• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Exact Solutions of Atmospheric(2+1)-Dimensional Nonlinear Incompressible Non-hydrostatic Boussinesq Equations?

    2016-05-09 08:54:34PingLiu劉萍YaXiongWang王亞雄BoRen任博andJinHuaLi李金花
    Communications in Theoretical Physics 2016年12期
    關(guān)鍵詞:劉萍字樣秒針

    Ping Liu(劉萍),Ya-Xiong Wang(王亞雄),Bo Ren(任博),and Jin-Hua Li(李金花)

    1College of Electron and Information Engineering,University of Electronic Science and Technology of China Zhongshan Institute,Zhongshan 528402,China

    2School of Physical Electronics,University of Electronic Science and Technology of China,Chengdu 610054,China

    3Institute of Nonlinear Science,Shaoxing University,Shaoxing 312000,China

    4School of Physics and Optoelectronic Engineering,Nanjing University of Information Science and Technology,Nanjing,China

    1 Introduction

    Atmospheric gravity waves are fluctuations in the dynamic equilibrium of the gravity and buoyancy of the atmosphere.They can break,produce wind shear and typhoon,and then play a very important factor on disastrous weather and climate.The formation and propagation of atmospheric gravity waves are essential in forecasting the damage caused by rainstorm.[1?4]

    The basic controlling laws of atmospheric movement are mass conservation equations,momentum conservation equations,energy conservation equations,and water mass conservation equations,and other gas and aerosol mass conservation equations.The motion of atmospheric gravity waves are mesoscale atmospheric motion,whose governing equations can be simplified from the basic governing equations of atmosphere as follows,[5]

    where u and w are wind velocities in x-and z-directions,ρ means the density,T0denotes background temperature,p is the perturbation pressure,T′denotes the perturbation temperature, γ and γdare the moist lapse rate and the dry adiabatic lapse rate,g is the gravitational constant,t means the time,x and z denote the coordinates in latitudinal and vertical directions.The calculation on symmetries shows that the equations are invariant under the Galilean transformations,the scaling transformations,and the space-time translations.[6]Equations(1a)–(1b)are the kinematic equations in latitudinal and vertical directions,respectively,which are the momentum conservation equations in fluid.Equation(1c)is continuity equation,which is a mass conservation equation in fluid.Equation(1d)is the thermodynamic equation,which is an energy conservation equation in fluid.

    On the(2+1)-dimensional nonlinear INHB equations,numerical simulation[7?10]and analytical analysis[1,11?13]are two commonly used methods.The interactions of atmospheric conoidal waves with a critical level are examined by using numerical simulation in Ref.[7].The authors of Ref.[8]investigated properties of solitary waves propagating in a two-layer fluid by comparing numeri-cal simulation experiments and theory,and found that stability or instability of the flow occurs in approximate with the theorem of Miles and Howard.Researchers made some effective attempts on traveling wave solutions of the(2+1)-dimensional nonlinear INHB equations.A general practice is that INHB equations are approximated to some other equations with the help of some assumptions.By Introducing traveling wave transformation and truncated expansion,the authors of Refs.[1,11]reduced the INHB equations into some known soliton equatons,such as KdV equation,KdV-mKdV equation and KdV-mKdV-GmKdV equation,and then obtained some known periodic or solitary wave solutions of these soliton equatons.In Ref.[12],the INHB equations degenerate to the KdV equation and Benjamin–Davis–Ono(BDO)equation by introduced to some boundary conditions,and then solitary wave of the KdV equation and algebraic solutions of the BDO equations are applied to describe the INHB equations.By introducing different scales of varying time and space variables,the authors of Ref.[13]reduce the INHB equations to a type of nonlinear Schr?dinger equation,and then demonstrate the solitary wave evolutions of the gravity waves envelope.

    Lie group symmetry theory is a very powerful method to solve partial differential equations(PDEs). Many methods on symmetries of PDEs have been proposed,such as the non-classical symmetry group,[14]the classical symmetry group,[15?17]residual symmetry,[18?19]and some other symmetry methods.[20?22]Tanh function expansion method is also a simple and useful method and is often used to research for exact solutions for PDEs.[23?25]In this paper,we will combine the tanh function method and the symmetry method to research the exact solutions of the INHB equations.

    The paper is organized as follows.The tanh function is applied and 12 expansion equations governed various tanh function terms are determined in the next section.In Sec.3,the symmetries of the expansion equations are researched.Section 4 is devoted to similarity reductions and similarity solutions of the expansion equations.Exact solutions of reduction equations are discussed in Sec.5.In Sec.6,Non-traveling wave solutions of the INHB equations are obtained by symmetry method.Traveling wave solutions of the INHB equations are obtained and some evolutions of atmospheric physical quantities with space and time are graphed in Sec.7.Summary and discussion are proposed in the final section.

