,we introduce the theoretical formalism and ingredients for studying the a1(1260)hadronic production in π?p →(1260)p and π?p → ρ0π?p reactions within the effective Lagrangian method and isobar model.

    2.1 Feynman Diagrams and Interaction Lagrangian Densities

    The basic tree level Feynman diagrams for the π?p →(1260)p and π?p → ρ0π?p reactions are depicted in Figs.1 and 2,respectively.For these reactions,the tchannel ρ0exchange is considered in this calculation,since the main decay channel of a1(1260)is the ρπ channel.

    To compute the contributions of diagrams shown in Figs.1 and 2,we use the interaction Lagrangian density for the ρNN vertex as in Refs.[20–23],

    where the parameters are taken as commonly used ones:[24?28]gρNN=3.36 and κρ=6.1.

    Fig.1 Feynman diagram for π?p → (1260)p reaction.We show also the definition of the kinematical(p1,p2,p3,p4,and k)that we use in the present calculation.In addition,we use k=p2?p4.

    Fig.2 Feynman diagram for π?p → ρ0π?p reaction.

    In addition,we need also the effective interaction of the a1(1260)ρπ vertex.As mentioned before,in the chiral unitary approach of Ref.[13],the a1(1260)resonance is dynamically generated from the interaction ofand ρπ interactions.One can write down the(1260)vertex as,

    where εμ(ρ)and(a1)are the polarization vectors of ρ and a1(1260).The ga1ρπis the coupling constant of the a1(1260)to the ρπ channel,which is taken to be(?3795,2330)MeV as obtained in Ref.[13].The factorin Eq.(2)accounts for the fact that in the I=1 and I3= ?1 combination of ρπ mesons,

    2.2 Scattering Amplitudes and Cross Sections

    With the effective Lagrangian densities given above,we can straightforwardly construct the invariant scattering amplitude for π?p →(1260)p reaction corresponding to the Feynman diagram in Fig.1:

    where s4,s2,and s3are the polarization variables of final proton,initial proton and a1(1260)resonance,respectively.The ρ-meson propagator Gμν(k)is,

    where mρis the mass of the ρ meson and we take mρ=775.26 MeV.

    In Eq.(4),Fρ(k)is the form factor for ρNN vertex and we take it as in Refs.[20–21],

    with Λρthe cut o ffparameter,which will be discussed in the following.

    Similarly,we can get the invariant scattering amplitude for π?p → π?ρ0p reaction corresponding to the Feynman diagram in Fig.2:

    where s5is the polarization variable of ρ0meson,and Gνσ(q)is the a1(1260)propagator,

    where Γa1and ma1are the width and mass of the a1(1260)resonance,respectively.We take ma1=1230 MeV.For Γa1,as mentioned above,since its value has large uncertainties,we take Γa1=(250,425,and 600)MeV for comparison.

    In Eq.(7),Fa1(q)is the form factor of a1(1260)state.In our present calculation,we adopt the following form as in many previous works:[24?28]

    where Λa1is the cuto ffparameter of a1(1260)resonance.

    The differential cross section in the center of mass frame(c.m.)for the π?p →(1260)p and π?p → ρ0π?p reactions can be derived from the invariant scattering amplitude square|M|2,reading as:

    where W is the invariant mass of the π?p system,whereas,θ denotes the scattering angle of the outgoing(1260)resonance relative to π?beam direction in the c.m.frame.In the above equation,andare the 3-momenta of the initial π?meson and the final a1(1260)mesons,

    where λ(x,y,z)is the K?hlen or triangle function.We take mp=938.27 MeV and mπ?=139.57 MeV in this calculation.

    In the effective Lagrangian approach,the sum over polarizations and the Dirac spinors can be easily done thanks to

    With the formalism and ingredients given above,the calculations of the differential and total cross sections for π?p→ ρ0π?pare straightforward:

    3 Numerical Results and Discussion

    With the formalism and ingredients given above,the total cross section versus the beam momentum(plab)??The relation between W(or s for the case of π?p → π?ρ0p reaction)and plabis:s=of the π?meson for the π?p →(1260)p reaction is evaluated.The numerical results are shown in Fig.3 for beam energies plabfrom just above the production threshold 2.0 GeV to 5.0 GeV together with the experimental data[29?30]for comparison.In Fig.3,the dashed,solid,and dotted curves represent the theoretical results obtained with Λρ=(1.4,1.5,and 1.6)GeV,respectively.One can see that the experimental data can be reproduced with a reasonable value of the cuto ffparameter Λρ=1.5±0.1 GeV.The experimental data from Ref.[29]were measured at plab=3.2 GeV and 4.2 GeV,which can be well reproduced with Λρ=1.5 GeV.However the experimental data from Ref.[30]at plab=3.89 GeV is a few hundredμb larger than the expected value.More experimental measurements are needed to complement the limited data in Refs.[29–30],and give valuable information about the mechanism of this reaction.

