• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multiple Quantum Coherences(MQ)NMR and Entanglement Dynamics in the Mixed-Three-Spin XXX Heisenberg Model with Single-Ion Anisotropy

    2016-05-09 08:54:44HamidArianZad
    Communications in Theoretical Physics 2016年12期

    Hamid Arian Zad

    Young Researchers and Elite Club,Mashhad Branch,Islamic Azad University,Mashhad,Iran

    1 Introduction

    Low-dimensional Heisenberg spin models have been studied from both theoretical and experimental points of view in the last decades due to an interplay of strong quantum fluctuations and topology and many interesting quantum phenomena have been investigated for these models.[1?12]Quantum systems possess some additional correlations so that one can not find any classical counterpart for them.One of those correlations,called entanglement and it is probably one of the most amazing features of quantum mechanics.[13?16]Understanding the nature of entanglement has almost been a central issue in the discussion of the foundation of quantum information theory,where recently,it has been proved that entanglement can be appeared naturally at low temperature quantum spin chains.A great deal of attention has been attracted to the problem of disentanglement of the two-qubit quantum system in a finite time.Yu and Eberly[17?18]named entanglement sudden death(ESD)to the process of earlystage disentanglement and numerous research studies have been carried out in this issue.[19]

    The concurrence as a measure of entanglement for an arbitrary bipartite quantum system AB was precisely introduced by Wootters.[20?21]Nonzero amount of the concurrence denotes that the parts A and B are entangled.Minimum amount of the concurrence C(AB)=0 corresponds to a separable state for the system and its maximum C(AB)=1 corresponds to a maximally entangled state.Entanglement also can be detected by means of a so-called entanglement witness(EW).[14?15,22?23]With characterizing separable state ρs(AB)and entangled state ρe(AB)for the bipartite quantum system,we can introduce a hermitian operator W as an entanglement witness(EW)such that Tr[Wρs(AB)]≥ 0 for all separable states,and Tr[Wρe(AB)]<0,which represents the existence of at least an entangled state in the circumstance,which the system is therein.

    Mixed-spin systems with different exchange coupling constants have already been receiving an increasing amount of attention in the past few years.[24?29]Diamond chains as attractive structures among these spin models were exactly investigated from quantum correlations,phase diagrams and etc.view points.[30?34]In our previous works,we investigated the pairwise entanglement for the bipartite(sub)systems of the mixed-threespin(1/2,1,1/2)system in thermal equilibrium,[26?27]and then explained some magnetic properties,phase transitions,also,some entanglement witnesses were introduced.In the present work,we investigate pairwise entanglement and multiple quantum(MQ)NMR dynamics in the such mixed-three-spin(1/2,1,1/2)cell of a greater mixed-N-spin chain with XXX Heisenberg model in the thermal equilibrium state for which the nearest spins(1,1/2)have coupling constant J1and the spins(1/2,1/2)have coupling constant J2,moreover,a single-ion anisotropy property is considered for spin-1.

    The method of MQ NMR dynamics in solids is so useful instrument for investigating of the solids struc-tures and dynamical processes(such as spin dynamics)therein.[35?38]Correlations between parts of the quantum systems lead to turning MQ coherences up,therefore,as it has already been proved[39]we can detect the MQ coherences in spin chains by this method.[35,40?41]Also in the corresponding mentioned references and some references therein,it was shown that MQ NMR allows us to find a relationship between the intensities of the MQ coherence of the zeroth and second orders and some measures of the quantum entanglement such as concurrence and quantum discord,[42]which are valuable resources of the quantum information processing.

    Heretofore,many papers have been devoted to verify the MQ NMR dynamics for a one-dimensional two nuclear spin-1/2 system consisting dipole-dipole permanently interaction(DDI)in the thermal equilibrium and their main purpose isfinding a good relationship between this phenomenon and entanglement dynamics of such system.[43?46]For promoting this purpose,in the present paper we develop a phenomenological theory of a mixed-three-spin(1/2,1,1/2)XXX Heisenberg model in the MQ NMR experiment at low temperatures and calculate the zeroth and second orders MQ coherences in the preparation period by using the reduced density matrices of the pair spins(1,1/2)and spins(1/2,1/2).Then,we obtain the time evolution concurrences and fidelities for both spin pairs.Finally,we do some remarkable comparisons between these measures of entanglement and MQ coherences of the zeroth and second orders of any pairs and express some new outcomes.

    2 Physical System and Theoretical Settings

    2.1 Spin Hamiltonian of the Mixed-Three-Spin(1/2,1,1/2)XXX Heisenberg Model

    We introduce the Hamiltonian of the selected mixedthree-spin anti-ferromagnetic XXX Heisenberg model in the vicinity of an external homogeneous magnetic field B,as the following form

    where

    M is the number of triangular cells,and we here consider M=1 also,=Bzthat denotes a homogeneous magnetic field applied in the z-direction.Note that,all of the introduced parameters B,ζ,J1and J2(also temperature T in the follows)are considered dimensionless.

    Eigenvectors of the Hamiltonian are

    where{|↑i,|↓i}are Szup and down states with eigenvalues 1/2 and?1/2 respectively.are Jzup,null,and down states with eigenvalues 1,0,–1 respectively.

    And its eigenvalues are

    In the standard qubit-qutrit basis states,we can characterize the total density matrix of the mixed-three-spin system in thermal equilibrium,by using Eq.(1)in the form

    where β=1/T(we have setted kB=1)for which T is the temperature and Z=Tr[exp(?βH)]is the partition function of the system.Hence,the density matrix of the any pair of spins can be written as

    where T1and T2are partial trace over basis states of the first and the second spins respectively. {α,δ,?,η,δ,ξ,Σ,λ,γ}and{μ,κ,?,χ,ν}are functions of T,B,ζ,J2,and J1.

    2.2 Concurrence

    The concurrence that is a measure of entanglement,can be defined for bipartite spin systems[20?21]as

    where λ =max{λ1,λ2,...,λk}(k=4 for the spins(1/2,1/2)and k=6 for the spins(1,1/2))and λiare square roots of the eigenvalues of the inner product R=ρ?ρ,with spin- flip density matrix=(σy?σy)ρ?(σy?σy)for the spins(1/2,1/2),and=(jy?σy)ρ?(jy?σy)for the spins(1,1/2),where σyand jyare spin- flip operators and ρ?denotes the complex conjugation of the reduced density matrix ρ.

