• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    xF3(x,Q2)Structure Function and Gross-Llewellyn Smith Sum Rule with Nuclear E ff ect and Higher Twist Correction?

    2016-05-09 08:54:52NathMukharjeeDasandSarma
    Communications in Theoretical Physics 2016年12期

    N.M.Nath,A.Mukharjee,M.K.Das,and J.K.Sarma

    1Department of Physics,Rajiv Gandhi University,Rono Hills,Doimukh-791112,Arunachal pradesh,India

    2High Energy Physics Laboratory,Department of Physics,Tezpur University,Tezpur-784028,Assam,India

    1 Introduction

    Proper understanding of the DIS(deep inelastic scattering)structure of nucleon and associated sum rules is expected to o ff er an important opportunity to investigate Quantum Chromodynamics(QCD)as a theory of strong interaction and hence these are regarded as the objects of intensive investigation both theoretically and experimentally in recent years(see for example Ref.[1]and references therein).With the recent developments of dedicated experimental facilities significant progresses have been observed in the field of experimental investigation of structure functions.Simultaneously,in this regard,tremendous progress is observed in the field of theoretical investigation with a variety of theoretical approaches.

    Quantum Chromodynamics(QCD)is one of the most important theoretical approaches in order to account for the strong interaction processes observed at high energy particle colliders. However,the predictive power of QCD is limited. QCD is successful in describing Q2dependency of the structure functions in accord with DGLAP(Dokshitzer–Gribov–Lipatov–Altarelli–Parisi)evolution equations[2]in the perturbative regime i.e.,within the Bjorken limit(Q2?1,x fixed and not too small).However the most important region in DIS,which has attracted much interest recently is the small-x region,lies between the interface of Bjorken limit and the Regge limit.

    The DGLAP equation is a renormalisation group equation for the quarks and gluon inside hadron.It is one of the fundamental equations of perturbative quantum chromodynamics(pQCD),being central to all theoretical predictions for lepton-hadron colliders.Solutions of DGLAP equations give the Q2evolution of both the parton distribution functions as well as various structure functions.Although QCD predicts the Q2dependence of structure functions in accord with the DGLAP equations but they have limitations on absolute prediction of structure functions.DGLAP equations cannot predict the initial values from which the evolution starts,they can only predict the evolution of structure functions with Q2,once an initial distribution is given.Further,due to its complicated mathematical structure,an exact analytic determination of the structure functions is currently out of reach and one needs to apply approximated methods to arrive on predictions from the DGLAP equation.Accordingly several approximate numerical as well as semi-analytical methods for the solution of DGLAP equation have been discussed considerably over the past years(see Refs.[3–8]and references therein).

    In our previous paper Ref.[8],the small-x behaviour of xF3(x,Q2)structure function and the GLS sum rule was obtained by means of solving the DGLAP evolution equation using a Q2dependent Regge behaved ansatz as initial input with pQCD corrections upto next-next-to-leading order(NNLO).In accord with Ref.[8]the solutions,governing the small-x behaviour of xF3(x,Q2)structure function in LO,NLO,and NNLO are given by

    respectively,where the structure function xF3(x,t)is denoted by F(x,t)for nothing but simplicity,where t=ln(Q2/Λ2)and Λ is the QCD cut o ffparameter.Here

    in which the two loop and three loop correction terms to the splitting functions for non-singlet structure functions are given by[9]

    with

    Here the following abbreviations are used,

    The results for small-x behaviour of structure function in accord with Eqs.(1),(2),and(3)were observed to be consistent with the available experimental data taken from CCFR,[10?11]NuTeV,[12]CHORUS,[13]and CDHSW[14]collaborations as well as with several other strong analysis performed by MRST98,[15]CTEQ4,[16]KPS,[17]and KS[18]for xF3(x,Q2)structure functions.The phenomenological success achieved in this regard inspired us to utilise these results in determining the GLS sum rule,which is associated with xF3(x,Q2)structure function.

    Considering above relations for the small-x behaviour of xF3(x,Q2)structure function we obtained the GLS integral with LO,NLO,and NNLO corrections as respectively and they were also observed to be compatible with the CCFR[11]experimental data and KS[18]analysis.

    Detailed phenomenologicalanalysisperformed in Ref.[8]revealed that higher order pQCD corrections have a significant contribution towards the precise predictions of the structure functions as well as the sum rules.However recent analysis indicates that precise prediction of structure functions demand to incorporate several nonperturbative effects,in addition to pQCD corrections.There are several non-perturbative effects such as nuclear effects,higher twist effects,target mass corrections(TMC)etc.,to be incorporated into the joint QCD analysis of DIS structure functions and sum rules.However in accord with Ref.[19]the contribution due to TMC within the region of our consideration is neglected.In this paper we present an analysis of the NNLO results of xF3(x,Q2)structure function and the GLS sum rules taking into account the nuclear effects and Higher twist corrections.

    2 Nuclear Shadowing E ff ect inxF3(x,Q2)Structure Function and GLS Sum Rule

    2.1 Nuclear Shadowing E ff ect in xF3(x,Q2)Structure Function

    The fact that the structure functions of bound and free nucleons are not equal was discovered in a deep inelastic muon experiment carried out by the European Muon Collaboration at CERN in 1982.[20]Since then the nuclear effect has been actively investigated with ever more sophisticated and ingenious deep inelastic scattering experiment with charged leptons and neutrinos.

    Available experimental information on nuclear structure functions are mainly from charged-lepton DIS experiments performed at CERN,SLAC,DESY,FNAL and at JLab.In addition,data from the DrellYan reaction of protons o ffnuclear targets are also available.[21]The experiments usually measure the ratio R2(x,Q2)of the structure function F2(x,Q2)of a complex nucleus to deuterium.The studies on the behaviour of the ratio R2(x,Q2)as a function of x for a given fixed Q2re flects four distinct region of characteristic nuclear effects:shadowing region(x<0.1),anti-shadowing region(0.10.8).