    2 Tanh Function Expansions of the INHB Equations

    For the INHB equations,we can make the following truncated tanh function expansions

    where{r,u0,u1,w0,w1,p0,p1,s0,s1}are functions of x and t.Substituting Formula(2)into Eq.(1),and vanishing the coefficients of all the powers of tanh(r),we obtain 12 over-determined equations for nine undetermined functions

    where subscripts x,z,and t represent partial differentiations.From the solutions of{u0,u1,w0,w1,p0,p1,s0,s1}and substituting these solutions into(2),we then can obtain the exact solutions of the INHB equations.It is very difficult to directly solve Eq.(3).In the next three sections,we will solve Eq.(3)with the help of symmetry group theory.

    3 Symmetries of Expansion Equations

    We will now try to solve Eq.(3)by means of symmetry method.A symmetry of a nonlinear partial differential equation is defined as a solution of its linearized system.The nine lie point symmetry components{σi,i=1,2,3,4,5,6,7,8,9}can be supposed to have the forms

    Substituting Formula(4)into Eq.(5),and identifying the coefficients of various order terms on variables{r,u0,u1,w0,w1,p0,p1,s0,s1},we obtain an over-determined set of equations for the unknown functions.Solving the determinant equations,we obtain

    where F1,F2,F3are functions of t,and{Ci,i=1,2,3,4,5,6,7}are arbitrary constants.Then symmetry components{σi,i=1,2,3,4,5,6,7,8,9}described by(4)are transformed to

    4 Similarity Solutions and Reduction Equations

    After determining the in finitesimal generators,the similarity variables can be found by solving the characteristic equations

    Because the procedure to get the symmetry reductions is standard,we just write down the final reduction results.The most general invariant variables can be written as

    Due to the existence of arbitrary functions F1(t),F2(t)and F3(t)in(7),the similarity solutions for{u0,u1,w0,w1,p0,p1,s0,s1}and the corresponding reduction equations are very lengthy,so we will discuss the simplified conditions,for example,F1(t)=F2(t)=F3(t)=0.Then we obtain the following three nontrivial types of reduction equations and similarity solutions.

    Case 1C26=0,C5C6+C726=0.

    In this case,the invariant variables ξ and η in(9)degenerate to

    The similarity solutions can be written as

    where

    The reduction variables R ≡ R(ξ,η),U1≡ U1(ξ,η),W1≡ W1(ξ,η),P1≡ P1(ξ,η),S1≡ S1(ξ,η),which are arbitrary functions of ξ and η.The similarity solutions of u0,w0,p0and s0are very lengthy,so we will not write them down here.The reduction equations can be written as

    Case 2C26=0,C5C6+C72=0.

    The similarity solutions in this case are generated as

    where the{U0,U1,W0,W1,P0,P1,S0,S1}are functions of group-invariant variables{ξ,η},which are determined by

    The corresponding reduction equations are

    Case 3C2=0.

    On condition of C2=0,the group invariant variables read

    When C5C6+C726=0,the reduction equations are very complicated,and we will write only down the reduction equations on condition C5C6+C72=0.Then C5can be substituted by C5=?C72/C6,and the reduction equations are generated by

    where R ≡ R(ξ,η),U0≡ U0(ξ,η),U1≡ U1(ξ,η),W0≡ W0(ξ,η),W1≡ W1(ξ,η),P0≡ P0(ξ,η),P1≡ P1(ξ,η),S0≡ S0(ξ,η),and S1≡ S1(ξ,η)are all arbitrary functions of ξ and η.

    The corresponding similarity solutions are determined by

    5 Exact Solutions of Reduction Equations

    From similarity solutions of the researched systems and exact solutions of reduction equations,one can obtain some exact solutions of the researched systems.By this means,we can obtain some exact solutions of the expansion equations(3),and then obtain some exact solutions of the INHB equations.Three cases of similarity solutions and reduction equations are introduced in Sec.4.Obviously,different reduction equations will lead to different exact solutions of the expansion equations.

    Now,we will focus on the first case of reduction equations,because it is the most general case in the three cases.Solving Eqs.(15)–(29),we obtain two types of non-trivial solutions.

    Solution 1

    where C9is an arbitrary constant,F5,F6,F7,F8are functions of η,which solve

    Solution 2

    where F13is a function of η,and F9,F10,F11,F12,F14,and F15are functions of ξ and these functions solve the following equations:

    There are some parameters bounded by constraint equations in Solution 1 and Solution 2.We can obtain the exact solutions of the first type of reduction equations only by solving these parameters.It is still very difficult to obtain general solutions of these constraint equations.So we will try to obtain some special exact solutions of the constraint equations.The method of solving the constraint equations of Solution 1 is the same as those of Solution 2,and we will only discuss Solution 1.

    Plugging Formula(69)into Eqs.(59)–(62),one can obtain that

    Substituting formulas(69)–(72)into Formulas(58a)–(58i),we obtain the following exact solution of the reduction equations(15)–(29)

    6 Non-traveling Wave Solutions of the INHB Equations

    In the last section,we have obtained some exact solutions of reduction equations(15)–(29).Combining similarity solutions and the exact solutions of reduction equations,one can obtain the exact solutions of the original equations.Exact solutions of reduction equations discussed in the previous section are related to the first type of reduction equations,where the variables are{ξ,η}in(10).Because{ξ,η}in(10)are non-traveling wave transformation variables,the exact solutions obtained with the help of them are necessarily non-traveling wave solutions.To obtain traveling wave solutions of the expansion equations,one should make further transformations for the reduction equations or make directly traveling wave transformation for the expansion equations,which will be discussed in the next section.

