吳光學(xué),李延晅,王瑩瑩,郭玉梅,吳毅暉,郭昉
1.清華大學(xué)深圳研究生院,深圳市環(huán)境微生物利用與安全控制重點(diǎn)實(shí)驗(yàn)室,廣東 深圳 518055
2.滇池水務(wù)股份有限責(zé)任公司,云南 昆明 650228
電子受體沖擊條件下低有機(jī)質(zhì)剩余污泥的高溫厭氧水解酸化性能
吳光學(xué)1,李延晅1,王瑩瑩1,郭玉梅2,吳毅暉2,郭昉2
1.清華大學(xué)深圳研究生院,深圳市環(huán)境微生物利用與安全控制重點(diǎn)實(shí)驗(yàn)室,廣東 深圳 518055
2.滇池水務(wù)股份有限責(zé)任公司,云南 昆明 650228
剩余污泥水解酸化是其后續(xù)能源資源化的重要前提保障技術(shù)。針對(duì)低有機(jī)質(zhì)剩余污泥,在55 ℃高溫運(yùn)行條件下,研究了電子受體沖擊對(duì)剩余污泥水解酸化運(yùn)行性能的影響,重點(diǎn)考察了水解酸化過程中水解、酸化效果和氮磷營(yíng)養(yǎng)元素的釋放。結(jié)果表明:采用短時(shí)曝氣沖擊模式能夠有效提高厭氧水解酸化過程中污泥的去除率,短時(shí)曝氣和對(duì)照組條件下污泥揮發(fā)性懸浮固體去除率分別為40%和31%。電子受體沖擊條件下增加了溶解性化學(xué)需氧量(重鉻酸鉀法)的產(chǎn)率,尤其是蛋白質(zhì)產(chǎn)率。引入電子受體沖擊主要改善固體物質(zhì)的降解效率,并不影響酸化的代謝模式,酸化產(chǎn)生的揮發(fā)性脂肪酸主要以丁酸型為主。氨氮釋放、三維熒光和分子量分布均表明蛋白質(zhì)類物質(zhì)的差異主要在于水解階段產(chǎn)生溶解性蛋白質(zhì)濃度不同,而不是酸化階段造成的差異。電子受體沖擊尤其是短時(shí)曝氣沖擊是強(qiáng)化污泥水解酸化的有效技術(shù)途徑。
低有機(jī)質(zhì)污泥;水解酸化;電子受體沖擊;高溫厭氧消化
污水處理過程中會(huì)產(chǎn)生大量的剩余污泥,其處理處置費(fèi)用較高,一般占污水處理廠運(yùn)行費(fèi)用的25%~65%[1-2]。剩余污泥最終處置方式包括填埋、堆肥和焚燒等途徑,對(duì)其進(jìn)行資源化和能源化回收利用是未來的發(fā)展方向,如剩余污泥厭氧消化產(chǎn)甲烷是實(shí)現(xiàn)能源化常用的技術(shù)途徑。剩余污泥主要由生物體組成,其有機(jī)物濃度為40%~70%。在厭氧條件下,生物作用將剩余污泥中有機(jī)物首先進(jìn)行水解,然后酸化生成揮發(fā)性脂肪酸(VFAs),產(chǎn)生的VFAs可作為污水脫氮除磷所需碳源、厭氧產(chǎn)甲烷的底物和合成可生物降解塑料的原料等;同時(shí),剩余污泥水解酸化也可以實(shí)現(xiàn)污泥減量化,緩解污水處理廠污泥處理處置壓力。
由于剩余污泥中細(xì)胞壁等組分屬于慢速生物降解物質(zhì),采用常規(guī)中溫水解酸化具有效率較低等特征。因此,對(duì)污泥水解酸化過程進(jìn)行優(yōu)化或采用預(yù)處理強(qiáng)化模式是當(dāng)今研究的重點(diǎn)。優(yōu)化水解酸化過程包括調(diào)節(jié)pH、提高溫度、聯(lián)合不同固體廢物等。Kim等[3]研究得到污泥在高溫條件下厭氧處理時(shí),添加微量元素能提高酸化效率和產(chǎn)甲烷效率。Jia等[4]研究發(fā)現(xiàn),剩余污泥和草同時(shí)水解酸化時(shí),碳氮比為20時(shí)能夠抑制產(chǎn)甲烷菌活性,同時(shí)提高水解酸化率,得到單位總污泥濃度的化學(xué)需氧量(COD)產(chǎn)率為368.7 mgg。此外,預(yù)處理技術(shù)也常被用來強(qiáng)化水解酸化過程。Liu等[5]研究了超聲處理后堿性條件下厭氧發(fā)酵剩余污泥在pH為10時(shí),蛋白質(zhì)和多糖濃度逐漸增加,但蛋白酶活性有所降低?,F(xiàn)今很多污水處理廠面臨剩余污泥中有機(jī)質(zhì)濃度低的問題。采用傳統(tǒng)低溫水解酸化時(shí),生化代謝效率較低。李延晅等[6]研究得到高溫條件下能有效提高水解酸化效率和污泥降解效率。水解酸化過程限制因素主要是固體顆粒物的水解過程,而水解主要由蛋白水解酶和淀粉水解酶等起作用。因此,如果能夠強(qiáng)化該類水解酶的合成,則能強(qiáng)化剩余污泥水解酸化過程。微生物交替經(jīng)歷好氧厭氧或者缺氧厭氧,能促進(jìn)對(duì)活性污泥的降解;還能促進(jìn)相關(guān)酶的合成,強(qiáng)化產(chǎn)甲烷效率[7-8]。上述研究主要針對(duì)污泥消化處理,厭氧和好氧處理時(shí)間較長(zhǎng)(幾小時(shí)至幾天)。但基于該類原理,在短時(shí)電子受體沖擊條件下(曝氣充氧或投加硝態(tài)氮提供不同電子受體抑制產(chǎn)甲烷菌活性,同時(shí)可能會(huì)促進(jìn)水解酶的合成等)能否會(huì)強(qiáng)化污泥水解,促進(jìn)VFAs的積累,仍需深入研究。