    Fig.3 Total cross section of π?p → a?1(1260)p reaction versus the incoming π? beam momentum in the laboratory frame.The circle data points represent the experimental data from Ref.[29],while the square point represents the experimental data from Ref.[30].

    Based on the results of the process of π?p →(1260)p,we investigate the reaction of π?p →(1260)p → ρ0π?p.The theoretical calculations of the total cross sections of this reaction are shown in Fig.4,where we take Λa1= Λρ=1.5 GeV for simplicity.It is worth to mention that the numerical results are not sensitive to the value of Λa1.In Fig.4,the dashed,solid,and dotted curves are obtained with Γa1=(250,425,and 600)MeV,respectively.

    In addition to the total cross sections of π?p →(1260)p → ρ0π?p reaction,we calculate also the differential cross section for this reaction as a function of Mρπat plab=4 GeV.The theoretical results are shown in Fig.5,where the dashed,solid,and dotted curves are obtained with Γa1=(250,425,and 600)MeV,respectively.The numerical results shown in Figs.4 and 5 could be tested by the future experiments.

    Fig.5 Invariant mass distributions dσ/dMρπ of π?p →(1260)p → ρ0π?p reaction at plab=4 GeV.

    It is worth to mention that though the effective Lagrangian approach is a convenient tool to catch the qualitative features of the π?p →and π?p →(1260)p → π?ρ0p reactions,it is not consistent with the unitary requirements,which in principle are important for extracting the parameters of the excited states from the analysis of the experimental data,[31?33]especially for those reactions involving many intermediate couple channels and three-particle final states.[34?35]In this work,basing on phenomenological Lagrangians,we consider only the tree-diagram contributions,in which the unitarity condition is not ensured and coupled channel effects are not taken into account.However,our model can give a reasonable description of the experimental data in the considered energy region for the reaction of π?p →(1260)p reaction.Meanwhile,our calculation o ff ers some important clues for the mechanisms of the π?p →(1260)p and π?p →(1260)p → π?ρ0p reactions and makes a first effort to study the role of a1(1260)resonance in these relevant reactions.Furthermore,including such unitarity condition and the coupled channel effects,the scattering amplitudes would become more complex due to additional parameters,and we can not determine or constrain these parameters.Hence,we will leave these contributions to future studies when more experimental data become available.

    4 Summary

    In this work,we have investigated the π?p →(1260)p and π?p → a?1(1260)p → π?ρ0p reactions near threshold within an effective Lagrangian approach.The t-channel ρ0meson exchange process is considered with the assumption that the a1(1260)resonance was dynamically generated from the coupledand ρπ channels,from where we can get the coupling of a1(1260)to ρπ channel.The total cross section of π?p →(1260)p is calculated with the coupling constant of the a1(1260)to ρπ channel obtained from the chiral unitary theory and a reasonable value of cut o ffparameter Λρ.It is found that the experimental measurement for the π?p → a?1(1260)p reaction can be fairly reproduced.

    Furthermore,the total and differential cross sections of π?p →(1260)p → π?ρ0p reaction are also predicted based on the results of the study of the π?p →(1260)p.Because the width of a1(1260)resonance has large uncertainty,we take different values of Γa1for comparison.It is expected that our model calculations can be tested by future experiments.

    Finally,we would like to stress that,thanks to the important role played by the t-channel ρ0exchange in the π?p →(1260)p reaction,one can reproduce the available experimental data with a reasonable value of the cut o ffparameter in the form factors.The π?p →(1260)p and π?p →(1260)p → π?ρ0p reactions are important for the study of the a1(1260)resonance.More and accurate data for these reactions will provide valuable information on the reaction mechanisms and can be used to test our model calculations,which should be tied to the nature of the a1(1260)state.This work provides a vision in this direction.

    One of us(C.C.)would like to thank Yin Huang for helpful discussions.We thank Satoshi Nakamura for useful discussions.

    [1]K.A.Olive,et al.,[Particle Data Group Collaboration],Chin.Phys.C 38(2014)090001;doi:10.1088/1674-1137/38/9/090001.

    [2]E.Klempt and A.Zaitsev,Phys.Rept.454(2007)1;doi:10.1016/j.physrep.2007.07.006;[arXiv:0708.4016[hepph]].