    In this section,we will try to obtain exact non-traveling wave solutions of the INHB equations by symmetry method.Plugging formulas(73)–(81)into(11a)–(11e)and noticing the auxiliary variables(12)–(14),we can obtain the solutions of{r,u0,u1,w0,w1,p0,p1,s0,s1}.The substitution of{r,u0,u1,w0,w1,p0,p1,s0,s1}into Eq.(2)leads to the solution of the INHB equations as follows:

    where

    and{ξ,η}are expressed as(10).

    Above solution for{u,w,p,T′}in the INHB equations are non-traveling wave solutions.In the next section,we will discuss traveling wave solutions of the INHB equations.

    打開床頭邊的手機(jī),手機(jī)上清晰的顯示著2014年1月20日,01:20:33字樣。殷明看著這日期,恍然想起明天,不,是今天將在市中心有場面試。艱難地坐在床上,看著手機(jī)上的時(shí)間一分一秒流逝,電子表面的秒針嘲笑般地看著他,慢吞吞地一下一下轉(zhuǎn)動(dòng)著。

    7 Traveling Wave Solutions of the INHB Equations

    To search for traveling wave solutions on gravity waves is one important subject.We can make traveling wave transformation to{r,u0,u1,w0,w1,p0,p1,s0,s1}as follows

    where k1,k2,and k3are arbitrary constants.

    Equation(3)is then transformed to

    Integrating Eq.(88b)once over δ,we can rewrite Eq.(88b)as

    where C16are arbitrary integral constant.Then

    Integrated once over δ,Eq.(88c)can be rewritten as

    where C17is an arbitrary integral constant,and will be chosen as zero in the rest of this paper.Thencan be expressed as

    which leads Eq.(88a)to be zero.

    Substituting Formulas(90)and(92)into Eqs.(88d)–(88l),we obtain

    Solving Eqs.(93a)–(93i)leads to

    where C19–C24are arbitrary constants.

    Combining Eqs.(2),(87)and(94)–(102),we obtain the exact solution for the INHB equations

    Fig.1 The evolutions of the velocities in latitudinal and vertical directions in Formulas(103)–(104).The atmospheric parameters are g=9.81 m/s2,ρ =1.29 kg/m3,γd=0.01 ?C/m,γ =0.005 ?C/m,T0=279 K.

    Fig.2 The evolutions of perturbation pressure and perturbation temperature in Formulas(105)–(106).The atmospheric parameters are similar to Fig.1.

    Figure 1 describes the evolutions for the velocities in latitudinal and vertical directions,which are governed by Formulas(103)–(104).The atmospheric parameters are g=9.81 m/s2,ρ =1.29 kg/m3,γd=0.01?C/m,γ =0.005?C/m,T0=279 K. C19satisfies C19=?C22tanh(C18)+C16ρ(C16?k3)/k12and the other parameters are C18=2,k1=k2=0.1,k3=0.005,C20=C21=C22=1,C23=10,C16=0,C24=10.Figure 1 demonstrates that the wind velocity evolutions in latitudinal and vertical directions can both satisfy periodic functions.The evolution of perturbation pressure with time and the evolution of perturbation temperature with time are proposed in Fig.2,which demonstrates the periodic evolutions of perturbation pressure and perturbation temperature with time and space.

    On traveling wave solutions,the difference between this article and the literatures listed in Sec.1 is very obvious.The INHB equations are approximated to some other equations,and the traveling wave solutions of the approximate equation are applied to described to traveling waves solutions in the literatures.In this paper,we have not make any assumptions,and the traveling wave solutions are really exact solutions of the INHB equations.

    8 Summary and Discussion

    Atmospheric gravity waves play a very important role in typhoon,rainstorm,and other disastrous weather.Due to complexity,numeric simulations are often applied to atmospheric dynamical equations,while analytical analyses are much less discussed.Exact solutions and symmetries of the(2+1)-dimensional INHB equations are researched in this paper.

    Tanh function expansion is applied to the INHB equations and 12 over-determined equations are determined by the expansion coefficients.Some references show that some meaningful exact solutions can be obtained by tanh function expansion method for some consistent tanh expansion(CTE)solvable systems.[23?25]Unfortunately,the INHB equations are not CTE solvable,and the auxiliary coefficient variables{r,u0,u1,w0,w1,p0,p1,s0,s1}can not be expressed intuitively as the auxiliary variable r.In order to obtain some exact solutions of the 12 coefficient equations,we introduce symmetry method to the 12 coefficient equations.Three types of non-trivial similarity solutions and the corresponding symmetry reduction equations are proposed.Combining exact solutions of reduction equations and the similarity solutions,we obtain some non-traveling wave solutions of the INHB equations.Traveling wave solutions are discussed with the help of traveling wave transformation in the paper.Some graphes on the evolutions of the latitudinal wind velocity and vertical wind velocity,perturbation pressure and perturbation temperature with space and time are demonstrated,which show directly the periodicity of some important atmospheric physical quantities with space and time.