    2.3 Fidelity

    The fidelity is defined as the amount of statistical overlap between two distributions.Suppose that|ψi and|?i are two quantum states.The fidelity can be obtained from the inner product of such states|h?|ψi|2,which gives us amount of the overlapping between them.[24,41,47]

    Let ρ =|ψihψ|and ρ′=|?ih?|be density matrices of these states,hence the fidelity can be characterized as

    Now,suppose that those states are pure,i.e.,ρ2= ρ and ρ′2= ρ′,therefore,andhence F(ρ,ρ′)=|h?|ψi|.From this one can realize that,0 ≤ F(ρ,ρ′) ≤ 1.F(ρ,ρ′)=1 denotes the both states are the same state and case F(ρ,ρ′)=0 denotes there is no overlap whatsoever.

    In the case where operators ρ and ρ′commute with each other,they are diagonal in the same basis states socalled|qii,hence,we can write the fidelity in terms of the eigenvalues of these operators.If we rewrite ρ and ρ′in terms of the basis states|qii with probabilities uiand viin the k-dimensional Hilbert space as

    then,we can easily gain the fidelity from the eigenvalues uiand vias

    3 MQ NMR Dynamics of the Spins(1,1/2)and the Spins(1/2,1/2):Coherences Intensities at Low Temperature

    At first,we consider MQ NMR experiment on the both aforementioned spins(1,1/2)and spins(1/2,1/2)with anti-ferromagnetic XXX Heisenberg model in an external homogeneous magnetic field B=Bzat low temperature T.At initial time τ=0 it is assumed that both(sub)systems be in the thermal equilibrium with general reduced density matrices introduced in Eq.(6).

    There are schematically four distinct periods of time:preparation,evolution,mixing,and detection for the standard MQ NMR experiments.[39]MQ coherences are created by the multi-pulse sequence consisting of eight-pulse cycles on the preparation period.In the rotating reference frame,MQ dynamics in spin systems during the preparation period can be governed by the averaged non-secular Hamiltonian HMQas

    We introduce this operator for the bipartite(sub)systems(1,1/2)and(1/2,1/2)in the next.

    3.1 Bipartite(sub)system(1,1/2)

    According to Eq.(11),we characterize 6×6 matrix HMQfor the pair spins(1,1/2)as

    where J+=(1/2)(Jx+iJy)and σ+=(1/2)(σx+iσy)are raising operators of the spin-1 and spin-1/2 respectively,and J?=(1/2)(Jx? iJy)and σ?=(1/2)(σx? iσy)are lowering one withAt the end of the preparation period,the density matrix of the pair spins(1,1/2),is given by

    where U(τ)=exp[?iHMQτ].

    The two-spin Hamiltonian HMQcan be diagonalized in the representation of standard basisby means of its eigenvalues and the transformation operator(columns from left to right as corresponding eigenvectors)

    Hence,at the end of the preparation period the density matrix ρ23(τ)may be written as

    The intensities of MQ coherences of the zeroth order are lonely determined by the real part of the density matrix ρ23(τ),while,the intensities of MQ coherences of the second order are determined by the imaginary part of Eq.(15).Assume thatbe spectral intensities of order n as

    here,the intensities of MQ coherences of the zeroth order,and the plus/minus second orders,can be expressed as

    which by referring to Eq.(2),matrix representation ofis derived by taking the partial trace with respect to the first spin-1/2 of 12×12 matrix IWith a straightforward calculation one can find that the intensities of MQ coherences of the minus second order and the plus second order,are equal.However,in the experimental environment,there are some certain errors,which lead to measurement results for G?2(τ)and G+2(τ)not be the same.For more accuracy of these intensities and approaching experimental results to theoretical ones,we will use the sum of MQ coherences of the plus/minus second order G?2(τ)+G+2(τ).It is also worth to notice that in the usual MQ NMR experiments,the sum of the intensities of all MQ coherences does not depend on time,i.e.,

    3.2 Bipartite(sub)System(1/2,1/2)

    Here,we repeat the above statements for the pair spins(1/2,1/2).Again by using Eq.(11),we start characteriz-ing 4×4 matrix HMQfor the pair spins(1/2,1/2)as

    At the end of the preparation period,reduced density matrix ρ13(τ),is given by

    By diagonalizing corresponding Hamiltonian HMQin the representation of standard basis{|↑↑i,|↑↓i,|↓↑i,|↓↓i}using transformation operator

    at the end of the preparation period,the density matrix ρ13(τ)will be evolved to

    where,by using Eqs.(21)and(23),one can find that for the spins(1/2,1/2)

    here,the intensities of MQ coherences of the zeroth orderand plus/minus second orderscan be expressed as

    4 Numerical Analysis of the MQ NMR Intensities,Concurrences and Fidelities

    After exact numerical calculations,we derived the intensities of MQ coherences of the zeroth and plus/minus second orders,concurrences and fidelities of the spins(1,1/2)and spins(1/2,1/2)at low temperature β=5,strong magnetic field B=4 and fixed values of J1=7π/5,J2=1 and ζ=5.Then,we compared them with each other and obtained novel results,which are expressed in this section.

    In the considered region,we found that some components of the reduced density matrices Eq.(6)at initial time τ=0 are effectless in our calculations.For better understanding the subject,we depict matrix plots of the reduced density matrices at mentioned fixed values of the temperature,the magnetic field,the coupling constants and the single-ion anisotropy in Fig.1.So,we delete these components and use solely the must effective ones.Those are,{α,δ,?,??,η}for the spins(1,1/2)and{μ,κ,?,??,χ}for the spins(1/2,1/2).Indeed,those components are effective,which make first 1×1 and second 2×2 blocks on the density matrices diagonal.

    Fig.1(Color online)Matrix plot of the density matrices introduced in Eq.(6),at low temperature β=5,strong magnetic field B=4 and fixed values of the coupling constants J1=7π/5,J2=1 and the single-ion anisotropy parameter ζ=5 for;(a)the pair spins(1/2,1/2);(b)the pair spins(1,1/2).