    In addition to the charged-lepton DIS,neutrino DIS have also been a significant process for investigating the structures of hadrons and nuclei(see Refs.[22–28]and their references).Many ν-DIS experimental programmes,such as BEBC,[29]CDHS,[30]E545,[31]and,etc.,were carried out in order to have proper information about structure of nucleon,nuclear effect(EMC),mixing angle of weak interaction,etc. But none of them were able to confirm the EMC effect due to the presence of statistical uncertainties with the measurements. However it is expected that the measurements of differential cross-sections and structure functions in CCFR,[10?11]NuTeV,[12]CDHSW,[14]CHORUS,[13]and more recently in MINERvA,[32?33]through ν-DIS experiments would provide us better understanding about nuclear effect as well as internal structure of nucleon(see Ref.[34]for more details).

    Along with the experimental efforts,several groups have been performed theoretical as well as phenomenological analysis of the nuclear effects in neutrino-nucleus DIS.Among them most prominent are the Kulagin and Petti(KP),[22?24]Qiu and Vitev(QV),[25]and Hirai,Komano and Naga(HKN)groups,[26,35]which have predicted the nuclear corrections in the low x region.Kulagin and Petti’s approach is quite different from the above ones in the sense that they try to calculate the nuclear corrections in conventional nuclear models as far as they can,and then they try to attribute remaining factors to o ff-shell effects of bound nucleons for explaining the data.

    For simplicity,let us denote xF3(x,t)as F(x,t)and with this notation our results,Eq.(3),which predicts the xF3(x,Q2)structure functions for a nucleon(single or free)in NNLO pQCD corrections can be written as

    However in predicting the free nucleon structure functions,we need to consider the input point F(x0,t0),a free nucleon structure function at x=x0and t=t0.In our previous analysis performed in Ref.[8],the points were taken from the available experimental data.It is known that the experimental data for nucleon structure functions are extracted from nuclear targets and hence they are with several nuclear effects.Thus the experimental input points,we considered in our previous analysis are nothing but nuclear structure function FA(x0,t0),which in turn leads to inaccuracy in predicting free nucleon structure function.Therefore accurate prediction of free nucleon structure function requires a nuclear effect free input point.

    The experimental results are the structure functions for bound nucleon FA(x,t)which is related to the free nucleon structure function as

    Here FA(x,t)represents the nuclear structure function per nucleon and FN(x,t),the free nucleon structure function.At x=x0and t=t0,if we consider the value of the nuclear correction factor to be R(x,t)=R0,the input point in Eq.(17)can be replaced with FN(x0,t0)=FA(x0,t0)/R0and provides

    Above expression is capable of predicting the free nucleon structure function through the experimental data FA(x0,t0)along with the correction factor R0.

    Moreover,due to the unavailability of free nucleon structure function data,direct phenomenological analysis of Eq.(19)is not possible.In order to perform phenomenological analysis of our results with the experimental data either we need to remove nuclear effects from the data points or include the corresponding effects to our results of free nucleon.Here we have considered the later one,i.e.,we have incorporated the nuclear correction factor R(x)with our calculations as

    in order to describe properly the experimental results.

    In this paper we have utilised the results for the nuclear correction factor R(x)predicted in KP.[22]Incorporating the corresponding corrections to our calculations of F(x,t)structure function,we have obtained the nuclear structure function F(A)(x,t)and depicted them in Fig.1.Here we have shown only the modification of our NNLO results in comparison with CCFR,NuTeV,CHORUS and CDHSW experimental data.We observe that our results for free nucleon structure functions,along with nuclear effect predicted by KP provide a well description of available experimental data for nuclear structure functions.

    Fig.1 Our NNLO results for xF3(x,Q2)structure function with and without nuclear effect,in comparison with the CCFR[10]data.

    2.2 Nuclear Shadowing E ff ect in GLS Sum Rule

    Analogous to the structure functions,experimental determination of the DIS sum rules consists of considerable nuclear effects.As DIS sum rules are associated with the underlying symmetry as well as conservation laws of interactions,they provide strong normalization constraints on the structure functions.Therefore the sum rules are expected to provide an important bridge between different nuclear effects.In this section we brie fly discuss the nuclear effects in GLS sum rule based on several earlier analysis.We then incorporate possible nuclear corrections to our results Eq.(16)for GLS sum rule,obtained in the previous paper[8]and perform phenomenological analysis in comparison with the experimental measurements.

    Experimental measurements of GLS sum rule was performed by CCFR and the results were extracted from Fe target.In order to compare our results for GLS sum rule obtained in Ref.[8],we refer the nuclear corrections estimated in Refs.[23–24].The detailed investigation on the nuclear corrections to GLS sum rule was performed in Ref.[23].They explicitly separated the nuclear corrections to the GLS integral as,whererefers to the GLS integral for nucleon.In accord with their predictions,the nuclear corrections to the GLS sum rule cancel out as x→0 in the leading order,which is due to the baryon charge conservation.They have also calculated the GLS integral,SGLSfor different nuclear targets.In Ref.[23],they obtained the corrections for iron and deuteron nuclei asandrespectively.In Ref.[23]they have nicely presented their result in Fig.10.From Fig.10 we observe that the nuclear correction δGLSdecreases progressively by increasing Q2.

    The GLS sum rule for nuclei can be expressed as

    where the first term on the right hand side of above equation represents the GLS sum rule for free nucleon and the second term for the nuclear correction.Using the NNLO pQCD corrected expression(16)aswe get

    for the nuclear correction term,we have calculatedand depicted the results in Fig.2,in comparison with CCFR measurements of GLS sum rule with Fe as the target.In addition,we have plotted our NNLO results and the results of KS[18]prediction.From the figure we see that the our NNLO expression for GLSSR along with necessary nuclear correction has the capability of describing the experimental data of GLSSR for nuclei.

    Now incorporating the KP[23?24]prediction

    Fig.2 Our NNLO results for Gross–Llewelln Smith sum rule with and without nuclear effect,in comparison with those of CCFR measurements.(Q2’s are taken in the unit of GeV2).