    There are still many open problems on climate and weather.The(2+1)-dimensional INHB equations,as a valuable model of atmospheric gravity waves,should be further studied.

    Acknowledgements

    The authors would like to thank ProfessorSen-Yue Lou and Professor Bao-Qing Zeng for their valuable discussion.

    [1]Z.L.Li,J.Phys.A-Math.Theor.41(2008)145206.

    [2]Z.L.Li,Appl.Math.Comput.217(2010)1398.

    [3]J.R.Qing,S.M.Chen,D.W.Li,and B.Liang,Chin.Phys.B 21(2012)089401.

    [4]P.Liu,Z.L.Li,and S.Y.Lou,Appl.Math.Mech.31(2010)1383.

    [5]James C.McWilliams,Fundamentals of Geophysical Fluid Dynamics,Cambridge University Press,London(2006).

    [6]P.Liu and X.N.Gao,Commun.Theor.Phys.53(2010)609.

    [7]E.D.Shyllingstad,J.Atmos.Sci.48(1991)1613.

    [8]J.Grue,A.Jensen,P.Reusas,and J.K.Sveen,J.Fluid Mech.380(1999)257.

    [9]W.D.Zhao,J.Zhao,X.Z.Han,and Z.J.Xu,Chin.J.Liquid Cryst.Disp.29(2014)281.

    [10]F.Qian,T.Sun,J.Guo,and T.F.Wang,Chin.J.Liquid Crys.Disp.30(2015)317.

    [11]Z.L.Li,G.Fu,and J.Chen,Chaos,Solitons&Fractals 40 (2009)530.

    [12]J.W.Rottman and F.Einaudi,J.Atmos.Sci.50(1993)2116.

    [13]X.H.Xu and Y.H.Ding,Chin.J.Atmos.Sci.15(1991)58.

    [14]G.W.Bluman and S.Kumei,Symmetries and Di ff erential Equations,Spring-Verlag,New York(1989).

    [15]P.Olver,Applications of Lie Group to Di ff erential Equations,Spring-Verlag,New York(1986).

    [16]P.Liu,B.Q.Zeng,B.B.Deng,and J.R.Yang,Aip Adv.5(2015)087162.

    [17]P.Liu,B.Q.Zeng,and B.Ren,Commun.Theor.Phys.63(2015)413.

    [18]X.N.Gao,S.Y.Lou,and X.Y.Tang,J.High Energy Phys.5(2013)029.

    [19]P.Liu,B.Li,and J.R.Yang,Cent.Eur.J.Phys.12(2014)541.

    [20]W.X.Ma and T.C.Xia,Phys.Scr.87(2013)055003.

    [21]Z.J.Qiao,Commun.Math.Phys.239(2003)309.

    [22]B.Ren,X.N.Gao,Y.Jun,and P.Liu,Open Math.13(2015)502.

    [23]D.Yang,S.Y.Lou,and W.F.Yu,Commun.Theor.Phys.60(2013)387.

    [24]C.L.Chen and S.Y.Lou,Chin.Phys.Lett.30(2013)110202.

    [25]H.Pu and M.Jia,Commun.Theor.Phys.64(2015)623.