    [3]N.Brambilla,et al.,Eur.Phys.J.C 74(2014)2981;doi:10.1140/epjc/s10052-014-2981-5[arXiv:1404.3723[hep-ph]].

    [4]S.K.Choi et al.,[Belle Collaboration],Phys.Rev.Lett.91(2003)262001;[hep-ex/0309032].

    [5]D.Acosta,et al.,[CDF Collaboration],Phys.Rev.Lett.93(2004)072001;[hep-ex/0312021].

    [6]V.M.Abazov,et al.,[D0 Collaboration],Phys.Rev.Lett.93(2004)162002;[hep-ex/0405004].

    [7]M.Ablikim,et al.,[BESIII Collaboration],Phys.Rev.Lett.110(2013)252001;[arXiv:1303.5949[hep-ex]].

    [8]Z.Q.Liu,et al.,[Belle Collaboration],Phys.Rev.Lett.110(2013)252002;[arXiv:1304.0121[hep-ex]].

    [9]C.Adolph,et al.[COMPASS Collaboration],Phys.Rev.Lett.115 (2015) 082001; doi:10.1103/Phys RevLett.115.082001[arXiv:1501.05732[hep-ex]].

    [10]V.M.Abazov et al.,[D0 Collaboration],Phys.Rev.Lett. 117 (2016) 022003; doi:10.1103/PhysRev Lett.117.022003[arXiv:1602.07588[hep-ex]].

    [11]M.Alekseev et al.,[COMPASS Collaboration],Phys.Rev.Lett.104(2010)241803;doi:10.1103/PhysRev Lett.104.241803[arXiv:0910.5842[hep-ex]].

    [12]M.F.M.Lutz and E.E.Kolomeitsev,Nucl.Phys.A 730(2004) 392; doi:10.1016/j.nuclphysa.2003.11.009[nuclth/030 7039].

    [13]L.Roca,E.Oset,and J.Singh,Phys.Rev.D 72(2005)014002; doi:10.1103/PhysRevD.72.014002[hepph/05 03273].

    [14]L.Roca,A.Hosaka,and E.Oset,Phys.Lett.B 658(2007)17;doi:10.1016/j.physletb.2007.10.035[hepph/0611075].

    [15]H.Nagahiro,L.Roca,A.Hosaka,and E.Oset,Phys.Rev.D 79 (2009)014015;doi:10.1103/Phys RevD.79.014015[arXiv:0809.0943[hep-ph]].

    [16]Y.Zhou,X.L.Ren,H.X.Chen,andL.S.Geng,Phys.Rev.D 90(2014)014020;doi:10.1103/PhysRev D.90.014020[arXiv:1404.6847[nucl-th]].

    [17]M.Mikhasenko, B. Ketzer, and A.Sarantsev,Phys.Rev.D 91 (2015)094015;doi:10.1103/Phys RevD.91.094015[arXiv:1501.07023[hep-ph]].

    [18]F.Aceti,L.R.Dai,and E.Oset,arXiv:1606.06893[hepph].

    [19]W.Wang and Z.X.Zhao,Eur.Phys.J.C 76(2016)59; doi:10.1140/epjc/s10052-016-3900-8[arXiv:1511.06998[hep-ph]].

    [20]R.Machleidt,K.Holinde,and C.Elster,Phys.Rept.149(1987)1;doi:10.1016/S0370-1573(87)80002-9.

    [21]R.Machleidt,Adv.Nucl.Phys.19(1989)189.

    [22]M.Doring,C.Hanhart,F.Huang,S.Krewald,U.G.Meissner,and D.Ronchen,Nucl.Phys.A 851(2011) 58; doi:10.1016/j.nuclphysa.2010.12.010[arXiv:1009.3781[nucl-th]].

    [24]K.Tsushima,A.Sibirtsev,and A.W.Thomas,Phys.Rev.C 62(2000)064904;doi:10.1103/PhysRevC.62.064904[nucl-th/0004011].

    [25]A.M.Gasparyan,J.Haidenbauer,C.Hanhart,and J.Speth,Phys.Rev.C 68(2003)045207;doi:10.1103/Phys RevC.68.045207[nucl-th/0307072].

    [26]J.J.Xie and B.S.Zou,Phys.Lett.B 649(2007)405;doi:10.1016/j.physletb.2007.04.035[nucl-th/0701021].

    [27]J.J.Xie,B.S.Zou,and H.C.Chiang,Phys.Rev.C 77 (2008) 015206; doi:10.1103/PhysRevC.77.015206[arXiv:0705.3950[nucl-th]].

    [29]S.U.Chung,O.I.Dahl,J.Kirz,and D.H.Miller,Phys.Rev.165(1968)1491;doi:10.1103/PhysRev.165.1491.