筆者針對(duì)低有機(jī)質(zhì)濃度的剩余污泥,采用55 ℃的高溫運(yùn)行條件,研究電子受體沖擊(在厭氧水解酸化開始時(shí)進(jìn)行短時(shí)曝氣或投加硝態(tài)氮)對(duì)剩余污泥水解酸化運(yùn)行性能的影響,重點(diǎn)考察了水解酸化過程中水解、酸化效果和氮磷營(yíng)養(yǎng)元素的釋放,以期為剩余污泥的資源化提供預(yù)處理技術(shù)和參考。
1.1 剩余污泥水解酸化試驗(yàn)
研究了短時(shí)曝氣反應(yīng)器(SBR-O2)、硝酸鹽反應(yīng)器(SBR-NO3)和亞硝酸鹽反應(yīng)器(SBR-NO2)中3種不同電子受體的沖擊,同時(shí)設(shè)置無電子受體沖擊的厭氧水解酸化反應(yīng)器(SBR-C)作對(duì)照。采用容積為5 L的具蓋螺紋玻璃瓶作為反應(yīng)器,其有效反應(yīng)容積為4 L;通過加熱裝置控制水解酸化反應(yīng)溫度為(55±1) ℃;反應(yīng)器用轉(zhuǎn)速為150 rmin的磁力攪拌器進(jìn)行攪拌。反應(yīng)采用序批式運(yùn)行模式,每天進(jìn)料和排料一次,進(jìn)、排泥時(shí)通氮?dú)庾鳛楸Wo(hù)氣。進(jìn)泥后向SBR-O2內(nèi)通氣15 min;向SBR-NO3中投加硝酸鹽,使初始硝酸鹽氮-N)濃度為10 mgL;向SBR-NO2中投加亞硝酸鹽,使初始亞硝酸鹽氮-N)濃度為10 mgL;SBR-C不投加其他物質(zhì)作為對(duì)照。每天排泥量為1 L,控制污泥齡為4 d。
試驗(yàn)所用污泥取自昆明市某水質(zhì)凈化廠二沉池,污泥取出后靜置沉淀,排出上清液以濃縮污泥。運(yùn)到實(shí)驗(yàn)室于4 ℃冰箱內(nèi)保存,待用。預(yù)處理后的濃縮污泥主要指標(biāo):pH為6.5,溶解性COD(重鉻酸鉀法,全文同)為70 mgL,總COD為11 430 mgL,氨氮-N)濃度為6.95 mgL,正磷酸鹽(PO43--P)濃度為1.08 mgL,溶解性蛋白質(zhì)濃度為9.3 mgL,溶解性多糖濃度為6.9 mgL,懸浮固體(SS)濃度為15.52 gL,揮發(fā)性懸浮固體(VSS)濃度為8.86 gL,VFAs濃度為22.63 mgL。
1.2 分析方法
VFAs濃度采用氣相色譜儀進(jìn)行測(cè)定。氣相色譜進(jìn)樣瓶加入1 mL樣品,然后加入30 μL純甲酸,使樣品pH小于3.0;檢測(cè)器為氫離子火焰檢測(cè)器(FID),色譜柱型號(hào)為HP-5毛細(xì)管柱(30 m×0.32 mm×0.25 μm);以高純氮?dú)鉃檩d氣,分流比為20∶1,進(jìn)樣量為2.0 μL;進(jìn)樣口溫度為200 ℃;FID檢測(cè)器溫度為240 ℃。柱溫升溫程序:初始溫度為80 ℃,保留2 min;升溫速率10 ℃min;溫度升至200 ℃時(shí)保留2 min。柱流量為3.5 mLmin。運(yùn)行時(shí)間為每個(gè)樣品約16 min。2個(gè)平行樣每個(gè)指標(biāo)各測(cè)量1次,取2個(gè)平行樣數(shù)據(jù)的平均值為試驗(yàn)數(shù)據(jù)。
三維熒光光譜采用HITACHI F-7000熒光分光光度計(jì)測(cè)定。激發(fā)波長(zhǎng)掃描范圍為220~450 nm,掃描間隔為5.0 nm,發(fā)射波長(zhǎng)掃描范圍為240~600 nm,掃描間隔為1.0 nm,激發(fā)和發(fā)射狹縫寬度均為5 nm,掃描速度為30 000 nmmin。
分子量分布采用凝膠排阻色譜法測(cè)定。儀器為高效液相色譜儀(HPLC,Shimadzu LC-20AD)及在線型TOC分析儀(GE Sievers 900)。色譜柱為TSK-GEL G3000PWXL(7.8 mm×300 mm)與TSK-GEL G2500PWXL(7.8 mm×300 mm),柱溫為40 ℃,流動(dòng)相為0.105 molL磷酸鹽緩沖液。
2.1 污泥水解效率分析