    猜你喜歡
    劉萍字樣秒針
    刻薄
    時(shí)間很小
    延河(2022年6期)2022-07-24 21:03:50
    秒針匆匆
    “合格”
    單堯堯、胡豐凡、劉萍、葉小輝作品
    做大自然的“翻譯官”
    ——淺談寫生的意義
    “從來不知道哪天會(huì)有投資”
    南方周末(2018-10-25)2018-10-25 20:00:21
    Molecular detection of microbial communities associated with Microcystis vs Synechococcus dominated waters in Tianjin, China*
    民政部未批準(zhǔn)任何帶有“一帶一路”字樣的社會(huì)組織
    穿越魔幻城堡
    久久久成人免费电影| 国内揄拍国产精品人妻在线| 久久精品夜夜夜夜夜久久蜜豆| 久久精品国产亚洲av香蕉五月| 久久久久久大精品| 日本一二三区视频观看| 18禁黄网站禁片午夜丰满| 亚洲成人久久爱视频| 老司机福利观看| 少妇的逼水好多| 窝窝影院91人妻| 久久久久久久久久成人| 欧美高清成人免费视频www| 欧美日韩瑟瑟在线播放| 别揉我奶头 嗯啊视频| av在线天堂中文字幕| 久久久久免费精品人妻一区二区| 欧美另类亚洲清纯唯美| 色尼玛亚洲综合影院| 精品99又大又爽又粗少妇毛片 | 在现免费观看毛片| 日日干狠狠操夜夜爽| a级毛片免费高清观看在线播放| 99热网站在线观看| 一区福利在线观看| 搡女人真爽免费视频火全软件 | 亚洲久久久久久中文字幕| 欧美激情国产日韩精品一区| 亚洲va在线va天堂va国产| av天堂在线播放| 伊人久久精品亚洲午夜| 大型黄色视频在线免费观看| 久久久久久久久久成人| 又黄又爽又免费观看的视频| 欧美最新免费一区二区三区| 人妻夜夜爽99麻豆av| 亚洲成人免费电影在线观看| 亚洲成av人片在线播放无| 日本黄色视频三级网站网址| 欧美黑人欧美精品刺激| 国产真实乱freesex| 久久国产精品人妻蜜桃| 欧美三级亚洲精品| 十八禁网站免费在线| 久久午夜福利片| 婷婷丁香在线五月| 精品福利观看| 日韩欧美一区二区三区在线观看| a在线观看视频网站| 日本在线视频免费播放| 熟女电影av网| 黄色女人牲交| 久久午夜亚洲精品久久| 国产精品电影一区二区三区| 此物有八面人人有两片| 免费大片18禁| 女的被弄到高潮叫床怎么办 | 国产欧美日韩精品亚洲av| 最后的刺客免费高清国语| 亚洲avbb在线观看| 国产精品亚洲一级av第二区| 我的女老师完整版在线观看| 久久午夜福利片| 亚洲人成网站在线播| 免费看光身美女| 亚洲真实伦在线观看| 久久久久久国产a免费观看| 真人一进一出gif抽搐免费| av在线老鸭窝| 悠悠久久av| 亚洲18禁久久av| 99久久精品国产国产毛片| 国产在视频线在精品| 免费av不卡在线播放| 久久这里只有精品中国| 毛片女人毛片| 成人精品一区二区免费| 最好的美女福利视频网| 69av精品久久久久久| 亚洲成a人片在线一区二区| 亚洲中文日韩欧美视频| 美女大奶头视频| 美女xxoo啪啪120秒动态图| 少妇人妻精品综合一区二区 | 亚洲一区二区三区色噜噜| 亚洲精品一卡2卡三卡4卡5卡| 午夜免费男女啪啪视频观看 | 国产大屁股一区二区在线视频| 国产又黄又爽又无遮挡在线| 精品人妻一区二区三区麻豆 | 国产精品野战在线观看| 欧美三级亚洲精品| 亚洲精品成人久久久久久| 精品一区二区免费观看| 日本一二三区视频观看| 看黄色毛片网站| 99国产极品粉嫩在线观看| 亚洲无线在线观看| 亚洲成a人片在线一区二区| 91狼人影院| 91av网一区二区| 国产精品精品国产色婷婷| 最后的刺客免费高清国语| 简卡轻食公司| 最近视频中文字幕2019在线8| 搡老妇女老女人老熟妇| 欧美成人一区二区免费高清观看| 日韩亚洲欧美综合| 女的被弄到高潮叫床怎么办 | av在线观看视频网站免费| 亚洲熟妇熟女久久| 国产亚洲欧美98| 尾随美女入室| 久久婷婷人人爽人人干人人爱| 日本 欧美在线| 色尼玛亚洲综合影院| 三级男女做爰猛烈吃奶摸视频| 99热网站在线观看| 国产成人av教育| 亚洲精华国产精华液的使用体验 | 亚洲一区二区三区色噜噜| 国产av不卡久久| 99热精品在线国产| 日本在线视频免费播放| 午夜福利在线观看免费完整高清在 | 午夜激情欧美在线| 亚洲va日本ⅴa欧美va伊人久久| 91av网一区二区| 欧美成人性av电影在线观看| 国产成人a区在线观看| 我的老师免费观看完整版| 