    [30]P.G.Wohlmut,K.Abe,A.D.Johnson,and V.J.Stenger,Nucl.Phys.B 18(1970)505;doi:10.1016/0550-3213(70)90132-X.

    [31]H.Kamano,B.Julia-Diaz,T.S.H.Lee,A.Matsuyama,and T.Sato,Phys.Rev.C 80(2009)065203;doi:10.1103/PhysRevC.80.065203[arXiv:0909.1129[nuclth]].

    [32]N.Suzuki,B.Julia-Diaz,H.Kamano,T.S.H.Lee,A.Matsuyama,and T.Sato,Phys.Rev.Lett.104(2010)042302;doi:10.1103/PhysRevLett.104.042302[arXiv:0909.1356[nucl-th]].

    [33]S.X.Nakamura,H.Kamano,T.S.H.Lee,and T.Sato,Phys.Rev.D 86 (2012)114012;doi:10.1103/Phys RevD.86.114012[arXiv:1209.3402[hep-ph]].

    [34]H.Kamano,B.Julia-Diaz,T.S.H.Lee,A.Matsuyama,and T.Sato,Phys.Rev.C 79(2009)025206;doi:10.1103/PhysRevC.79.025206[arXiv:0807.2273[nuclth]].

    [35]H.Kamano,S.X.Nakamura,T.S.H.Lee,and T.Sato,Phys.Rev.D 84 (2011)114019;doi:10.1103/Phys RevD.84.114019[arXiv:1106.4523[hep-ph]].