圖1 電子受體沖擊條件下污泥SS濃度和VSS濃度變化Fig.1 Dynamics of sludge SS concentration and VSS concentration under electron shocking conditions
伴隨著剩余污泥的水解,固體有機(jī)物逐漸轉(zhuǎn)化為液態(tài)有機(jī)物。試驗(yàn)過程中COD、蛋白質(zhì)和多糖濃度隨時(shí)間變化如圖2所示。
圖2 電子受體沖擊條件下COD、蛋白質(zhì)和多糖濃度變化Fig.2 Dynamics of soluble COD, protein and carbohydrate under electron shocking conditions
2.2 污泥酸化效率分析
圖3 電子受體沖擊條件下VFAs濃度及其組分分布Fig.3 Dynamics of VFAs concentrations and its components under electron shocking conditions
不同電子沖擊條件下各反應(yīng)器VFAs濃度及其組分如圖3所示。
2.3 污泥水解酸化過程中氮磷營(yíng)養(yǎng)元素釋放
圖4 電子受體沖擊條件下-N和PO43--P濃度變化Fig.4 Ammonia and phosphorus release under electron shocking conditions
2.4 反應(yīng)器出水有機(jī)組分分析
反應(yīng)器出水中有機(jī)物的分子量大小和不同組分的分布,能在一定程度上反應(yīng)水解酸化效率。不同電子沖擊條件下各反應(yīng)器溶液中有機(jī)物分子量分布如圖5所示。
圖5 電子受體沖擊條件下出水有機(jī)物分子量分布Fig.5 Molecular distribution for effluent organic carbons under electron shocking conditions
圖6 電子受體沖擊條件下出水有機(jī)物三維熒光分布Fig.6 Organic carbon types analyzed by the excitation emission matrix florescence spectroscopy under electron shocking conditions
小于500 Da的主要是葡萄糖、乙酸鈉等小分子物質(zhì),500~3 000 Da為腐殖酸類等難降解物質(zhì),而10 000~30 000 Da主要是生物代謝物質(zhì)[18]。在穩(wěn)定條件下,各反應(yīng)器出水中有機(jī)物主要以分子量小于1 000 Da為主,且以無電子沖擊厭氧條件下強(qiáng)度最低,與其VFAs等濃度較低相一致。短時(shí)好氧沖擊條件下,所有分子量有機(jī)物的強(qiáng)度均較高,說明其濃度也較高,主要與其固體顆粒物的水解酸化程度較高有關(guān)。
反應(yīng)器中有機(jī)物的三維熒光分布如圖6所示。由圖6可見,在分布的5個(gè)區(qū)域內(nèi),以Ⅳ區(qū)為主要類型,其次為Ⅰ和Ⅱ區(qū)物質(zhì),Ⅲ區(qū)和Ⅴ區(qū)內(nèi)物質(zhì)強(qiáng)度相對(duì)較低。同時(shí),以短時(shí)好氧沖擊條件下強(qiáng)度最高。由此也證明,好氧沖擊條件有利于有機(jī)物的水解酸化,能提高溶液中有機(jī)物的濃度。Ⅴ區(qū)和ⅠⅡ區(qū)對(duì)應(yīng)的物質(zhì)主要是色氨酸(激發(fā)波長(zhǎng)為230 nm)和酪氨酸(激發(fā)波長(zhǎng)為275 nm)[19]。該類物質(zhì)主要是外源有機(jī)物,是典型的污水或垃圾滲濾液中的溶解性有機(jī)物[20]。因此,三維熒光檢測(cè)的主要物質(zhì)為蛋白質(zhì)類有機(jī)物,尤其是在短時(shí)曝氣沖擊條件下,濃度更高。這與以上-N釋放等得到的結(jié)論一致,也即蛋白質(zhì)類物質(zhì)的累積是由于強(qiáng)化水解效率導(dǎo)致。因此,進(jìn)一步研究有必要強(qiáng)化酸化過程,例如采用高溫水解和中溫酸化相結(jié)合的模式,促進(jìn)蛋白質(zhì)類物質(zhì)的酸化過程。
(1)采用短時(shí)曝氣沖擊模式,能夠有效提高厭氧水解酸化過程中污泥去除效率。短時(shí)曝氣和對(duì)照組條件下,污泥VSS去除率分別為40%和31%。
(3)引入電子受體沖擊主要是改善固體物質(zhì)的降解效率,并沒有影響酸化的代謝模式,產(chǎn)生的VFAs主要以丁酸型發(fā)酵為主。