色哟哟·www| 国产中年淑女户外野战色| 在线观看舔阴道视频| 搡老岳熟女国产| 久久精品综合一区二区三区| 国产欧美日韩精品亚洲av| 欧美国产日韩亚洲一区| 精品午夜福利视频在线观看一区| 欧美丝袜亚洲另类 | 久久久久精品国产欧美久久久| 亚洲欧美清纯卡通| 日本黄大片高清| 国产午夜精品论理片| 老熟妇乱子伦视频在线观看| 成人毛片a级毛片在线播放| 老熟妇仑乱视频hdxx| 成人毛片a级毛片在线播放| 成人国产麻豆网| 欧美性猛交黑人性爽| 欧美激情在线99| 日韩av在线大香蕉| 18禁黄网站禁片午夜丰满| 蜜桃久久精品国产亚洲av| 久久久国产成人精品二区| 日本三级黄在线观看| 亚洲精品日韩av片在线观看| 欧美激情久久久久久爽电影| 国产成人一区二区在线| 黄色配什么色好看| av在线蜜桃| 97人妻精品一区二区三区麻豆| 国产一区二区在线av高清观看| 亚洲五月天丁香| 中出人妻视频一区二区| 联通29元200g的流量卡| eeuss影院久久| 免费观看的影片在线观看| 国产激情偷乱视频一区二区| 日韩精品有码人妻一区| 亚洲成人久久爱视频| 久久久久久久久久成人| 丰满的人妻完整版| 国产成人av教育| 欧美日韩瑟瑟在线播放| 国产av不卡久久| 久久精品国产亚洲网站| 国产又黄又爽又无遮挡在线| 亚洲精品在线观看二区| 少妇猛男粗大的猛烈进出视频 | 精品久久久噜噜| 村上凉子中文字幕在线| 亚洲真实伦在线观看| 在线观看av片永久免费下载| 国产乱人视频| 国产精品免费一区二区三区在线| 欧美性猛交黑人性爽| 狂野欧美激情性xxxx在线观看| www.www免费av| 亚洲一区高清亚洲精品| 人妻丰满熟妇av一区二区三区| 国产精品98久久久久久宅男小说| 两个人的视频大全免费| 露出奶头的视频| 亚洲欧美精品综合久久99| 久久香蕉精品热| 国产亚洲91精品色在线| 欧美另类亚洲清纯唯美| 日本免费一区二区三区高清不卡| 毛片一级片免费看久久久久 | 日本黄大片高清| 亚洲最大成人av| 亚洲av不卡在线观看| 国产午夜福利久久久久久| 18禁在线播放成人免费| 又爽又黄a免费视频| 色哟哟哟哟哟哟| 亚洲熟妇中文字幕五十中出| 日韩欧美免费精品| 久久久久久久精品吃奶| 日韩亚洲欧美综合| 亚洲图色成人| 国产亚洲精品综合一区在线观看| 午夜精品一区二区三区免费看| 在线观看av片永久免费下载| 中文字幕av在线有码专区| 又黄又爽又刺激的免费视频.| 欧美精品啪啪一区二区三区| 国产黄片美女视频| 嫩草影视91久久| 成年女人永久免费观看视频| 国产精品永久免费网站| 欧美日本亚洲视频在线播放| 欧美色视频一区免费| 欧美绝顶高潮抽搐喷水| 久久精品综合一区二区三区| 真实男女啪啪啪动态图| 亚洲真实伦在线观看| a在线观看视频网站| 尾随美女入室| 国产黄a三级三级三级人| 中出人妻视频一区二区| 此物有八面人人有两片| 国内精品宾馆在线| 亚洲精品一卡2卡三卡4卡5卡| 蜜桃久久精品国产亚洲av| 色综合色国产| 久久久久久久午夜电影| av在线老鸭窝| 午夜影院日韩av| 男人的好看免费观看在线视频| 日日摸夜夜添夜夜添av毛片 | 一进一出抽搐动态| 天天一区二区日本电影三级| 亚州av有码| 久久99热6这里只有精品| 国产亚洲精品久久久久久毛片| 欧美日韩中文字幕国产精品一区二区三区| 国产大屁股一区二区在线视频| 自拍偷自拍亚洲精品老妇| 国模一区二区三区四区视频| 亚洲无线观看免费| 亚洲精品粉嫩美女一区| 91麻豆av在线| av天堂在线播放| 国产精华一区二区三区| 亚洲色图av天堂| 露出奶头的视频| 最近最新中文字幕大全电影3| 日韩精品青青久久久久久| 99久久无色码亚洲精品果冻| 国产免费男女视频| 舔av片在线| 国产色爽女视频免费观看| 人人妻,人人澡人人爽秒播| 午夜老司机福利剧场| 欧美+日韩+精品| 免费高清视频大片| 国产 一区 欧美 日韩| 亚洲精品一区av在线观看| 日本一二三区视频观看| 黄色日韩在线| 天美传媒精品一区二区| 午夜日韩欧美国产| 久久人人爽人人爽人人片va| 久久国产精品人妻蜜桃| 日韩中字成人| bbb黄色大片| 99视频精品全部免费 在线| 嫩草影院新地址| 日本一本二区三区精品| 精品人妻1区二区| 久久精品国产清高在天天线| av.