    天堂动漫精品| 午夜老司机福利片| 成人影院久久| 免费人成视频x8x8入口观看| 亚洲午夜理论影院| 首页视频小说图片口味搜索| 中文字幕另类日韩欧美亚洲嫩草| 热re99久久国产66热| 少妇的丰满在线观看| 18禁裸乳无遮挡免费网站照片 | 久久久国产一区二区| 后天国语完整版免费观看| 久久99一区二区三区| av福利片在线| 窝窝影院91人妻| 女同久久另类99精品国产91| 一进一出好大好爽视频| 午夜福利在线观看吧| 女人被狂操c到高潮| 精品一区二区三区av网在线观看| 色哟哟哟哟哟哟| 丰满饥渴人妻一区二区三| 欧美日韩黄片免| 手机成人av网站| 老司机深夜福利视频在线观看| 中文字幕高清在线视频| 美女 人体艺术 gogo| 久久久久九九精品影院| 俄罗斯特黄特色一大片| 99热只有精品国产| 国产成人系列免费观看| 亚洲自拍偷在线| 美女午夜性视频免费| 美女午夜性视频免费| 两个人免费观看高清视频| 少妇被粗大的猛进出69影院| 18禁国产床啪视频网站| 中国美女看黄片| 亚洲第一欧美日韩一区二区三区| 国产精品国产高清国产av| 国产亚洲精品第一综合不卡| 成人亚洲精品一区在线观看| 桃色一区二区三区在线观看| 欧美人与性动交α欧美软件| av欧美777| а√天堂www在线а√下载| x7x7x7水蜜桃| 无限看片的www在线观看| 乱人伦中国视频| 国产三级黄色录像| 午夜老司机福利片| 国产熟女xx| 国产深夜福利视频在线观看| 免费高清在线观看日韩| 久久久久国产一级毛片高清牌| 搡老熟女国产l中国老女人| 亚洲全国av大片| 19禁男女啪啪无遮挡网站| 午夜精品在线福利| 久久 成人 亚洲| 12—13女人毛片做爰片一| 亚洲成av片中文字幕在线观看| 超色免费av| 丰满人妻熟妇乱又伦精品不卡| 女性被躁到高潮视频| 色在线成人网| 欧美在线一区亚洲| 国产精品一区二区在线不卡| 老汉色∧v一级毛片| 午夜福利,免费看| 这个男人来自地球电影免费观看| 精品一区二区三区av网在线观看| 大型黄色视频在线免费观看| av在线天堂中文字幕 | 精品少妇一区二区三区视频日本电影| 亚洲,欧美精品.| 日韩高清综合在线| 精品国产乱子伦一区二区三区| 黑人巨大精品欧美一区二区mp4| av视频免费观看在线观看| 亚洲五月天丁香| 日本三级黄在线观看| 色老头精品视频在线观看| 在线观看一区二区三区激情| a级毛片在线看网站| 夫妻午夜视频| 999久久久精品免费观看国产| 精品乱码久久久久久99久播| 无人区码免费观看不卡| 欧美性长视频在线观看| 国产欧美日韩一区二区三| 丝袜人妻中文字幕| 久久 成人 亚洲| 日韩精品青青久久久久久| 淫秽高清视频在线观看| 人妻久久中文字幕网| 老熟妇乱子伦视频在线观看| 亚洲av美国av| 精品无人区乱码1区二区| 黑人操中国人逼视频| 亚洲成人免费av在线播放| 免费观看人在逋| www国产在线视频色| 国产精品国产高清国产av| 国产精品久久久人人做人人爽| 国产精品久久视频播放| 亚洲 欧美一区二区三区| 午夜视频精品福利| 91av网站免费观看| 最新美女视频免费是黄的| 在线观看66精品国产| 欧美午夜高清在线| 别揉我奶头~嗯~啊~动态视频| 99精品在免费线老司机午夜| 亚洲国产毛片av蜜桃av| 老鸭窝网址在线观看| 在线播放国产精品三级| 午夜视频精品福利| 最近最新中文字幕大全免费视频| 中文字幕最新亚洲高清| 亚洲成人久久性| 国产免费现黄频在线看| 欧美另类亚洲清纯唯美| 999精品在线视频| 亚洲精品粉嫩美女一区| 欧美一级毛片孕妇| 精品国产超薄肉色丝袜足j| 中文字幕人妻丝袜一区二区| 桃色一区二区三区在线观看| 久久香蕉精品热| 天堂动漫精品| 久久草成人影院| 国产精品99久久99久久久不卡| av视频免费观看在线观看| 91国产中文字幕| xxxhd国产人妻xxx| 国产在线观看jvid| 两性夫妻黄色片| 看片在线看免费视频| 最好的美女福利视频网| 桃红色精品国产亚洲av| 精品久久久精品久久久| 日日干狠狠操夜夜爽| 亚洲男人的天堂狠狠| 亚洲中文字幕日韩| 久久久精品欧美日韩精品| 精品日产1卡2卡| 一二三四在线观看免费中文在| 深夜精品福利| 少妇的丰满在线观看| 一级a爱视频在线免费观看| 国产成年人精品一区二区 | 久久久国产欧美日韩av| 精品国产乱码久久久久久男人| 又大又爽又粗| 亚洲精品国产一区二区精华液| 国产精品一区二区精品视频观看| 免费av毛片视频| 