    4.1 Bipartite(sub)System(1,1/2)

    Using Eqs.(7),(10),(15),and(18),we depict the time dependence of the concurrence C(ρ23(τ)), fidelities F0=F(ρ23(τ),and F2=F(ρ23(τ),and the intensities of MQ coherences of the zeroth and second orders for the pair spins(1,1/2),at low temperature β=5,strong magnetic field B=4 and fixed values of J1=7π/5,J2=1 and ζ=5 in Fig.2.With regard to thisfigure,the concurrence as a measure of the pairwise entanglement is maximum at initial time τ=0 and by passing time,it decreases and reaches its first minimum at timethen periodically changes versus time with a spacial period.Fidelity F0is also maximum at τ=0 and periodically changes with the period of time almost the same for the concurrence.The behaviour of this quantity versus time is very similar to the concurrence.But on the other hand, fidelity F2is minimum at initial time τ=0 tain its position upto timeat which the concurrence and F0are minimum.and reaches its maximum at timeand will almost main-

    Fig.2 (Color online)The time dependence of the concurrence C(ρ23(τ))×10(grey cross-diagonal curve), fidelities F0×10 and F2×10(respectively,black dotted and long-dashed lines),and intensities of the MQ coherences of the zeroth order(gold solid line)and second order(blue dot-dashed line)for the spins(1,1/2),at low temperature β=5,strong magnetic field B=4 and fixed values of J1=7π/5,J2=1,and ζ=5.

    Moreover,in thisfigure it is clear that,the intensity of MQ coherence of the zeroth orderat initial time τ=0 is maximum and in the contrary,is miniand reaches its maximum value at timewhile simultamum.With pass of the time τ,initially increases neously,decreases and reaches its first minimum.

    From these statements,one can precisely recognize that the period of the multi-pulse sequence at the preparation period of the concurrence and fidelities is double one for the intensities of the MQ NMR coherence.One can also verify the entanglement dynamics of the(sub)system via investigating the fidelitywhich denotes the amount of statistical overlap between two distributions ρ23(τ)andAnother interesting quantum phenomenon,which occurs versus time for this(sub)system,is the synchrony maxima of the fidelity F2and the intensity of the MQ coherence of the second ordernamely,when two distributions ρ23(τ)andhave maximum overlapping together atandthe intensity of the MQ coherence of the second orderis maximum.As it is explicitly seen,the behaviour of the fidelity F2is inverse the concurrence,in order words,when F2is maximum the concurrence becomes minimum,which denotes separable state for the(sub)system,and when F2reaches minimum the concurrence is maximum,which denotes state of the(sub)system is an entangled state.However since,the fidelity is a number that is ranged between 0 andone can use F2as a measure of pairwise entanglement for the spins(1,1/2)and detect separable states from entangled states.

    Finally,as a new outcome from our investigation,it is suitable to introduceas a pairwise entanglement witness for the bipartite(sub)system(1,1/2)at certain time intervaland also another time intervals in which even maxima ofarise.Indeed,by referring the entanglement witness definition and inspecting Fig.2,we can see that the intensity of the MQ coherence of the zeroth orderis negative sometimes,which the concurrence is non zero.And it has maximum positive value atwhich the concurrence is vanished.Here,we can claim thatis positive for a convex set of separable states and is negative for at least an entangled state in the considered time intervals.

    Fig.3 (Color online)Contour plots of the time dependence of the MQ coherence of the zeroth order×10?1for the spins(1,1/2),at low temperature β =5,strong magnetic field B=4 and fixed values of J2=1 and ζ=5,versus the coupling constant J1for regions;(a)0≤ J1≤ 7π/5 and 0≤ τ≤ 10;(b)0≤ J1≤ 7π/10 and 0≤τ≤5.

    It is more interesting to investigate the intensity of the MQ coherence of the zeroth orderwith respect to time τ and the coupling constant J1.With change of J1(here,we consider special interval 0≤ J1≤ 7π/5),another ignored components of the density matrix of the spins(1,1/2)in Eq.(6)are involved in calculations,and they must be taken into account.We show contour plots of the time dependence ofwith respect to the coupling constant J1in Fig.3.As illustrated in Fig.3(a),the time dependence ofis very sensitive to the coupling constant J1,this is means that by increasing J1,the period ofis gradually changed.Indeed,the behaviour ofis similar to a 3-D sinusoidal wave,which its period depends on the two variable time and J1.For more simplicity,we divide the figure into four parts:(i)In region 0≤ J1≤ 7π/10 and 0≤ τ≤ 5,with the pass of time τ and increasing J1,the period ofis gradually restricted;(ii)In region 7π/10 ≤ J1≤ 7π/5 and 5 ≤ τ≤ 10,with the pass of time τ and increasing J1,its period be gradually expanded;(iii)In region 0≤ J1≤ 7π/10 and 5≤ τ≤ 10,with the pass of time τ and decreasing J1,the period ofis also gradually expanded and finally;(iv)In region 7π/10≤ J1≤ 7π/5 and 0≤ τ≤ 5,with the pass of time τ and decreasing J1,the period is gradually restricted.These restrictions and expansions are more clearly shown in Fig.3(b)for part(I)of the above division.

    Fig.4 (Color online)The coupling constant J1dependence offor the spins(1,1/2)at low temperature β=5,strong magnetic field B=4 and fixed values of J2=1 and ζ=5 for various fixed values of the time τ.

    We are now interested into introduce a fantastic quantum phenomenon that can be lonely occurred for the intensity of the MQ coherence of the zeroth orderfor J1>7π/5.This phenomenon is similar to the entanglement death,which was introduced in Refs.[7,26](also review Refs.[48–49]),and can be named “entanglement witness death”.Figure 4 depicts this phenomenon explicitly.With regard to thisfigure in detail,one can see that by the pass of time from τ=≈ 0.11 to τ=5,all amplitudes depending on the coupling constant J1restrict to the up and down solid-line curves related to times τ=≈0.11 and τ=≈0.25 respectively,and also,by increasing J1,the time-dependent amplitude damping ofoccurs,until at a unique point in the interval 5.5

    4.2 Bipartite(sub)System(1/2,1/2)

    Using Eqs.(7),(10),(24),and(27),we show the time dependence of the concurrence C(ρ13(τ)), fidelities F0=F(ρ13(τ),and F2=F(ρ13(τ),and the intensities of MQ coherences of the zeroth and second orders for the spins(1/2,1/2),at low temperature β=5,strong magnetic field B=4 and fixed values of J1=7π/5,J2=1,and ζ=5 in Fig.5.