在线天堂| 美女免费视频网站| 日本精品一区二区三区蜜桃| 俺也久久电影网| 91精品国产九色| 真人做人爱边吃奶动态| 精品福利观看| 亚洲美女黄片视频| 亚洲内射少妇av| 午夜爱爱视频在线播放| 18+在线观看网站| 亚洲国产精品sss在线观看| 99国产精品一区二区蜜桃av| 在线播放国产精品三级| 亚洲精品一卡2卡三卡4卡5卡| 深夜精品福利| 九色国产91popny在线| 亚洲成人中文字幕在线播放| 亚洲欧美清纯卡通| 久久精品国产亚洲av天美| 男人和女人高潮做爰伦理| 最近最新中文字幕大全电影3| 人人妻,人人澡人人爽秒播| av在线天堂中文字幕| 好男人在线观看高清免费视频| 成人一区二区视频在线观看| 成年女人看的毛片在线观看| 少妇被粗大猛烈的视频| 欧美成人性av电影在线观看| 黄色丝袜av网址大全| 日韩中文字幕欧美一区二区| АⅤ资源中文在线天堂| 亚洲人与动物交配视频| 18+在线观看网站| 一区福利在线观看| 99久国产av精品| 国产精品综合久久久久久久免费| 亚洲最大成人手机在线| 国产午夜福利久久久久久| 精品久久久久久久末码| 国产午夜精品论理片| 久久精品影院6| 久久精品国产鲁丝片午夜精品 | 一进一出抽搐动态| 身体一侧抽搐| 久久久色成人| 三级国产精品欧美在线观看| 99久久精品国产国产毛片| 黄色日韩在线| 欧美xxxx黑人xx丫x性爽| 看免费成人av毛片| 88av欧美| 免费搜索国产男女视频| 国产av在哪里看| 在线免费观看的www视频| 久久久久久久精品吃奶| 欧美3d第一页| 成人欧美大片| 精品久久久久久,| 色精品久久人妻99蜜桃| 成人美女网站在线观看视频| 欧美又色又爽又黄视频| 久久6这里有精品| 亚洲在线观看片| 我的老师免费观看完整版| 国产成人影院久久av| 国语自产精品视频在线第100页| 18禁在线播放成人免费| 日韩欧美在线乱码| 日日撸夜夜添| 男人和女人高潮做爰伦理| 国产美女午夜福利| 毛片一级片免费看久久久久 | 99热这里只有是精品在线观看| 成人高潮视频无遮挡免费网站| 在线免费观看的www视频| 午夜精品久久久久久毛片777| 久久久久久久久久成人| 色综合亚洲欧美另类图片| 精品久久久久久成人av| 99久久精品热视频| 老师上课跳d突然被开到最大视频| 精品一区二区免费观看| 尤物成人国产欧美一区二区三区| 高清日韩中文字幕在线| 国产又黄又爽又无遮挡在线| 国产成年人精品一区二区| 国产精品久久久久久久久免| 精品久久久久久久久亚洲 | 亚洲国产精品sss在线观看| 美女高潮的动态| 国产三级在线视频| 性欧美人与动物交配| av中文乱码字幕在线| 美女 人体艺术 gogo| 又粗又爽又猛毛片免费看| 欧美xxxx性猛交bbbb| 91午夜精品亚洲一区二区三区 | 亚洲精品在线观看二区| bbb黄色大片| 男插女下体视频免费在线播放| 少妇熟女aⅴ在线视频| 国产黄色小视频在线观看| 中国美白少妇内射xxxbb| 亚洲狠狠婷婷综合久久图片| 国产午夜精品论理片| 少妇裸体淫交视频免费看高清| 国产伦一二天堂av在线观看| 日本爱情动作片www.在线观看 | 国产真实伦视频高清在线观看 | 91麻豆精品激情在线观看国产| 又爽又黄a免费视频| 久久精品夜夜夜夜夜久久蜜豆| 欧美另类亚洲清纯唯美| 国产精品久久久久久精品电影| 国产av一区在线观看免费| 久久久久久伊人网av| 黄色丝袜av网址大全| 国产私拍福利视频在线观看| 黄色欧美视频在线观看| 麻豆国产97在线/欧美| 国产激情偷乱视频一区二区| 极品教师在线免费播放| 一本精品99久久精品77| 麻豆成人av在线观看| 不卡视频在线观看欧美| 国产蜜桃级精品一区二区三区| 亚洲欧美日韩卡通动漫| 国产又黄又爽又无遮挡在线| 亚洲精品一区av在线观看| 日韩亚洲欧美综合| 麻豆成人av在线观看| 少妇裸体淫交视频免费看高清| 成人一区二区视频在线观看| 精品乱码久久久久久99久播| 色av中文字幕| 99久久久亚洲精品蜜臀av| 少妇猛男粗大的猛烈进出视频 | 成人一区二区视频在线观看| 男女下面进入的视频免费午夜| 国产中年淑女户外野战色| 国产老妇女一区| 亚洲欧美日韩卡通动漫| 国产伦精品一区二区三区四那| 久久久久久国产a免费观看| 欧美高清成人免费视频www| 深爱激情五月婷婷| 国产毛片a区久久久久| 一区二区三区免费毛片| 成年女人看的毛片在线观看| 日韩 亚洲 欧美在线| 精品人妻1区二区| 免费看日本二区| 日本 av在线| 国产大屁股一区二区在线视频| 欧美精品国产亚洲| 午夜视频国产福利| 精品免费久久久久久久清纯| .