男人操女人黄网站| 无限看片的www在线观看| 两个人免费观看高清视频| 国产欧美日韩一区二区精品| 精品国产国语对白av| 国产xxxxx性猛交| 久久精品成人免费网站| 亚洲午夜理论影院| 亚洲第一青青草原| 桃色一区二区三区在线观看| 精品国产亚洲在线| 日本a在线网址| 国产精品永久免费网站| 成人国产一区最新在线观看| 亚洲精华国产精华精| 日韩大尺度精品在线看网址 | 天天添夜夜摸| 中文字幕最新亚洲高清| 无遮挡黄片免费观看| 久久精品成人免费网站| 国产伦一二天堂av在线观看| www.999成人在线观看| aaaaa片日本免费| 岛国在线观看网站| 亚洲av日韩精品久久久久久密| 久久精品国产99精品国产亚洲性色 | 日本一区二区免费在线视频| 水蜜桃什么品种好| 国产av精品麻豆| svipshipincom国产片| 国产成人欧美| 母亲3免费完整高清在线观看| 日韩大尺度精品在线看网址 | а√天堂www在线а√下载| 国产日韩一区二区三区精品不卡| 亚洲国产精品sss在线观看 | 一二三四在线观看免费中文在| 久久久水蜜桃国产精品网| 在线av久久热| 亚洲成人久久性| 51午夜福利影视在线观看| 91大片在线观看| www.自偷自拍.com| 久久久久九九精品影院| 757午夜福利合集在线观看| 亚洲久久久国产精品| 亚洲一区高清亚洲精品| 三上悠亚av全集在线观看| 51午夜福利影视在线观看| 人人澡人人妻人| 亚洲美女黄片视频| 麻豆国产av国片精品| 老司机深夜福利视频在线观看| 亚洲,欧美精品.| 国产97色在线日韩免费| ponron亚洲| 亚洲aⅴ乱码一区二区在线播放 | 久久久久久久久久久久大奶| 搡老熟女国产l中国老女人| 久久精品国产清高在天天线| 成年女人毛片免费观看观看9| 在线观看www视频免费| 99国产综合亚洲精品| 丰满人妻熟妇乱又伦精品不卡| 久久欧美精品欧美久久欧美| 两性夫妻黄色片| 在线十欧美十亚洲十日本专区| 国产精品一区二区三区四区久久 | 精品福利永久在线观看| 热re99久久国产66热| 欧美午夜高清在线| 亚洲avbb在线观看| 天天躁夜夜躁狠狠躁躁| 欧美日韩视频精品一区| 日韩人妻精品一区2区三区| 黑人猛操日本美女一级片| 国产精品亚洲一级av第二区| 黄色视频不卡| 欧美中文日本在线观看视频| 97人妻天天添夜夜摸| 99在线人妻在线中文字幕| 色婷婷av一区二区三区视频| 女性被躁到高潮视频| 天堂动漫精品| 欧美中文日本在线观看视频| 午夜两性在线视频| 国产一区二区激情短视频| 精品无人区乱码1区二区| 国产熟女xx| 国产高清激情床上av| 一区二区三区精品91| 国产精品一区二区免费欧美| 亚洲精品中文字幕在线视频| www.999成人在线观看| 日韩有码中文字幕| 黄色毛片三级朝国网站| 欧美黑人欧美精品刺激| 亚洲精华国产精华精| 正在播放国产对白刺激| 亚洲人成网站在线播放欧美日韩| 久久中文看片网| 香蕉国产在线看| 精品国内亚洲2022精品成人| 国产高清视频在线播放一区| 视频区欧美日本亚洲| 日韩一卡2卡3卡4卡2021年| 欧美成人午夜精品| 一个人观看的视频www高清免费观看 | 法律面前人人平等表现在哪些方面| www.自偷自拍.com| 欧美精品一区二区免费开放| 亚洲精品成人av观看孕妇| 精品免费久久久久久久清纯| netflix在线观看网站| 亚洲男人天堂网一区| 精品久久久久久成人av| 亚洲国产精品sss在线观看 | 悠悠久久av| 18美女黄网站色大片免费观看| 成人永久免费在线观看视频| 亚洲午夜精品一区,二区,三区| 亚洲精品国产精品久久久不卡| 在线播放国产精品三级| 一区二区日韩欧美中文字幕| 少妇的丰满在线观看| 伊人久久大香线蕉亚洲五| 十八禁人妻一区二区| 欧美精品啪啪一区二区三区| 性色av乱码一区二区三区2| 美女福利国产在线| 国产亚洲欧美在线一区二区| 精品国产乱子伦一区二区三区| 少妇被粗大的猛进出69影院| 久久久国产成人精品二区 | 欧美另类亚洲清纯唯美| 国产xxxxx性猛交| av片东京热男人的天堂| 婷婷精品国产亚洲av在线| 99在线视频只有这里精品首页| 又紧又爽又黄一区二区| 日本a在线网址| 亚洲午夜理论影院| 午夜福利在线免费观看网站| 91精品国产国语对白视频| 99精品欧美一区二区三区四区| 欧洲精品卡2卡3卡4卡5卡区| 美女午夜性视频免费| bbb黄色大片| 国产99白浆流出| 亚洲一区二区三区欧美精品| 午夜激情av网站| 