    3 Higher Twist Corrections on Structure Functions

    The behaviour of the deep inelastic structure functions can be analyzed with the perturbative QCD.A method used for this analysis is the operator product expansion method(OPE).[36]The OPE is successful in describing the contributions from different quark-gluon operators to hadronic tensor and helps in ordering them according to their twist.In accord with OPE,the DIS structure functions and sum rules consist of two parts,the leading twist(LT)and the higher twist(HT)contributions:

    where i labels the type of the structure function(F=F2,F3,g1).The leading twist term is associated with the single particle properties of quarks and gluons inside the nucleon and is responsible for the scaling of DIS structure function via perturbative QCD αs(Q2)corrections.The higher twist terms re flect instead the strength of multiparton interactions(qq and qg).Since such interactions spoil factorization one has to consider their impact on the parton distribution functions extracted in the analysis of low-Q2data.Because of the non-perturbative origin it is difficult to quantify the magnitude and shape of the higher twist terms from first principles and current models can only provide a qualitative description for such contributions,which must then be determined phenomenologically from data.

    The higher twist terms are governed by the terms contributing at different orders of 1/Q2:

    the leading term in this expansion is known as twisttwo,the sub-leading ones twist-three,etcetera. The higher twist terms are suppressed by terms of order 1/Q2,1/Q4,...,respectively.

    The currently available experimental measurements of deep inelastic structure functions cover a wide range of x and Q2with ever increasing precision,which lead to an interesting challenge for theoretical physics in describing these data in the low-Q2domain.pQCD predictions,even with higher order corrections up to NNLO and NNNLO observed to be not sufficient for a precise description of deep inelastic structure function data,which in turn reveals that the discrepancy among data and pQCD predictions are not primarily the sub-leading terms in powers of αs,but corrections which are proportional to the reciprocal value of the photon virtuality Q2,viz.higher-twist terms.[37]

    The extraction of higher twist terms from the data is a longstanding problem,as recognized from the very first developments of a pQCD phenomenology.[38?39]Existing information about higher twist terms in lepton-nucleon structure functions is scarce and somewhat controversial.Early analysis[40?41]suggested a significant HT contribution to the longitudinal structure function FL.The subsequent studies with both charged leptons[42?44]and neutrinos[17]raised the question of a possible dependence on order of QCD calculation used for the leading twist.The common wisdom is generally that HTs only a ff ect the region of Q2~ (1?3)GeV2and can be neglected in the extraction of the leading twist.

    The higher twist terms are presently poorly known and currently are a subject of both theoretical and phenomenological studies(see Ref.[45]and the references therein).A better understanding of HT terms,in particular their role in describing low Q2and high x DIS data is important and provides valuable information on quark gluon correlations inside the nucleon.The importance of higher twist(HT)contribution to structure functions was pointed from the very beginning of QCD in comparison with experimental data[38]on structure functions.Several reports are available on the determination of the higher twist contributions in the electron-DIS structure functions(x,Q2)(see Refs.[46–48]for details)as well as neutrino-DIS structure function xF3(x,Q2).[49?53]Further,in general the higher twist corrections are also present in the case of polarized deeply inelastic scattering.But in this regard as the polarized structure functions are predicted in terms of an asymmetry,the effect of higher twist corrections in the denominator function needs to be known accurately.However,in Ref.[54]no signi ficant higher twist contributions were found.On the other hand some authors predicted(see for example Ref.[55])existence of higher twist contributions in the low x region,which is also the region of very low values of Q2.

    The usual approach in analyses whose main aim is the extraction of leading twist PDFs is either to parametrize the higher twist contributions by a phenomenological form and fit the parameters to the experimental data,[56?57]or to extract the Q2dependence by fitting it in individual bins in x.[44,46?47,58?59]Such an approach effectively includes contributions from multiparton correlations(the true higher twist contributions)along with other power corrections that are not yet part of the theoretical treatment of DIS at low Q2.These include O(1/Q2)contributions such as jet mass corrections[60]and soft gluon resummation,[61]as well as contributions which are of higher order in αsbut whose logarithmic Q2behavior mimics terms∝1/Q2at low virtuality.[47,62]

    In the following subsections we present a simple model in order to extract the higher twist contribution to xF3(x,Q2)structure function and GLS sum rule,along with comment on the phenomenological implications of our results.

    3.1 Higher Twist in xF3(x,Q2)Structure Functions

    In order to estimate the higher twist contribution to the xF3(x,Q2)structure function,we have performed an analysis based on a simple model.Here the first higher twist term is extracted and to do so we have parameterised the non-singlet structure functions as

    Here leading twist(LT)term corresponds to the pQCD contribution to structure functions and the constants h1(xi)(one per x-bin)parameterize the x dependence of higher twist contributions.For the leading twist term,we have utilised the results for the non-singlet structure functions obtained in our previous paper.[8]Incorporating our results for non-singlet structure functions in NNLO as the LT terms we have extracted the difference,from their corresponding experimental data and then fitted with h1(xi)/Q2.From the best fitting values,we have determined the higher twist contribution terms hiper x-bin.In this analysis we have performed our fitting analysis within the kinematical region 0.0125≤x≤0.5 and 1 GeV2≤Q2≤20 GeV2.

    Incorporating the NNLO result(3)as the LT term,we have fitted the parametrization(25)with the CCFR,NuTeV,CHORUS and CDHSW data for the x-bins xi=0.0125,0.015,0.0175,0.025,0.035,0.045.Best fitted values of h1at different values of x are presented in Table 1 along with the χ2/d.o.f.value.

    Table 1 Higher Twist corrections to xF3(x,Q2)structure function at NNLO.

    Fig.3 Higher twist corrections to xF3(x,Q2)structure function at NNLO.(Q2’s are taken in the unit of GeV2).

    In Fig.3 we have presented the best fitting results of Eq.(25)for xF3(x,Q2)in comparison with CCFR experimental data.Here both the NNLO results,with HT and without HT are shown.Significant higher twist contribution to xF3(x,Q2)structure function is observed in the low-x,low-Q2region.We observe that our expressions along with the HT corrections provide better description of CCFR data than without HT within our kinematical region of consideration.