国产精品久久| 男人的好看免费观看在线视频| 又黄又爽又免费观看的视频| 美女xxoo啪啪120秒动态图| 日韩国内少妇激情av| 欧美黑人巨大hd| 国产熟女欧美一区二区| 久99久视频精品免费| 中文字幕av成人在线电影| 麻豆av噜噜一区二区三区| av国产免费在线观看| 欧美高清性xxxxhd video| 国产精品国产三级国产av玫瑰| 丰满乱子伦码专区| 日韩欧美在线乱码| 亚洲aⅴ乱码一区二区在线播放| 在线观看66精品国产| 给我免费播放毛片高清在线观看| 成人国产一区最新在线观看| 婷婷丁香在线五月| 色吧在线观看| 日韩一区二区视频免费看| 黄色视频,在线免费观看| 欧美激情久久久久久爽电影| 国产精华一区二区三区| 神马国产精品三级电影在线观看| 校园春色视频在线观看| 美女高潮喷水抽搐中文字幕| 在线播放无遮挡| 日韩av在线大香蕉| 亚洲一区二区三区色噜噜| 国产中年淑女户外野战色| 美女免费视频网站| 男女那种视频在线观看| 亚洲国产欧美人成| 久久精品国产亚洲av涩爱 | 偷拍熟女少妇极品色| 看免费成人av毛片| 国内精品宾馆在线| 2021天堂中文幕一二区在线观| 欧美极品一区二区三区四区| 88av欧美| 色5月婷婷丁香| 亚洲精品影视一区二区三区av| 亚洲电影在线观看av| 亚洲av免费高清在线观看| 成人av一区二区三区在线看| x7x7x7水蜜桃| 男人舔女人下体高潮全视频| 欧美日韩亚洲国产一区二区在线观看| 五月伊人婷婷丁香| 老女人水多毛片| 精品午夜福利在线看| 日日夜夜操网爽| 欧美性猛交╳xxx乱大交人| 两性午夜刺激爽爽歪歪视频在线观看| 91久久精品国产一区二区成人| 中文亚洲av片在线观看爽| 久久国内精品自在自线图片| 精品一区二区三区视频在线观看免费| 亚洲性夜色夜夜综合| 波多野结衣巨乳人妻| 天堂动漫精品| 成年女人毛片免费观看观看9| 日本五十路高清| 国产爱豆传媒在线观看| 精品久久久久久久久亚洲 | 国内精品久久久久精免费| 无遮挡黄片免费观看| 少妇人妻精品综合一区二区 | 全区人妻精品视频| 成人午夜高清在线视频| 天堂av国产一区二区熟女人妻| 免费高清视频大片| 夜夜夜夜夜久久久久| 亚洲性久久影院| 久久精品综合一区二区三区| 人妻制服诱惑在线中文字幕| 免费搜索国产男女视频| 欧美激情久久久久久爽电影| 最近视频中文字幕2019在线8| 亚洲在线观看片| 久久久久久久午夜电影| 联通29元200g的流量卡| 99久久中文字幕三级久久日本| 国产久久久一区二区三区| 国产精品免费一区二区三区在线| 天堂av国产一区二区熟女人妻| 噜噜噜噜噜久久久久久91| 欧美绝顶高潮抽搐喷水| 一边摸一边抽搐一进一小说| 日本免费一区二区三区高清不卡| 免费看日本二区| 3wmmmm亚洲av在线观看| 国产亚洲精品av在线| 丰满乱子伦码专区| 日韩国内少妇激情av| 啪啪无遮挡十八禁网站| 亚洲国产高清在线一区二区三| 男人和女人高潮做爰伦理| 男女啪啪激烈高潮av片| 免费看日本二区| 国产伦精品一区二区三区视频9| 亚洲av成人精品一区久久| 国产精品爽爽va在线观看网站| 人妻制服诱惑在线中文字幕| 美女cb高潮喷水在线观看| 日韩一本色道免费dvd| 免费看av在线观看网站| av国产免费在线观看| 免费观看精品视频网站| 最近视频中文字幕2019在线8| 欧美区成人在线视频| 精品无人区乱码1区二区| 丰满的人妻完整版| 91在线观看av| 亚洲va在线va天堂va国产| 久久人人精品亚洲av| 男女那种视频在线观看| 精品免费久久久久久久清纯| 国产女主播在线喷水免费视频网站 | 韩国av在线不卡| 日日撸夜夜添| 亚洲,欧美,日韩| 精品欧美国产一区二区三| 精品久久久久久久久亚洲 | 欧美日韩乱码在线| 色哟哟哟哟哟哟| 一卡2卡三卡四卡精品乱码亚洲| 国产黄a三级三级三级人| 精品福利观看| 韩国av在线不卡| 美女黄网站色视频| 搞女人的毛片| 成人av在线播放网站| 国产真实伦视频高清在线观看 | 一级毛片久久久久久久久女| 欧美日韩黄片免| 无人区码免费观看不卡| 国产午夜精品久久久久久一区二区三区 | 成人无遮挡网站| 亚洲无线观看免费| 99九九线精品视频在线观看视频| 搞女人的毛片| 男女视频在线观看网站免费| 在线观看66精品国产| 久久国内精品自在自线图片| 国产高清视频在线播放一区| 在线看三级毛片| 欧美bdsm另类| 国产在线精品亚洲第一网站| 亚洲av日韩精品久久久久久密| 搞女人的毛片| 中国美女看黄片| 欧美日韩黄片免| 国产中年淑女户外野战色| 欧美日本亚洲视频在线播放| 欧美丝袜亚洲另类 | 一边摸一边抽搐一进一小说| 国产极品精品免费视频能看的| 久99久视频精品免费| 无遮挡黄片免费观看| 内地一区二区视频在线| 亚州av有码| 中文字幕高清在线视频| 最近中文字幕高清免费大全6 | 亚洲自偷自拍三级| 午夜日韩欧美国产| 一区二区三区四区激情视频 | 日韩欧美在线乱码| 国产亚洲av嫩草精品影院| av国产免费在线观看| 中文字幕av在线有码专区| 免费观看的影片在线观看|