    Fig.5 (Color online)The time dependence of the concurrence C(ρ13(τ))× 10(grey cross-diagonal curve), fidelities F0×10,and F2×10(respectively,black dotted and long-dashed lines),and the intensities of the MQ coherences of the zeroth order (gold solid line)and second order (blue dot-dashed line)for the pair spins(1/2,1/2),at low temperature β=5,strong magnetic field B=4 and fixed values of J2=1,J1=7π/5 and ζ=5.

    As before in here,the intensity of the MQ coherence of the zeroth orderis maximum at initial time τ=0,whileis minimum.With the pass of time,decreases and reaches its first minimum value after timewhereas,arises from zero and reaches its first maximum value at the same time.Also,the fidelities behaviour is similar to that one for the spins(1,1/2),namely,at initial time τ=0,F0=F(ρ13(τ),is maximum but F2=F(ρ13(τ),is minimum.Interestingly,the periodical behaviour of the fidelity F2and the intensity of the MQ coherence of the second orderversus time τ are the same.In conclusion,when two distributions ρ13(τ)andhave maximum overlapping together at(and all the next period times at which F2is maximum),the intensity of the MQ coherence of the second orderis maximum.Here,for the considered region of the temperature and the magnetic field,the concurrence C(ρ13(τ))has a permanent value C(ρ13(τ))× 10 ≈ 0.12.

    5 Discussion and Conclusions

    We have investigated in detail,both the MQ NMR and the pairwise entanglement dynamics of the Heisenberg spin chains studied in the previous works in to a mixedthree-spin(1/2,1,1/2)XXX Heisenberg model with singleion anisotropy property,at low temperature and strong magnetic field,from the theoretical and numerical perspectives.The fidelity was verified for both(sub)systems(1,1/2)and(1/2,1/2)as well.Also,some useful comparisons have been down between them.After investigations,we have obtained some interesting outcomes,which are listed in the follows:

    (i) For the(sub)system(1,1/2)with the coupling constant J1,the time dependence of the fidelity F0=F(ρ23(τ),behaves similar to the time dependence of the concurrence C(ρ23(τ)),but the time dependence of the fidelity F2=F(ρ23(τ)behaves almost contrariwise the time dependence of the concurrence.In conclusion,one can investigate the pairwise entanglement dynamics of this(sub)system by verifying the time dependence of the fidelities F0and F2.

    (ii) When the fidelity F2reaches its first and second maximum,becomes maximum simultaneously,meanwhile,becomes minimum one time when F2evolves from its first maximum to the second one.This means that,when two distributions ρ23(τ)andhave maximum overlapping together,the intensity of the MQ coherence of the second order is maximum,on the other hand,when F2vanishes,is zero.

    (iii)By comparing the dynamics of the pairwise entanglement and the intensity of the MQ NMR coherence of the zeroth order by means of functions C(ρ23(τ))andone can realize that,in some special intervals of the time τbehaves as a pairwise entanglement witness,therefore,he can use it for detecting some entangled states for this(sub)system.

    Moreover,we have investigated the time dependence of the MQ coherence of the zeroth order versus J1.We expressed that changes of J1is very effective on the timedependent periodical behaviour ofUltimately,we concluded that for all times between intervalfor interval 4≤J1≤6,increment of the coupling constant J1leads to the amplitude damping in the oscillations ofAll amplitudes specially restricted to the curves at times τ≈and τ≈Hence,one can interpret this interesting quantum phenomenon as a pairwise entanglement witness death.The considered values of the parameters for investigating the(sub)systems can be changed and another intervals obtained.

    Finally,we have used the definition of the MQ NMR and pairwise entanglement dynamics for the pair spins(1/2,1/2)with the coupling constant J2.We found that,the behaviour of MQ coherences of the zeroth and second ordersandare opposite.The fidelitybehaviour is more analogous the concurrence thanOn the other hand,the fidelity F2behaviour is similar to the MQ coherence of the second orderAnd since,the fidelity is a kind of measure of how similar the two states are or how much overlap there is between them,we realized that when two distributions ρ13(τ)andhave maximum overlapping together,the MQ coherence of the second orderis maximum,and when the overlap between them is minimum(F2=0)vanishes simultaneously.

    In this paper we restricted ourselves to a finite chain with mixed-three-spin(1/2,1,1/2)of a large mixed-N-spin chain,and because it is generally difficult to simulate a spin chain with large length(many body system),on the other hand,small-size systems can be good options to achieve some information about large-size systems.Fortunately,small-size cells of a large-size spin diamond chain can also depict some predictable properties of the large-size chain such as the thermal,the magnetic and the quantum correlation properties.Investigating the MQ NMR dynamics in the considered mixed-three-spin system with another Heisenberg models and also additional interactions such as Dzyaloshinskii–Moriya interaction and etc.,may be more stimulating and new windows might be opened on the quantum information processing science.However,if one investigates such model whether with longer chain of spins or added other mentioned options,his/her obtained results must be compatible with our results and interpretations in this paper.

    [1]G.L.Kamta and A.F.Starace,Phys.Rev.Lett.88(2002)107901.

    [2]P.Barmettler,M.Punk,V.Gritsev,E.Demler,and E.Altman,New J.Phys.12(2010)055017.

    [3]X.Y.Feng,G.M.Zhang,and T.Xiang,Phys.Rev.Lett.98(2007)087204.

    [4]D.Peters,I.P.McCulloch,and W.Selke,Phys.Rev.B 79(2009)132406.

    [5]S.J.Gu,H.Li,Y.Q.Li,and H.Q.Lin,Phys.Rev.A 70(2004)052302.

    [6]T.Werlang,C.Trippe,G.A.Ribeiro,and G.Rigolin,Phys.Rev.Lett.105(2010)095702.

    [7]T.Yu and J.H.Eberly,Science 323(2009)598.

    [8]G.f.Zhang and S.S.Li,Phys.Rev.A 72(2005)034302.

    [9]M.S.Sarandy,Phys.Rev.A 80(2009)022108.

    [10]G.Vidal,J.I.Latorre,E.Rico,and A.Kitaev,Phys.Rev.Lett.90(2003)227902.

    [11]R.Vosk and E.Altman,Phys.Rev.Lett.112(2014)217204.

    [12]H.A.Zad and H.Movahhedian,Int.J.Quant.Inf.14(2016)1650020.

    [13]G.F.Zhang,Z.T.Jiang,and A.Abliz,Ann.Phys.326(2011)867.

    [14]R.Horodecki,P.Horodecki,M.Horodecki,and K.Horodecki,Rev.Mod.Phys.81(2009)865.