    3.2 Higher Twist E ff ect in Gross-Llewellyn Smith Sum Rule

    In the previous subsection,the higher twist effects in xF3(x,Q2)structure function is estimated by means of a simple model.We now extend the similar formalism in order to extract the higher twist contribution to the GLS sum rule associated with the xF3(x,Q2)structure function.Here we have parameterized the sum rule as

    Here leading twist(LT)term corresponds to the pQCD contribution to the GLS sum rule andμ4signifies the contribution from first higher twist term.Incorporating the results in accord with our NNLO prediction,Eq.(16)in Eq.(26),we have fitted the expression with the available CCFR experimental data for GLSSR.The corresponding value ofμ4for which best fitting is obtained in NNLO are summarised in Table 2 along with the respective χ2/d.o.f values and in Fig.4 the results for GLS sum rule with and without HT are depicted.We observe that our expressions along with the HT corrections provide better description of experimental data for GLS sum rule.

    Table 2 Higher Twist corrections to GLS sum rule at NNLO.

    Fig.4 Higher twist corrections to GLS sum rule at NNLO.(Q2’s are taken in the unit of GeV2).

    4 Conclusion

    In this paper we present an analysis of the xF3(x,Q2)structure function and GLS sum rule taking into account the nuclear effect and higher twist effect.In this regard,special attention is given to the nuclear shadowing effect as we are mostly concerning with the small-x region.Incorporating the results of corrections due to shadowing nuclear effect obtained in earlier analysis for xF3(x,Q2)structure function as well as GLS sum rule to our results of the structure functions and sum rules for free nucleon,we obtain structure functions and sum rules for nuclei.Nuclear correction incorporated results are studied phenomenologically and it is observed that along with the nuclear correction,our NNLO results of the xF3(x,Q2)structure functions and GLS sum rule have the capability of providing well description of their respective experimental data collected using nuclear target.In addition,we have extracted the higher twist contributions to both the xF3(x,Q2)structure functions and GLS sum rule using a simple model and it is observed that our NNLO expressions for xF3(x,Q2)structure function and GLS sum rules along with the higher twist corrections provide well description of their respective experimental data.

    [1]J.Blümlein,Prog.Part.Nucl.Phys.69(2013)28;A.De Roeck and R.S.Thorne,Prog.Part.Nucl.Phys.66(2011)727;A.M.Cooper-Sarkar,et al.,Int.J.Mod.Phys.A 13(1998)3385;M.Janbazi,N.Ghahramany,and E.Pourjafarabadi,Eur.Phys.J.C 74(2014)2718;N.Ghahramany,R.Khosravit,and S.Janipour,Phys.Part.Nucl.Lett.11(2014)186;C.Ayala and S.V.Mikhailov,Phys.Rev.D 92(2015)014028.

    [2]V.N.Gribov and L.N.Lipatov,Sov.J.Nucl.Phys.15(1972)438;L.N.Lipatov,Sov.J.Nucl.Phys.20(1975)94;Y.L.Dokshitzer,Sov.Phys.JETP 46(1977)641;G.Altarelli and G.Parisi,Nucl.Phys.B 126(1977)297.

    [3]R.Toldra,Comput.Phys.Commun.143(2002)287.

    [4]N.Cabibbo and R.Petronzio,Nucl.Phys.B 137(1978)395.

    [5]M.Gluck,E.Reya,and A.Vogt,Z.Phys.C 48(1990)471.

    [6]G.R.Boroun,J.Exp.Theor.Phys.106(2008)700.

    [7]P.K.Dhar and D.K.Choudhury,Indian J.Phys.87(2013)1041.

    [8]N.M.Nath,M.K.Das,and J.K.Sarma,Indian J.Phys.90(2016)117.

    [9]S.Moch,et al.,Nucl.Phys.B 688(2004)101;R.T.Herrrod and S.Wada,Phys.Lett.B 96(1980)195.

    [10]W.G.Seligman,et al.,Phys.Rev.Lett.79(1997)1213

    [11]W.C.Leung,et al.,Phys.Lett.B 317(1993)655.

    [12]M.Tzanov,et al.,Phys.Rev.D 74(2006)012008.

    [13]G.Onengut,et al.,Phys.Lett.B 632(2006)65.

    [14]J.P.Berge,et al.,Z.Phys.C 49(1991)187.

    [15]A.D.Martin,R.G.Roberts,W.J.Stirling,and R.S.Thorne,Eur.Phys.J.C 4(1998)463.

    [16]H.L.Lai,et al.,Phys.Rev.D 55(1997)1280.

    [17]A.L.Kataev,G.Parente,and A.V.Sidorov,Nucl.Phys.B 573(2000)405.

    [18]A.L.Kataev and A.V.Sidorov,Phys.Lett.B 331(1994)179.

    [19]J.Blümlein,et al.,Nucl.Phys.B 774(2007)182.

    [20]J.J.Aubert,et al.,Phys.Lett.B 123(1983)275.

    [21]D.M.Alde,,et al.,Phys.Rev.Lett.64(1990)2479;M.A.Vasilev,et al.,Phys.Rev.Lett.83(1999)2304;G.Moreno,et al.,Phys.Rev.D 43(9)(1991)2815.

    [22]S.A.Kulagin and R.Petti,Nucl.Phys.A 765(2006)126.

    [23]S.A.Kulagin and R.Petti,Phys.Rev.D 76(2007)094023.

    [24]S.A.Kulagin and R.Petti,Nucl.Phys.A 640(1998)435.

    [25]J.W.Qiu and I.Vitev,Phys.Lett.B 587(2004)52.

    [26]M.Hirai,et al.,Phys.Rev.C 70(2004)044905.

    [27]J.Nieves,EPJ Web of Conf.116(2016)11011.

    [28]S.Gollapinni,arXiv:1602.05299v1[hep-ex](2016).

    [29]A.M.Cooper,et al.,Phys.Lett.B 141(1984)133.

    [30]H.Abramowicz,et al.,Z.Phys.C 25(1984)29.