欧美激情高清一区二区三区| 咕卡用的链子| 嫩草影院精品99| 日日爽夜夜爽网站| 国产黄a三级三级三级人| 亚洲情色 制服丝袜| 久久精品aⅴ一区二区三区四区| 狂野欧美激情性xxxx| 国产男靠女视频免费网站| 一进一出抽搐动态| 免费在线观看影片大全网站| 亚洲一卡2卡3卡4卡5卡精品中文| 12—13女人毛片做爰片一| 久久精品亚洲av国产电影网| 国产99白浆流出| 高清毛片免费观看视频网站 | 精品国产乱码久久久久久男人| 亚洲中文日韩欧美视频| 亚洲中文av在线| 国产日韩一区二区三区精品不卡| 他把我摸到了高潮在线观看| 正在播放国产对白刺激| 欧美老熟妇乱子伦牲交| 在线av久久热| 侵犯人妻中文字幕一二三四区| 久久精品影院6| 国产单亲对白刺激| 久久婷婷成人综合色麻豆| 国产成人精品无人区| 日日摸夜夜添夜夜添小说| 美女午夜性视频免费| 午夜福利在线观看吧| 91老司机精品| 婷婷精品国产亚洲av在线| 亚洲aⅴ乱码一区二区在线播放 | 成年版毛片免费区| 亚洲成人国产一区在线观看| 国产成人av教育| 久久精品亚洲熟妇少妇任你| 美女高潮喷水抽搐中文字幕| 国产成人一区二区三区免费视频网站| 成年版毛片免费区| 啦啦啦 在线观看视频| 91麻豆av在线| 大型黄色视频在线免费观看| 亚洲五月天丁香| 亚洲av五月六月丁香网| 亚洲黑人精品在线| 色老头精品视频在线观看| 欧美成人性av电影在线观看| 国产乱人伦免费视频| 国产成人精品无人区| 美国免费a级毛片| 婷婷六月久久综合丁香| 操出白浆在线播放| 欧美精品亚洲一区二区| 久久久国产精品麻豆| 成人18禁高潮啪啪吃奶动态图| 亚洲美女黄片视频| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲欧美精品综合一区二区三区| 国产一区二区三区在线臀色熟女 | 女人被躁到高潮嗷嗷叫费观| 国产精品av久久久久免费| 自拍欧美九色日韩亚洲蝌蚪91| 黄色成人免费大全| av在线播放免费不卡| 午夜精品在线福利| 搡老熟女国产l中国老女人| 亚洲男人天堂网一区| 精品无人区乱码1区二区| av免费在线观看网站| 国产午夜精品久久久久久| 高清av免费在线| 中文亚洲av片在线观看爽| 午夜福利在线免费观看网站| 中文字幕最新亚洲高清| 国产又爽黄色视频| 黄频高清免费视频| 757午夜福利合集在线观看| 日本a在线网址| 少妇粗大呻吟视频| 免费在线观看亚洲国产| 欧美av亚洲av综合av国产av| 久久久国产一区二区| 久久亚洲精品不卡| 91大片在线观看| 男女床上黄色一级片免费看| 国产1区2区3区精品| 国产成人精品在线电影| 午夜91福利影院| 嫩草影院精品99| 国产伦一二天堂av在线观看| cao死你这个sao货| 美女大奶头视频| 成人三级做爰电影| 久久天堂一区二区三区四区| 免费观看精品视频网站| 国产精品九九99| 午夜日韩欧美国产| а√天堂www在线а√下载| 成年版毛片免费区| 国产色视频综合| 欧美亚洲日本最大视频资源| 人人妻人人澡人人看| 女人高潮潮喷娇喘18禁视频| 99久久综合精品五月天人人| 黄色女人牲交| 50天的宝宝边吃奶边哭怎么回事| 90打野战视频偷拍视频| 国产成+人综合+亚洲专区| 久久99一区二区三区| 亚洲精品一卡2卡三卡4卡5卡| 亚洲人成电影观看| 国产高清视频在线播放一区| 女人精品久久久久毛片| 欧美黑人精品巨大| 国产在线精品亚洲第一网站| 亚洲精品国产精品久久久不卡| 亚洲av片天天在线观看| 日日干狠狠操夜夜爽| 国产精品98久久久久久宅男小说| 欧美成狂野欧美在线观看| 999久久久国产精品视频| 日本wwww免费看| 在线视频色国产色| 国产精品久久久人人做人人爽| 亚洲精品国产色婷婷电影| 国产精品二区激情视频| netflix在线观看网站| 亚洲av第一区精品v没综合| 国产精品1区2区在线观看.| 亚洲人成电影观看| 天天躁夜夜躁狠狠躁躁| 久久久久国产一级毛片高清牌| 两个人免费观看高清视频| 淫妇啪啪啪对白视频| 麻豆一二三区av精品| 久久久精品欧美日韩精品| 欧美性长视频在线观看| 十八禁人妻一区二区| 午夜视频精品福利| 欧美中文日本在线观看视频| 他把我摸到了高潮在线观看| 丁香六月欧美| 亚洲九九香蕉| 黄色成人免费大全| 欧美日韩一级在线毛片| 男人操女人黄网站| www.