[1] GEOL R K,NOGUERA D R.Evaluation of sludge yield and phosphorus removal in a Cannibal solids reduction process[J].Journal of Environmental Engineering,2006,132:1331-1337.
[2] SABY S,DJAFER M,CHEN G H.Effect of low ORP in anoxic sludge zone on excess sludge production in oxic-settling-anoxic activated sludge process[J].Water Research,2003,37:11-20.
[3] KIM M,AHN Y H,SPEECE R E.Comparative process stability and efficiency of anaerobic digestion: mesophilic vs. thermophilic[J].Water Research,2002,36:4369-4385.
[4] JIA S,DAI X,ZHANG D,et al.Improved bioproduction of short-chain fatty acids from waste activated sludge by perennial ryegrass addition[J].Water Research,2013,47:4576-4584.
[5] LIU Y,LI X,KANG X,et al.Short chain fatty acids accumulation and microbial community succession during ultrasonic-pretreated sludge anaerobic fermentation process: effect of alkaline adjustment[J].International Biodeterioration and Biodegradation,2014,94:128-133.
[6] 李延晅,郭玉梅,王瑩瑩,等.不同溫度條件下低有機(jī)質(zhì)剩余污泥水解酸化試驗(yàn)研究[C]第九屆中國(guó)城鎮(zhèn)水務(wù)發(fā)展國(guó)際研討會(huì)論文集. 北京:中國(guó)城鎮(zhèn)供水排水協(xié)會(huì),2014:234-238.
[7] NOVAK J T,BANJADE S,MURTHY S N.Combined anaerobic and aerobic digestion for increased solids reduction and nitrogen removal[J].Water Research,2011,45:618-624.
[8] MSHANDETE A,BJORNSSON L,KIVAISI A K,et al.Enhancement of anaerobic batch digestion of sisal pulp waste by mesophilic aerobic pre-treatment[J].Water Research,2005,39:1569-1575.
[9] 國(guó)家環(huán)境保護(hù)總局.水和廢水監(jiān)測(cè)分析方法[M].4版.北京:中國(guó)環(huán)境科學(xué)出版社,2002.
[10] LOWRY O H,ROSEBROUGH N J,FARR A L,et al.Protein measurement with the Folin phenol reagent[J].The Journal of Biological Chemistry,1951,193:265-275.
[11] DUBOIS M,GILLES K A,HAMILTON J K,et al.Colorimetric method for determination of sugars and related substances[J].Analytical Chemistry,1956,28:350-356.
[12] LIU X,DONG B,DAI X.Hydrolysis and acidification of dewatered sludge under mesophilic, thermophilic and extreme thermophilic conditions: effect of pH[J].Bioresource Technology,2013,148:461-466.