    [31]J.Hanlon,et al.,Phys.Rev.D 32(1985)2441.

    [32]P.A.Rodrigues,et al.,Phys.Rev.Lett.116(2016)071802.

    [33]J.Mousseau,et al.,Phys.Rev.D 93(2016)071101(R).

    [34]C.G.Duan,G.L.Li,and P.N.Shen,Eur.Phys.C 48(2006)125.

    [35]M.Hirai,et al.,Phys.Rev.C 76(2007)065207.

    [36]K.G.Wilson,Phys.Rev.179(1969)1499;E.V.Shuryak and A.I.Vainshtein,Nucl.Phys.B 199(1982)451.

    [37]J.Bartels and C.Bontus,arXiv:hep-ph/9908411[hep-ph](1999).

    [38]L.F.Abbott and R.M.Barnett,Ann.Phys.125(1980)276;L.F.Abbott,et al.,Phys.Rev.D 22(1980)582;R.M.Barnett,Phys.Rev.Lett.48(1982)1657.

    [39]A.De.Rujula,et al.,Ann.Phys.103(1977)315.

    [40]J.L.Miramontes,et al,.Phys.Rev.D 40(1989)2184.

    [41]L.W.Whitlow,et al.,Phys.Lett.B 250(1990)193.

    [42]M.Virchaux and A.A.Milsztajn,Phys.Lett.B 274(1992)221.

    [43]U.K.Yang and A.Bodek,Eur.Phys.J.C 13(2000)241.

    [44]S.I.Alekhin,Phys.Rev.D 68(2003)014002.

    [45]M.J.Glatzmaier,S.Mantry,and M.J.Ramsey-Musolf,Phys.Rev.C 88(2013)025202.

    [46]M.Virchaux and A.A.Milsztajn,Phys.Lett.B 274(1992)221.

    [47]J.Blümlein and H.B?ttcher,Phys.Lett.B 662(2008)336.

    [48]J.Blümlein and H.B?ttcher,arXiv:0807.0248[hep-ph].

    [49]I.S.Barker,et al.,Z.Phys.C 19(1983)147;I.S.Barker and B.R.Martin,Z.Phys.C 24(1984)255.

    [50]J.Chyla and A.L.Kataev,Phys.Lett.B 297(1992)385.

    [51]A.L.Kataev,et al.,Phys.Lett.B 417(1998)374.

    [52]S.I.Alekhin and A.L.Kataev,Phys.Lett.B 452(1999)402.

    [53]A.L.Kataev,et al.,Nucl.Phys.Proc.Suppl.79(1999)93.

    [54]J.Blümlein and H.B?ttcher,Nucl.Phys.B 636(2002)225.

    [55]E.Leader,et al.,Phys.Rev.D 73(2006)034023.

    [56]S.Alekhin,et al.,AIP Conf.Proc.967(2007)215.

    [57]J.Pumplin,et al.,J.High Energy Phys.2002(2002)012

    [58]A.D.Martin,et al.,Eur.Phys.J.C 35(2004)325.

    [59]A.D.Martin,et al.,Phys.Lett.B 443(1998)301.

    [60]A.Accardi and J.W.Qiu,J.High Energy Phys.2008(2008)090.

    [61]S.Schaefer,et al.,Phys.Lett.B 514(2001)284.

    [62]S.Alekhin,Phys.Lett.B 488(2000)187.