    [15]K.Modi,A.Brodutch,H.Cable,T.Paterek,and V.Vedral,Rev.Mod.Phys.84(2012)1655.

    [16]F.M.Paula,J.D.Montealegre,A.Saguia,T.R.D.Oliveira,and M.S.Sarandy, Europhysics Lett.103(2013)50008.

    [17]J.H.Eberly and T.Yu,Science 316(2007)555.

    [18]T.Yu and J.H.Eberly,Science 323(2009)598.

    [19]Z.X.Man,Y.J.Xia,and N.B.An,Eur.Phys.J.D 53(2009)229;Z.X.Man,Y.J.Xia,and N.B.An,New J.Phys.12(2010)033020;Z.X.Man,Y.J.Zhang,F.Su,and Y.J.Xia,Eur.Phys.J.D 58(2010)147.

    [20]W.K.Wootters,Phys.Rev.Lett.80(1998)2245.

    [21]W.K.Wootters,Quant.Infor.Comput.1(2001)27.

    [22]M.r.Dowling,A.C.Doherty,and S.D.Bartlett,Phys.Rev.A 70(2004)062113.

    [23]W.Laskowski,M.Markiewicz,T.Paterek,and R.Weinar,Phys.Rev.A 88(2013)022304.

    [24]Z.Sun,X.M.Lu,H.N.Xiong,and J.Ma,New J.Phys.11(2009)113005.

    [25]N.B.Ivanov,Condens.Matt.Phys.12(2009)435.

    [26]H.A.Zad,Acta Phys.Pol.B 46(2015)1911.

    [27]H.A.Zad,Chin.Phys.B 25(2016)030303.

    [28]S.Yamamoto and H.Hori, Phys.Rev.B 72(2005)054423.

    [29]R.Jafari and A.Langari,Int.J.Quant.Inf.9(2011)1057.

    [30]N.b.Ivanov,J.Richter,and J.Schulenburg,Phys.Rev.B 79(2009)104412.

    [31]O.Rojas,S.M.D.Souza,V.Ohanyan,and M.Khurshudyan,Phys.Rev.B 83(2011)094430.

    [32]N.S.Ananikian,L.N.Ananikyan,L.A.Chakhmakhchyan,and O.Rojas,J.Phys.Condens.Matt.24(2012)256001.

    [33]S.D.Han and E.Aydiner, Chin.Phys.B 23(2014)050305.

    [34]O.Rojas,M.Rojas,N.S.Ananikian,and S.M.D.Souza,Phys.Rev.A 86(2012)042330.

    [35]W.Zhang,P.Cappellaro,N.Antler,et al.,Phys.Rev.A 80(2009)052323.

    [36]E.B.FeldmanandA.N.Pyrkov,arXiv:1110.0991v1[quant-ph].

    [37]S.I.Doronin,A.V.Fedorova,E.B.Feldman,and A.I.Zenchuk,J.Chem.Phys.131(2009)104109.

    [38]A.Shukla,arXiv:1601.00234v1[quant-ph].

    [39]J.Baum,M.Munovitz,A.N.Garroway,and A.Pines,J.Chem.Phys.83(1985)2015.

    [40]S.I.Doronin,Phys.Rev.A 68(2003)052306.

    [41]K.Rama,K.Rao,and A.Kumar,arXiv:1109.1954v1[quant-ph].

    [42]E.I.Kuznetsova and A.I.Zenchuk,Phys.Lett.A 376(2012)1029.

    [43]E.B.Feldman and A.N.Pyrkov,JETP Lett.88(2008)398.

    [44]G.B.Furman,V.M.Meerovich,and V.L.Sokolovsky,Quantum Inf.Process 8(2009)379.

    [45]G.b.Furman,arXiv:0811.0716v1[cond-mat.other].

    [46]S.I.Doronin,E.b.Feldman,and A.I.Zenchuk,JETP 113(2011)495.

    [47]H.N.Xiong,J.Ma,Y.Wang,and X.Wang,J.Phys.A:Math.Theor.42(2009)065304.

    [48]L.Mazzola,S.Maniscalco,J.Piilo,K.A.Suominen,and B.M.Garraway,Phys.Rev.A 79(2008)042302.

    [49]Z.Ficek and R.Tanas,Phys.Rev.A 77(2008)054301.