自偷自拍.com| 久久久国产一区二区| 欧美老熟妇乱子伦牲交| 丝袜美足系列| av网站免费在线观看视频| 亚洲精品国产区一区二| 国产成人一区二区三区免费视频网站| 美女午夜性视频免费| 成人18禁高潮啪啪吃奶动态图| 国产午夜精品久久久久久| 日韩免费高清中文字幕av| a级毛片在线看网站| 亚洲在线自拍视频| 国产一区二区激情短视频| 日韩免费高清中文字幕av| 日韩人妻精品一区2区三区| 亚洲一区二区三区色噜噜 | 欧美大码av| 两性夫妻黄色片| 国产99白浆流出| 桃红色精品国产亚洲av| 欧美乱码精品一区二区三区| 波多野结衣高清无吗| 欧美人与性动交α欧美精品济南到| 亚洲精品国产一区二区精华液| 新久久久久国产一级毛片| 成年女人毛片免费观看观看9| 欧美精品啪啪一区二区三区| 亚洲五月天丁香| 亚洲成人免费电影在线观看| 高清黄色对白视频在线免费看| 久久精品亚洲熟妇少妇任你| 狠狠狠狠99中文字幕| 国产伦一二天堂av在线观看| 纯流量卡能插随身wifi吗| 一级,二级,三级黄色视频| 久久中文看片网| 99久久综合精品五月天人人| 精品国产一区二区三区四区第35| 精品午夜福利视频在线观看一区| 亚洲精品国产区一区二| 视频在线观看一区二区三区| 侵犯人妻中文字幕一二三四区| a在线观看视频网站| 天堂俺去俺来也www色官网| 午夜免费激情av| 黄网站色视频无遮挡免费观看| 午夜免费激情av| 精品一区二区三区视频在线观看免费 | 大陆偷拍与自拍| 精品卡一卡二卡四卡免费| 国产一区二区三区在线臀色熟女 | 欧美日韩亚洲综合一区二区三区_| 国产熟女xx| 在线观看66精品国产| 这个男人来自地球电影免费观看| 亚洲欧美激情在线| 成年人黄色毛片网站| 每晚都被弄得嗷嗷叫到高潮| 在线观看免费午夜福利视频| 午夜精品国产一区二区电影| 久久九九热精品免费| 精品少妇一区二区三区视频日本电影| www.www免费av| 精品一区二区三区视频在线观看免费 | 精品国产一区二区久久| 波多野结衣高清无吗| 国产区一区二久久| 天天躁狠狠躁夜夜躁狠狠躁| 老司机午夜福利在线观看视频| 99re在线观看精品视频| 法律面前人人平等表现在哪些方面| 精品人妻在线不人妻| 久久国产精品人妻蜜桃| 99在线人妻在线中文字幕| 亚洲国产欧美网| 露出奶头的视频| 99国产精品一区二区三区| 交换朋友夫妻互换小说| 国产精品98久久久久久宅男小说| 99riav亚洲国产免费| 国产无遮挡羞羞视频在线观看| 波多野结衣一区麻豆| 纯流量卡能插随身wifi吗| 亚洲五月婷婷丁香| 不卡一级毛片| 99精品久久久久人妻精品| 亚洲成人久久性| 人人妻人人澡人人看| 国产深夜福利视频在线观看| 国产区一区二久久| 国产xxxxx性猛交| 色尼玛亚洲综合影院| 男女做爰动态图高潮gif福利片 | 亚洲人成伊人成综合网2020| 亚洲精品一区av在线观看| 欧美黄色淫秽网站| 一区福利在线观看| 久久午夜综合久久蜜桃| 日本精品一区二区三区蜜桃| 日日爽夜夜爽网站| 极品教师在线免费播放| 在线十欧美十亚洲十日本专区| 国产精品 国内视频| 国产亚洲精品久久久久久毛片| 欧美色视频一区免费| 韩国精品一区二区三区| 国产精品亚洲av一区麻豆| av在线播放免费不卡| 久久午夜综合久久蜜桃| 日韩三级视频一区二区三区| 精品国产国语对白av| cao死你这个sao货| 久久精品91蜜桃| bbb黄色大片| 啦啦啦免费观看视频1| 黄色丝袜av网址大全| 国产91精品成人一区二区三区| 免费在线观看日本一区| 91成年电影在线观看| 美国免费a级毛片| 黑丝袜美女国产一区| 精品卡一卡二卡四卡免费| 天堂中文最新版在线下载| av免费在线观看网站| 亚洲五月婷婷丁香| 亚洲成人久久性| 桃色一区二区三区在线观看| 日本欧美视频一区| 在线播放国产精品三级| 亚洲av成人av| 看黄色毛片网站| 久久精品国产亚洲av高清一级| 一级黄色大片毛片| 精品熟女少妇八av免费久了| 国产男靠女视频免费网站| 亚洲精品国产一区二区精华液| 深夜精品福利| 色综合婷婷激情| 男女下面插进去视频免费观看| 在线观看免费视频日本深夜| 欧美日韩福利视频一区二区| 女人高潮潮喷娇喘18禁视频| 欧美另类亚洲清纯唯美| 欧美激情 高清一区二区三区| 精品高清国产在线一区| 18禁美女被吸乳视频| 日韩中文字幕欧美一区二区| 女警被强在线播放| 亚洲国产精品999在线| av天堂久久9| 淫秽高清视频在线观看| 亚洲一区中文字幕在线| 久久久久九九精品影院| 好男人电影高清在线观看| 狂野欧美激情性xxxx| 久久中文看片网|