[13] REN N Q,WANG B Z,HUANG J C.Ethanol-type fermentation from carbohydrate in high rate acidogenic reactor[J].Biotechnology and Bioengineering,1997,54(5):428-433.
[14] ZHANG P,CHEN Y,ZHOU Q.Waste activated sludge hydrolysis and short-chain fatty acids accumulation under mesophilic and thermophilic conditions: effect of pH[J].Water Research,2009,43:3735-3742.
[15] XIONG H,CHEN J,WANG H,et al.Influence of volatile solid concentration, temperature and solid retention time for the hydrolysis of waste activated sludge to recover volatile fatty acids[J].Bioresource Technology,2012,119:285-292.
[16] AHN Y H,SPEECE R E.Elutriated acid fermentation of municipal primary sludge[J].Water Research,2006,40:2210-2220.
[17] BENISCH M,BAUR R,BRITTON A,et al.Utilizing phosphorus recovery for optimization of the biological nutrient removal process[C]2nd IWA Specialized Conference on Nutrient Management in Wastewater Treatment Processes,Krakow:Poland International Water Association,2009.
[18] ZHOU Z,QIAO W,XING C,et al.Characterization of dissolved organic matter in the anoxic-oxic-settling-anaerobic sludge reduction process[J].Chemical Engineering Journal,2015,259:357-363.
[19] SUOR D,MA J,WANG Z,et al.Enhanced power production from waste activated sludge in rotating-cathode microbial fuel cells:the effects of aquatic worm predation[J].Chemical Engineering Journal,2014,248:415-421.
[20] GUO W,XU J,WANG J,et al.Characterization of dissolved organic matter in urban sewage using excitation emission matrix florescence spectroscopy and parallel factor analysis[J].Journal of Environmental Sciences,2010,22:1728-1734. ○
Characteristics of Thermophilic Anaerobic Hydrolysis and Acidification of Low-organic Carbon Sludge under Electron Acceptor Shocking Conditions
WU Guangxue1, LI Yanxuan1, WANG Yingying1, GUO Yumei2, WU Yihui2, GUO Fang2
1.Key Laboratory of Microorganism Application and Risk Control (MARC) of Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China 2.Kunming Dianchi Water Service Co., Ltd., Kunming 650228, China
Hydrolysis and acidification of residual sludge is the prerequisite for its consequent energy and resource utilization. As to the low-organic carbon sludge, the characteristics of thermophilic anaerobic hydrolysis and acidification under electron acceptor shocking conditions were examined, especially for hydrolysis, acidification and nitrogenphosphorus nutrient release. The results showed that under short-term aeration shocking conditions, efficiency of anaerobic hydrolysis and acidification was enhanced significantly, with the volatile suspended solids reduction percentage of 40% compared to 31% without shocking effect. Concurrently, the shock condition enhanced soluble chemical oxygen demand production, especially for protein. By incorporating the electron shock, it mainly affected the hydrolysis efficiency rather than the acidification mode, with the acidification type of butyrate fermentation. The release of ammonia and also measurements by both excitation emission matrix florescence spectroscopy and molecular distribution indicated that the difference of protein-type substances was mainly contributed from hydrolysis rather than acidification. Electron acceptor shocking, especially short-term aeration, is an effective technique to enhance anaerobic hydrolysis and acidification of residual sludge.
low-organic carbon sludge; hydrolysis and acidification; electron acceptor shocking; thermophilic anaerobic digestion
吳光學(xué),李延晅,王瑩瑩,等.電子受體沖擊條件下低有機(jī)質(zhì)剩余污泥的高溫厭氧水解酸化性能[J].環(huán)境工程技術(shù)學(xué)報(bào),2016,6(1):1-7.
WU G X, LI Y X, WANG Y Y, et al.Characteristics of thermophilic anaerobic hydrolysis and acidification of low-organic carbon sludge under electron acceptor shocking conditions[J].Journal of Environmental Engineering Technology,2016,6(1):1-7.
2015-09-16
國(guó)家水體污染控制與治理科技重大專項(xiàng)(2011ZX07317-001);昆明市科技計(jì)劃項(xiàng)目(2014-04-A-S-01-3065)
吳光學(xué)(1979—),男,副教授,博士,主要從事污水脫氮除磷及廢物資源化回收利用研究,wu.guangxue@sz.tsinghua.edu.cn
X703
1674-991X(2016)01-0001-07
10.3969j.issn.1674-991X.2016.01.001