    女性被躁到高潮视频| 成在线人永久免费视频| 交换朋友夫妻互换小说| 永久免费av网站大全| 美女大奶头黄色视频| 欧美xxⅹ黑人| 久久国产精品大桥未久av| 老汉色av国产亚洲站长工具| 欧美激情极品国产一区二区三区| 亚洲中文av在线| www.av在线官网国产| 99国产综合亚洲精品| 国产一区二区激情短视频 | av电影中文网址| 99国产精品一区二区三区| 国产深夜福利视频在线观看| 日韩,欧美,国产一区二区三区| 亚洲av日韩在线播放| 91成人精品电影| 18禁国产床啪视频网站| tocl精华| 国产成人免费无遮挡视频| 久久久久久免费高清国产稀缺| 日韩欧美一区二区三区在线观看 | 精品人妻一区二区三区麻豆| 19禁男女啪啪无遮挡网站| 欧美精品一区二区免费开放| 看免费av毛片| 在线观看www视频免费| 久久久欧美国产精品| 母亲3免费完整高清在线观看| 狂野欧美激情性xxxx| 女人爽到高潮嗷嗷叫在线视频| 日本猛色少妇xxxxx猛交久久| 不卡av一区二区三区| 久久久国产欧美日韩av| 欧美xxⅹ黑人| 欧美另类一区| 国产无遮挡羞羞视频在线观看| 亚洲成人国产一区在线观看| 这个男人来自地球电影免费观看| 国产片内射在线| 成年人午夜在线观看视频| 国产日韩欧美在线精品| 老鸭窝网址在线观看| 成人国产av品久久久| 两性午夜刺激爽爽歪歪视频在线观看 | 极品少妇高潮喷水抽搐| 成年美女黄网站色视频大全免费| 一本—道久久a久久精品蜜桃钙片| 欧美日韩国产mv在线观看视频| 乱人伦中国视频| 免费高清在线观看日韩| 亚洲第一欧美日韩一区二区三区 | 秋霞在线观看毛片| 十八禁网站网址无遮挡| e午夜精品久久久久久久| 99九九在线精品视频| 极品少妇高潮喷水抽搐| 国产精品久久久久久人妻精品电影 | svipshipincom国产片| 欧美日韩精品网址| 久久亚洲国产成人精品v| 嫁个100分男人电影在线观看| www.熟女人妻精品国产| 美女视频免费永久观看网站| 十八禁网站网址无遮挡| av片东京热男人的天堂| 国产精品久久久久成人av| tube8黄色片| 亚洲性夜色夜夜综合| 精品熟女少妇八av免费久了| 夜夜夜夜夜久久久久| 午夜久久久在线观看| 午夜日韩欧美国产| 黑人巨大精品欧美一区二区mp4| 国产在线观看jvid| 1024视频免费在线观看| 国产日韩一区二区三区精品不卡| 每晚都被弄得嗷嗷叫到高潮| 女人久久www免费人成看片| 后天国语完整版免费观看| 人人妻人人添人人爽欧美一区卜| av线在线观看网站| 国产福利在线免费观看视频| 国产人伦9x9x在线观看| 少妇粗大呻吟视频| 久久中文字幕一级| 欧美一级毛片孕妇| 欧美日韩av久久| 国产免费av片在线观看野外av| 肉色欧美久久久久久久蜜桃| 美女主播在线视频| 我要看黄色一级片免费的| 97精品久久久久久久久久精品| 亚洲国产毛片av蜜桃av| 视频在线观看一区二区三区| 亚洲色图综合在线观看| 日韩欧美国产一区二区入口| 精品福利永久在线观看| 久久热在线av| 日韩欧美国产一区二区入口| 亚洲黑人精品在线| 国产一区二区 视频在线| 老司机靠b影院| 国产在线免费精品| 国产男人的电影天堂91| 国产精品久久久久久精品古装| 黄色视频不卡| 中文精品一卡2卡3卡4更新| 下体分泌物呈黄色| 国产一区二区三区综合在线观看| 可以免费在线观看a视频的电影网站| 色老头精品视频在线观看| 少妇被粗大的猛进出69影院| 男人操女人黄网站| 无限看片的www在线观看| 免费少妇av软件| 亚洲精华国产精华精| 两个人看的免费小视频| 国产亚洲av片在线观看秒播厂| 久久中文字幕一级| 伦理电影免费视频| 韩国精品一区二区三区| 久久久久久久久久久久大奶| 久久午夜综合久久蜜桃| 日韩欧美国产一区二区入口| 色精品久久人妻99蜜桃| 国产1区2区3区精品| 女人高潮潮喷娇喘18禁视频| 最近最新免费中文字幕在线| 99国产精品99久久久久| 久久国产精品男人的天堂亚洲| 亚洲精华国产精华精| 我的亚洲天堂| 巨乳人妻的诱惑在线观看| 一级,二级,三级黄色视频| 天堂8中文在线网| 亚洲全国av大片| 欧美激情高清一区二区三区| 一级毛片电影观看| 久久久久久人人人人人| av网站免费在线观看视频| 久久影院123| 女人被躁到高潮嗷嗷叫费观| 91av网站免费观看| 午夜免费鲁丝| 巨乳人妻的诱惑在线观看| 亚洲精品久久久久久婷婷小说| 精品国内亚洲2022精品成人 | 欧美日韩国产mv在线观看视频| 美女中出高潮动态图| a在线观看视频网站| 国精品久久久久久国模美| 日本91视频免费播放| av网站免费在线观看视频| 人人妻人人添人人爽欧美一区卜| 久久国产精品男人的天堂亚洲| 亚洲精品久久久久久婷婷小说| 黄色毛片三级朝国网站| 午夜福利乱码中文字幕| 日本一区二区免费在线视频| 久久久久国产精品人妻一区二区| 成人亚洲精品一区在线观看| 国产人伦9x9x在线观看| 精品亚洲乱码少妇综合久久| cao死你这个sao货| 黄色a级毛片大全视频| 纯流量卡能插随身wifi吗| 国产亚洲精品久久久久5区| 国产精品 欧美亚洲| 丝袜在线中文字幕| 最近最新中文字幕大全免费视频| 中文字幕av电影在线播放| av线在线观看网站| 母亲3免费完整高清在线观看| xxxhd国产人妻xxx| 欧美在线黄色| 久久性视频一级片| 9191精品国产免费久久| 两个人免费观看高清视频| 免费观看a级毛片全部| 亚洲自偷自拍图片 自拍| 少妇被粗大的猛进出69影院| 日韩大片免费观看网站| 国产视频一区二区在线看| 久久精品人人爽人人爽视色| 欧美国产精品一级二级三级| 国产成+人综合+亚洲专区| 免费黄频网站在线观看国产| 欧美日韩视频精品一区| 手机成人av网站| 久久久久精品人妻al黑| www.