    99热这里只有精品一区| 国产亚洲最大av| 国产黄色免费在线视频| www.av在线官网国产| 一个人看的www免费观看视频| 免费看a级黄色片| 日本猛色少妇xxxxx猛交久久| 一区二区三区乱码不卡18| 99热6这里只有精品| 十八禁国产超污无遮挡网站| 日韩国内少妇激情av| 2022亚洲国产成人精品| 精品一区在线观看国产| 日韩一区二区三区影片| 日韩成人伦理影院| 午夜日本视频在线| 精品不卡国产一区二区三区| 亚洲国产精品sss在线观看| av一本久久久久| 男人爽女人下面视频在线观看| 日韩欧美国产在线观看| 九九在线视频观看精品| 久久久久久久久久黄片| 在线 av 中文字幕| 国产成人精品一,二区| 国产高清不卡午夜福利| 3wmmmm亚洲av在线观看| 欧美激情在线99| 成人鲁丝片一二三区免费| 久久久久久久久中文| 国产免费一级a男人的天堂| 高清日韩中文字幕在线| 2021少妇久久久久久久久久久| 中文字幕免费在线视频6| 国产伦在线观看视频一区| 亚洲av中文av极速乱| 天堂√8在线中文| 婷婷色综合www| 国产亚洲av片在线观看秒播厂 | 1000部很黄的大片| 久久久久精品性色| 亚洲人成网站在线观看播放| 亚洲真实伦在线观看| 成人特级av手机在线观看| 在线 av 中文字幕| 免费av观看视频| 久久精品人妻少妇| 国产精品女同一区二区软件| 99久国产av精品| 熟妇人妻久久中文字幕3abv| 肉色欧美久久久久久久蜜桃 | 亚洲av男天堂| 国产高清三级在线| 国产高清国产精品国产三级 | 亚洲精品乱久久久久久| 综合色丁香网| 熟妇人妻不卡中文字幕| 大香蕉久久网| 免费av毛片视频| 午夜福利在线观看吧| 伊人久久国产一区二区| 永久免费av网站大全| 日本猛色少妇xxxxx猛交久久| 亚洲国产精品成人久久小说| 国产色婷婷99| 永久免费av网站大全| 国产国拍精品亚洲av在线观看| 18禁裸乳无遮挡免费网站照片| 亚洲不卡免费看| 熟妇人妻久久中文字幕3abv| 亚洲美女视频黄频| 高清欧美精品videossex| 久久久久久久亚洲中文字幕| 久久精品人妻少妇| 久久97久久精品| 亚洲av不卡在线观看| www.av在线官网国产| 成人国产麻豆网| 成人午夜高清在线视频| 亚洲国产成人一精品久久久| 高清午夜精品一区二区三区| 亚洲国产欧美人成| 在线免费观看不下载黄p国产| 国产在线男女| 婷婷色综合大香蕉| 美女内射精品一级片tv| 国产色婷婷99| 自拍偷自拍亚洲精品老妇| 国产精品女同一区二区软件| 日日啪夜夜爽| 国产有黄有色有爽视频| 国产精品日韩av在线免费观看| 51国产日韩欧美| 18+在线观看网站| 日韩人妻高清精品专区| 嫩草影院新地址| 欧美极品一区二区三区四区| 亚洲国产高清在线一区二区三| 免费电影在线观看免费观看| 国产精品国产三级专区第一集| 国产欧美另类精品又又久久亚洲欧美| 一本一本综合久久| 日韩成人伦理影院| www.色视频.com| 日韩欧美精品免费久久| 国产激情偷乱视频一区二区| 免费观看a级毛片全部| 69av精品久久久久久| 啦啦啦啦在线视频资源| 成人亚洲精品av一区二区| 日本猛色少妇xxxxx猛交久久| 国产精品久久久久久精品电影| 亚洲内射少妇av| 一级a做视频免费观看| 最近中文字幕高清免费大全6| 一区二区三区免费毛片| 99热6这里只有精品| 久久久久久久国产电影| 日韩视频在线欧美| 欧美激情国产日韩精品一区| 国产成人精品福利久久| 亚洲欧美一区二区三区黑人 | 黄色一级大片看看| 国产高潮美女av| 亚洲精品日韩av片在线观看| 免费不卡的大黄色大毛片视频在线观看 | 天堂网av新在线| 中文资源天堂在线| 国产在视频线精品| 亚洲最大成人av| 亚洲高清免费不卡视频| 欧美成人一区二区免费高清观看| 亚洲四区av| 精品久久久久久成人av| 国产色婷婷99| 国产成人午夜福利电影在线观看| 免费看av在线观看网站| 国产av码专区亚洲av| 亚洲美女搞黄在线观看| 男插女下体视频免费在线播放| 欧美日韩亚洲高清精品| 免费av毛片视频| 边亲边吃奶的免费视频| 精品久久久久久久人妻蜜臀av| 亚洲在久久综合| 身体一侧抽搐| 午夜久久久久精精品| 国模一区二区三区四区视频| 婷婷色麻豆天堂久久| 免费av毛片视频| 蜜桃久久精品国产亚洲av| 亚洲欧美中文字幕日韩二区| 日本黄色片子视频| 国产免费又黄又爽又色| 免费观看在线日韩| 激情 狠狠 欧美| 亚洲av不卡在线观看| 亚洲国产高清在线一区二区三| 97在线视频观看| 一级av片app| av天堂中文字幕网| 听说在线观看完整版免费高清| 欧美 日韩 精品 国产| 在线a可以看的网站| 亚洲av成人av| 亚洲av不卡在线观看| 免费观看在线日韩| 亚洲av电影在线观看一区二区三区 | 久久99热这里只频精品6学生| av线在线观看网站| 日产精品乱码卡一卡2卡三| 丝袜美腿在线中文| 国产欧美日韩精品一区二区| 精品国产三级普通话版| 久久久色成人| 一级爰片在线观看| 国产成人精品福利久久| eeuss影院久久| 久久6这里有精品| 国产色爽女视频免费观看| 亚洲精品日韩在线中文字幕| 国产在视频线精品| 久久鲁丝午夜福利片| 最近最新中文字幕免费大全7| 少妇人妻精品综合一区二区| 欧美日韩综合久久久久久| 久久久久久国产a免费观看| 国产一级毛片在线| 久久热精品热| 18禁在线无遮挡免费观看视频| 大又大粗又爽又黄少妇毛片口| 免费看a级黄色片| 能在线免费看毛片的网站| 亚洲人成网站在线观看播放| 97超视频在线观看视频| 亚洲精品456在线播放app| 熟女电影av网| 日日干狠狠操夜夜爽| 男女那种视频在线观看| 日本色播在线视频| 日韩亚洲欧美综合| 免费大片黄手机在线观看| 久久人人爽人人爽人人片va| 熟妇人妻不卡中文字幕| 久久99精品国语久久久| 