精华液| 午夜视频精品福利| 最新的欧美精品一区二区| 亚洲成人手机| 国产一卡二卡三卡精品| 亚洲第一欧美日韩一区二区三区 | 女人高潮潮喷娇喘18禁视频| 成人黄色视频免费在线看| 我要看黄色一级片免费的| 人妻一区二区av| 国产av又大| 丰满人妻熟妇乱又伦精品不卡| 国产无遮挡羞羞视频在线观看| 丝袜美腿诱惑在线| 一级毛片女人18水好多| 精品一区二区三卡| 国产一区二区在线观看av| 一级a爱视频在线免费观看| 亚洲精品国产精品久久久不卡| 大片电影免费在线观看免费| 在线亚洲精品国产二区图片欧美| 99国产精品一区二区蜜桃av | 丰满人妻熟妇乱又伦精品不卡| 欧美+亚洲+日韩+国产| 亚洲国产欧美一区二区综合| 搡老熟女国产l中国老女人| 亚洲视频免费观看视频| 老司机福利观看| 老汉色∧v一级毛片| 满18在线观看网站| 精品国产国语对白av| 宅男免费午夜| 亚洲国产中文字幕在线视频| 亚洲国产毛片av蜜桃av| 亚洲国产av新网站| 欧美亚洲日本最大视频资源| 日韩大码丰满熟妇| 国产在视频线精品| 久久久国产精品麻豆| www.熟女人妻精品国产| 国产又爽黄色视频| 女人精品久久久久毛片| 自线自在国产av| 99国产精品一区二区蜜桃av | 中文字幕最新亚洲高清| 午夜精品国产一区二区电影| 91国产中文字幕| 久久久精品94久久精品| 欧美精品亚洲一区二区| 日韩欧美免费精品| 中文字幕最新亚洲高清| 欧美黑人精品巨大| 一本色道久久久久久精品综合| 妹子高潮喷水视频| 视频在线观看一区二区三区| a级毛片黄视频| 色94色欧美一区二区| 成人影院久久| 青春草视频在线免费观看| bbb黄色大片| 久热爱精品视频在线9| 国内毛片毛片毛片毛片毛片| 国产成人免费无遮挡视频| 蜜桃在线观看..| 中文字幕色久视频| 人人妻,人人澡人人爽秒播| 久久九九热精品免费| 男人爽女人下面视频在线观看| 国产免费现黄频在线看| 看免费av毛片| 日本精品一区二区三区蜜桃| 国产片内射在线| 亚洲国产毛片av蜜桃av| 日韩制服骚丝袜av| 午夜精品国产一区二区电影| 免费观看a级毛片全部| 一二三四在线观看免费中文在| 日韩视频一区二区在线观看| 国产成人a∨麻豆精品| 久久中文看片网| 国产亚洲欧美精品永久| 又紧又爽又黄一区二区| 免费观看人在逋| 一级毛片精品| 91精品三级在线观看| 亚洲欧洲日产国产| 男女无遮挡免费网站观看| 少妇人妻久久综合中文| 狠狠精品人妻久久久久久综合| 久久天躁狠狠躁夜夜2o2o| 亚洲专区字幕在线| 久久中文字幕一级| 少妇猛男粗大的猛烈进出视频| 精品乱码久久久久久99久播| 国产精品一区二区在线不卡| 另类亚洲欧美激情| 欧美少妇被猛烈插入视频| 欧美精品高潮呻吟av久久| 51午夜福利影视在线观看| 美女福利国产在线| 久久av网站| 国产精品免费大片| 日韩精品免费视频一区二区三区| 一级片'在线观看视频| 精品亚洲成a人片在线观看| 久久久国产成人免费| 国产视频一区二区在线看| cao死你这个sao货| 国产精品久久久久久精品电影小说| 99精国产麻豆久久婷婷| 亚洲欧美一区二区三区久久| 亚洲av日韩精品久久久久久密| 人人妻人人添人人爽欧美一区卜| 男女床上黄色一级片免费看| 天堂8中文在线网| 少妇被粗大的猛进出69影院| 丰满人妻熟妇乱又伦精品不卡| 美女午夜性视频免费| 最新在线观看一区二区三区| 亚洲成人免费av在线播放| 日韩有码中文字幕| 欧美日韩黄片免| 最新的欧美精品一区二区| a 毛片基地| 日本a在线网址| 美国免费a级毛片| 人人妻人人澡人人爽人人夜夜| 亚洲精品久久午夜乱码| kizo精华| 18禁裸乳无遮挡动漫免费视频| 狠狠精品人妻久久久久久综合| cao死你这个sao货| 丝袜脚勾引网站| 日本a在线网址| 午夜福利影视在线免费观看| 免费观看人在逋| 亚洲欧美一区二区三区久久| 久久中文字幕一级| 高清欧美精品videossex| 色94色欧美一区二区| 中文字幕av电影在线播放| 一级片'在线观看视频| 午夜精品国产一区二区电影| 黄色片一级片一级黄色片| 欧美 日韩 精品 国产| 日本av免费视频播放| 黄网站色视频无遮挡免费观看| 亚洲激情五月婷婷啪啪| 99热全是精品| 久久性视频一级片| 国产一级毛片在线| 欧美人与性动交α欧美精品济南到| 精品国产超薄肉色丝袜足j| 久久久久国内视频| 欧美日韩精品网址| 午夜福利在线观看吧| 精品福利观看| 又大又爽又粗| 丰满饥渴人妻一区二区三| 亚洲精品久久久久久婷婷小说| 97精品久久久久久久久久精品| 伊人亚洲综合成人网| 老熟妇乱子伦视频在线观看 | 亚洲av片天天在线观看| 美女高潮到喷水免费观看| 脱女人内裤的视频| 成人免费观看视频高清| 在线观看舔阴道视频| 亚洲av电影在线进入| 91精品国产国语对白视频| 五月开心婷婷网| 国精品久久久久久国模美| 在线天堂中文资源库| 免费在线观看日本一区| 日韩熟女老妇一区二区性免费视频| 啦啦啦视频在线资源免费观看| 国产欧美亚洲国产| 亚洲中文日韩欧美视频| 亚洲av电影在线进入| 99久久99久久久精品蜜桃| 黑丝袜美女国产一区| 精品卡一卡二卡四卡免费| 国产一区二区三区在线臀色熟女 | 永久免费av网站大全| 一边摸一边抽搐一进一出视频| 69av精品久久久久久 | 日韩欧美一区视频在线观看| 一级毛片电影观看| 一本一本久久a久久精品综合妖精| 久久人人爽av亚洲精品天堂| 日韩,欧美,国产一区二区三区| 一区二区三区四区激情视频| 90打野战视频偷拍视频| 午夜福利影视在线免费观看| 永久免费av网站大全| 老熟妇乱子伦视频在线观看 | 欧美 亚洲 国产 日韩一| 欧美激情高清一区二区三区| 国产老妇伦熟女老妇高清| 纵有疾风起免费观看全集完整版| 亚洲欧美日韩另类电影网站| tocl精华| 日韩制服丝袜自拍偷拍| 最新在线观看一区二区三区| 精品视频人人做人人爽| 中国国产av一级| 日本精品一区二区三区蜜桃| 91精品伊人久久大香线蕉| 国产精品自产拍在线观看55亚洲 | 窝窝影院91人妻| 成人亚洲精品一区在线观看| 亚洲自偷自拍图片 自拍| 高清黄色对白视频在线免费看| 国产精品久久久久久精品电影小说| 日韩人妻精品一区2区三区| 97精品久久久久久久久久精品| 欧美日韩成人在线一区二区| 美女视频免费永久观看网站| 后天国语完整版免费观看| 国产精品国产三级国产专区5o| 欧美激情高清一区二区三区| 一区二区三区四区激情视频| 精品乱码久久久久久99久播| 久久青草综合色| 一二三四社区在线视频社区8| 天堂8中文在线网| 亚洲精品国产精品久久久不卡| 亚洲av片天天在线观看| 高清黄色对白视频在线免费看| 日韩 亚洲 欧美在线| 最新的欧美精品一区二区| 亚洲精品国产区一区二| 人人妻人人澡人人看| 丁香六月天网| www.精华液| 亚洲,欧美精品.| 看免费av毛片| 久久中文字幕一级| 国产精品99久久99久久久不卡| 日韩大码丰满熟妇| 国产欧美日韩一区二区三区在线| 十分钟在线观看高清视频www| 欧美97在线视频| 一级毛片电影观看| 亚洲国产日韩一区二区| 亚洲av成人一区二区三| 欧美国产精品一级二级三级| 午夜免费观看性视频| 久久热在线av| 90打野战视频偷拍视频| 女性被躁到高潮视频| 亚洲精品自拍成人| 亚洲国产欧美日韩在线播放| 亚洲国产av新网站| avwww免费| 精品第一国产精品| 欧美日韩中文字幕国产精品一区二区三区 | 正在播放国产对白刺激| 国产欧美亚洲国产| 国产精品久久久久成人av| 日韩人妻精品一区2区三区| 丰满饥渴人妻一区二区三| 国产国语露脸激情在线看| 精品人妻1区二区| 大片电影免费在线观看免费| 人人妻人人爽人人添夜夜欢视频| 亚洲av成人一区二区三| 电影成人av| 999精品在线视频| 性少妇av在线| 日韩精品免费视频一区二区三区| 国产成人av激情在线播放| 色94色欧美一区二区| 色婷婷久久久亚洲欧美| 汤姆久久久久久久影院中文字幕| 午夜精品国产一区二区电影| av又黄又爽大尺度在线免费看| 久久久欧美国产精品| 久久青草综合色| 丝袜美腿诱惑在线| 黑人巨大精品欧美一区二区mp4| 99香蕉大伊视频| tube8黄色片| 欧美精品av麻豆av| 亚洲精品美女久久av网站| av电影中文网址| 亚洲精华国产精华精| 悠悠久久av| 99热网站在线观看| 久久毛片免费看一区二区三区| 一区二区三区四区激情视频| 亚洲欧美一区二区三区黑人| 建设人人有责人人尽责人人享有的| 女警被强在线播放| av欧美777| 青青草视频在线视频观看| 久久国产精品大桥未久av| 午夜激情av网站| 国产欧美日韩一区二区精品| 国产成人系列免费观看| 久久热在线av| 叶爱在线成人免费视频播放| 国产精品1区2区在线观看. | 国产亚洲欧美在线一区二区| 男人爽女人下面视频在线观看| 欧美成狂野欧美在线观看| 国产日韩欧美亚洲二区| 搡老乐熟女国产| 91成年电影在线观看| 老司机在亚洲福利影院| 日韩有码中文字幕| 成年动漫av网址| 精品少妇久久久久久888优播| 香蕉丝袜av| 秋霞在线观看毛片| 亚洲国产av影院在线观看| 精品人妻在线不人妻| 黄色毛片三级朝国网站| 精品福利永久在线观看| 三上悠亚av全集在线观看| 成人三级做爰电影| 国产欧美亚洲国产| 亚洲国产精品成人久久小说| 69精品国产乱码久久久| 亚洲国产看品久久| 亚洲精品av麻豆狂野| 天堂中文最新版在线下载| 动漫黄色视频在线观看| 各种免费的搞黄视频| 亚洲男人天堂网一区| 搡老熟女国产l中国老女人| 最新的欧美精品一区二区| 人人妻,人人澡人人爽秒播| www.熟女人妻精品国产| 久久久国产精品麻豆| 国产日韩一区二区三区精品不卡| 亚洲性夜色夜夜综合| 国产亚洲av高清不卡| 亚洲国产av影院在线观看| 在线永久观看黄色视频| netflix在线观看网站| 麻豆av在线久日| 久久精品国产a三级三级三级| 一级毛片电影观看| 免费高清在线观看日韩| 日韩一区二区三区影片| 在线av久久热| 99国产精品免费福利视频| 天天躁日日躁夜夜躁夜夜| 桃红色精品国产亚洲av| 免费黄频网站在线观看国产| 精品一区在线观看国产| 99精国产麻豆久久婷婷| 国产亚洲一区二区精品| 国产成人欧美在线观看 | 久久亚洲精品不卡| 日日摸夜夜添夜夜添小说| 母亲3免费完整高清在线观看| 亚洲全国av大片| 一级毛片电影观看| 99精国产麻豆久久婷婷| 精品国产超薄肉色丝袜足j| 精品久久蜜臀av无| 黄色视频不卡| av免费在线观看网站| 三级毛片av免费| 久久久欧美国产精品| 一本综合久久免费| 国产一区二区三区av在线| 国产xxxxx性猛交| 啦啦啦在线免费观看视频4| 纵有疾风起免费观看全集完整版| 久久人人97超碰香蕉20202| 国产片内射在线| 欧美日韩亚洲综合一区二区三区_| 亚洲欧美激情在线| 成年女人毛片免费观看观看9 | 亚洲全国av大片| av一本久久久久| 国产精品av久久久久免费| 另类精品久久| 久久久国产一区二区| 视频区欧美日本亚洲| 一边摸一边做爽爽视频免费| 久久久久视频综合| 大香蕉久久网| 99热全是精品| av又黄又爽大尺度在线免费看| 亚洲精品粉嫩美女一区| 侵犯人妻中文字幕一二三四区| 最新在线观看一区二区三区| 老汉色av国产亚洲站长工具| 下体分泌物呈黄色| 99久久精品国产亚洲精品| 中文字幕人妻丝袜一区二区| 色婷婷久久久亚洲欧美| 三级毛片av免费| 亚洲第一青青草原| www日本在线高清视频| 三级毛片av免费| 亚洲国产精品999| 久久久久网色| 菩萨蛮人人尽说江南好唐韦庄| 一本一本久久a久久精品综合妖精| 在线 av 中文字幕| 精品一区二区三区四区五区乱码| 亚洲男人天堂网一区| 手机成人av网站| av片东京热男人的天堂| 国产一区二区三区综合在线观看| 亚洲欧美精品综合一区二区三区| 欧美黄色淫秽网站| 在线天堂中文资源库| 秋霞在线观看毛片| 91麻豆av在线| 一个人免费在线观看的高清视频 | a级毛片在线看网站| 在线观看人妻少妇| 久久 成人 亚洲| 一区二区三区精品91| 一区福利在线观看| 日韩免费高清中文字幕av|