在现免费观看毛片| 国产白丝娇喘喷水9色精品| 国产亚洲午夜精品一区二区久久 | 麻豆成人av视频| 99热网站在线观看| 亚洲av不卡在线观看| 边亲边吃奶的免费视频| 丰满少妇做爰视频| www.av在线官网国产| 国产成人福利小说| 国产色爽女视频免费观看| 亚洲欧美精品专区久久| 男人和女人高潮做爰伦理| 人妻一区二区av| 色吧在线观看| 亚洲av不卡在线观看| ponron亚洲| 少妇猛男粗大的猛烈进出视频 | 午夜福利高清视频| 六月丁香七月| 日韩,欧美,国产一区二区三区| av又黄又爽大尺度在线免费看| 成人鲁丝片一二三区免费| 寂寞人妻少妇视频99o| 在线观看美女被高潮喷水网站| 免费黄频网站在线观看国产| 五月伊人婷婷丁香| 非洲黑人性xxxx精品又粗又长| av天堂中文字幕网| 国产高清有码在线观看视频| 午夜精品一区二区三区免费看| 1000部很黄的大片| 国产精品av视频在线免费观看| 中国国产av一级| 色视频www国产| 亚洲天堂国产精品一区在线| 亚洲最大成人中文| 国产极品天堂在线| 少妇的逼好多水| 乱系列少妇在线播放| 男女那种视频在线观看| 欧美区成人在线视频| 黄片无遮挡物在线观看| 精品久久久久久久久av| 少妇猛男粗大的猛烈进出视频 | 国产综合懂色| 久久99蜜桃精品久久| 能在线免费看毛片的网站| 色5月婷婷丁香| 国产亚洲91精品色在线| 极品少妇高潮喷水抽搐| 在线观看一区二区三区| 天堂俺去俺来也www色官网 | 成人午夜高清在线视频| 欧美日本视频| 国产成人免费观看mmmm| 亚洲久久久久久中文字幕| 汤姆久久久久久久影院中文字幕 | 人人妻人人澡人人爽人人夜夜 | 中文字幕久久专区| 日韩大片免费观看网站| 亚洲av在线观看美女高潮| 蜜臀久久99精品久久宅男| 午夜福利视频1000在线观看| 老司机影院毛片| 综合色丁香网| 欧美高清成人免费视频www| 日韩大片免费观看网站| 亚洲不卡免费看| 国产黄频视频在线观看| 韩国av在线不卡| 永久网站在线| 亚洲综合精品二区| 看免费成人av毛片| 在线观看美女被高潮喷水网站| 日韩欧美国产在线观看| 寂寞人妻少妇视频99o| 高清av免费在线| 午夜福利视频1000在线观看| 蜜桃久久精品国产亚洲av| 免费黄频网站在线观看国产| av福利片在线观看| 日本一二三区视频观看| 少妇熟女aⅴ在线视频| 精品久久久久久久久av| 国产精品熟女久久久久浪| 免费观看精品视频网站| 亚洲欧美精品专区久久| videossex国产| 小蜜桃在线观看免费完整版高清| 亚洲精品日韩在线中文字幕| 色播亚洲综合网| 成人美女网站在线观看视频| 人人妻人人澡欧美一区二区| 日日摸夜夜添夜夜爱| 久久久久久久久中文| 亚洲国产欧美在线一区| 国产 一区 欧美 日韩| 亚洲熟女精品中文字幕| 午夜精品在线福利| 亚洲无线观看免费| 亚洲欧美日韩无卡精品| 亚洲综合精品二区| 午夜免费男女啪啪视频观看| 国产欧美日韩精品一区二区| av国产免费在线观看| 午夜精品在线福利| 在线播放无遮挡| 久久99蜜桃精品久久| 亚洲最大成人av| 人妻系列 视频| 久久久精品免费免费高清| 26uuu在线亚洲综合色| 国产淫片久久久久久久久| 亚洲欧美日韩东京热| 中国国产av一级| 精品国内亚洲2022精品成人| 亚洲内射少妇av| 又爽又黄a免费视频| 精品国产三级普通话版| 欧美成人午夜免费资源| 亚洲欧洲国产日韩| 中文字幕制服av| 蜜臀久久99精品久久宅男| 国产黄色视频一区二区在线观看| 在线观看av片永久免费下载| 人妻少妇偷人精品九色| 一区二区三区高清视频在线| 国产精品美女特级片免费视频播放器| 成人毛片a级毛片在线播放| 日本欧美国产在线视频| 两个人的视频大全免费| 国产精品一区www在线观看| 三级国产精品欧美在线观看| 男人和女人高潮做爰伦理| 日本免费在线观看一区| 99久久精品国产国产毛片| 九九在线视频观看精品| 久久国内精品自在自线图片| 午夜福利在线观看免费完整高清在| 性色avwww在线观看| 老司机影院毛片| 嫩草影院入口| 99视频精品全部免费 在线| 毛片一级片免费看久久久久| 亚洲色图av天堂| 一区二区三区四区激情视频| 伦精品一区二区三区| 成人特级av手机在线观看| 大又大粗又爽又黄少妇毛片口| 亚洲av免费在线观看| 最近最新中文字幕大全电影3| 菩萨蛮人人尽说江南好唐韦庄| 狠狠精品人妻久久久久久综合| 婷婷色综合大香蕉| 亚洲精品乱码久久久v下载方式| 少妇被粗大猛烈的视频| 国产精品伦人一区二区| 久久99精品国语久久久| 婷婷色av中文字幕| 精品人妻视频免费看| 免费黄色在线免费观看| 午夜福利在线在线| 天堂俺去俺来也www色官网 | 91久久精品国产一区二区成人| 日韩国内少妇激情av| 嫩草影院新地址| 天天一区二区日本电影三级| 一夜夜www| 一个人看视频在线观看www免费| 最近视频中文字幕2019在线8| 人人妻人人看人人澡| 日韩强制内射视频| 赤兔流量卡办理| 亚洲国产欧美人成| 成人综合一区亚洲| 国产精品三级大全| 日韩成人伦理影院| av在线播放精品| 国产成人freesex在线| 免费观看性生交大片5| 国产精品99久久久久久久久| 校园人妻丝袜中文字幕| 网址你懂的国产日韩在线| 卡戴珊不雅视频在线播放| 熟妇人妻久久中文字幕3abv| 免费观看性生交大片5| 岛国毛片在线播放| 最后的刺客免费高清国语| 久久久久久久久久人人人人人人| 毛片女人毛片| 国产精品综合久久久久久久免费| 久久精品国产亚洲网站| av免费观看日本| 亚洲精品国产av蜜桃| 国产真实伦视频高清在线观看| 极品教师在线视频| 九九久久精品国产亚洲av麻豆| 国产在视频线在精品| 色吧在线观看| 精品亚洲乱码少妇综合久久| 美女大奶头视频| 午夜激情福利司机影院| 亚洲欧美精品自产自拍| 久久综合国产亚洲精品| 国产免费又黄又爽又色| 男女下面进入的视频免费午夜| 国产成人aa在线观看| 人体艺术视频欧美日本| 禁无遮挡网站| 肉色欧美久久久久久久蜜桃 | 一本久久精品| 午夜免费观看性视频| 久久精品久久久久久噜噜老黄| 国产视频内射| 国产成人精品久久久久久| 69av精品久久久久久| 久久亚洲国产成人精品v| 2018国产大陆天天弄谢| 精品久久久久久久久久久久久| 91av网一区二区| 午夜福利成人在线免费观看| 色吧在线观看| 久久久精品免费免费高清| 欧美性猛交╳xxx乱大交人| 日本熟妇午夜| 亚洲国产最新在线播放| 亚洲精品aⅴ在线观看| 国产中年淑女户外野战色| 国产三级在线视频| 久久精品国产亚洲av天美| av免费在线看不卡| a级一级毛片免费在线观看| 一级二级三级毛片免费看| 免费大片黄手机在线观看| 97热精品久久久久久| 身体一侧抽搐| 久久99热6这里只有精品| av国产免费在线观看| 亚洲国产精品国产精品| 亚洲av福利一区| 国产在线男女| 久久97久久精品| 人体艺术视频欧美日本| 最近2019中文字幕mv第一页| 美女大奶头视频| 亚洲国产精品国产精品| 一级a做视频免费观看| 国产午夜精品论理片| 亚洲欧美日韩卡通动漫| 你懂的网址亚洲精品在线观看| 国产老妇伦熟女老妇高清| freevideosex欧美| 午夜精品国产一区二区电影 | 成人特级av手机在线观看| 内射极品少妇av片p| 国产高清有码在线观看视频| 肉色欧美久久久久久久蜜桃 | 国产精品一区www在线观看| 国产三级在线视频| 国产乱人偷精品视频| 2018国产大陆天天弄谢| 欧美激情国产日韩精品一区| 欧美成人一区二区免费高清观看| 日韩欧美 国产精品| 国产精品国产三级国产专区5o| 国产一区二区在线观看日韩| 亚洲人成网站高清观看| 欧美性猛交╳xxx乱大交人| 成年版毛片免费区| 亚洲国产色片| 日本色播在线视频| 男女那种视频在线观看| 听说在线观看完整版免费高清| 国产精品.久久久| 99久久精品国产国产毛片| 亚洲av中文av极速乱| 亚洲精品国产av蜜桃| 国产精品人妻久久久影院| 免费av观看视频| 一个人观看的视频www高清免费观看| 亚洲第一区二区三区不卡| 丰满少妇做爰视频| 97超碰精品成人国产| 日本熟妇午夜| 亚洲最大成人av| 可以在线观看毛片的网站| 一边亲一边摸免费视频| 小蜜桃在线观看免费完整版高清| a级毛片免费高清观看在线播放| 少妇的逼水好多| 在线免费观看的www视频| 别揉我奶头 嗯啊视频| 色综合亚洲欧美另类图片| 高清毛片免费看| 高清日韩中文字幕在线| 十八禁国产超污无遮挡网站| 亚洲av福利一区| 精品亚洲乱码少妇综合久久| 男女下面进入的视频免费午夜| 国产91av在线免费观看| 久久精品夜夜夜夜夜久久蜜豆| 高清毛片免费看| 国产成人91sexporn| 亚洲精品一区蜜桃| 日日撸夜夜添| 观看免费一级毛片| 日本wwww免费看| 国产精品伦人一区二区| 91aial.com中文字幕在线观看| 少妇人妻精品综合一区二区| 国产永久视频网站| 人妻少妇偷人精品九色| 国产精品综合久久久久久久免费| av女优亚洲男人天堂| 午夜福利网站1000一区二区三区| 在现免费观看毛片| 91久久精品电影网| 女的被弄到高潮叫床怎么办| 国产精品人妻久久久影院| 亚洲,欧美,日韩| 亚洲综合精品二区| 亚洲自拍偷在线| 十八禁国产超污无遮挡网站| 日本免费a在线| 肉色欧美久久久久久久蜜桃 | 中文在线观看免费www的网站| av一本久久久久| 欧美最新免费一区二区三区| 韩国av在线不卡| 久久久久久久久大av| 欧美日本视频| 美女cb高潮喷水在线观看| 免费高清在线观看视频在线观看| 老师上课跳d突然被开到最大视频| 中国国产av一级| 全区人妻精品视频| 国产亚洲一区二区精品| 日韩三级伦理在线观看| 免费看光身美女| 精品一区二区三区视频在线| 国产一区二区在线观看日韩| 国产伦精品一区二区三区四那| av卡一久久| 婷婷色麻豆天堂久久| 日韩欧美国产在线观看| 久久综合国产亚洲精品| 国内精品美女久久久久久| 特大巨黑吊av在线直播| 久久久国产一区二区| 欧美激情久久久久久爽电影| 国产人妻一区二区三区在| 久久久久精品久久久久真实原创| 欧美变态另类bdsm刘玥| 欧美xxxx黑人xx丫x性爽| 只有这里有精品99| 亚洲在线自拍视频| 国产黄片视频在线免费观看| 1000部很黄的大片| 亚洲美女搞黄在线观看| 激情 狠狠 欧美| 亚洲电影在线观看av| 嘟嘟电影网在线观看| 天堂√8在线中文| 伦理电影大哥的女人| 水蜜桃什么品种好| 99热网站在线观看| 熟妇人妻久久中文字幕3abv| 男人爽女人下面视频在线观看| 日韩精品有码人妻一区| 人人妻人人看人人澡| 国产在视频线精品| 日本午夜av视频| 亚洲av中文字字幕乱码综合| 精品久久久精品久久久| av播播在线观看一区| 亚洲三级黄色毛片| 亚洲高清免费不卡视频| 国产精品福利在线免费观看| 精品一区二区三卡| 六月丁香七月| 街头女战士在线观看网站| 天堂网av新在线| 久久韩国三级中文字幕| 国产亚洲5aaaaa淫片| 欧美一级a爱片免费观看看| 卡戴珊不雅视频在线播放| 亚洲精品久久久久久婷婷小说| 久久久久久久亚洲中文字幕| 国产免费视频播放在线视频 | 国产久久久一区二区三区| 综合色av麻豆| 高清午夜精品一区二区三区| 国产精品蜜桃在线观看| 91久久精品国产一区二区三区| 亚洲国产高清在线一区二区三| 亚洲国产成人一精品久久久| 狂野欧美激情性xxxx在线观看| 你懂的网址亚洲精品在线观看| 亚洲国产成人一精品久久久| 国产高清国产精品国产三级 | 夫妻性生交免费视频一级片| 美女高潮的动态| 午夜激情久久久久久久| av福利片在线观看| 免费看日本二区| 男女国产视频网站| 国产免费福利视频在线观看| 亚洲图色成人| 天美传媒精品一区二区|