• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Co與甜菜堿類衍生物形成的兩種配合物的結(jié)構(gòu)和磁性特征

    2016-05-03 07:06:38王學(xué)玲李松林劉雪佳
    關(guān)鍵詞:晶體結(jié)構(gòu)

    王學(xué)玲李松林*,劉雪佳

    (1天津大學(xué)理學(xué)院化學(xué)系,天津 300354) (2北京航空材料研究院,北京 100095)

    ?

    王學(xué)玲1李松林*,1劉雪佳2

    (1天津大學(xué)理學(xué)院化學(xué)系,天津300354) (2北京航空材料研究院,北京100095)

    摘要:合成了2種新的Co的配合物{[Co(L1)2(H2O)2](ClO4)2·4H2O}n(1)和{[Co(L2)2(H2O)4](ClO4)2·8H2O·L2}n(2)(L1=1,1′-(4,4′-二亞甲基聯(lián)苯)二(1-吡啶鎓-3-羧酸鹽),L2=1,1′-(4,4′-二亞甲基聯(lián)苯)二(1-吡啶鎓-4-羧酸鹽)),并且分別用紅外光譜、熱差分析、X射線粉末衍射和X射線單晶衍射表征了這兩種化合物。晶體結(jié)構(gòu)分析表明L1,L2,1和2分別屬于P21/c,P21/c,P1和P1空間群?;衔?中的Co與L1配位形成二維的配位聚合物,2中的Co與L2配位形成獨(dú)立的陽(yáng)離子。二者的晶體結(jié)構(gòu)都含有大量的氫鍵作用或者配位鍵形成的孔狀結(jié)構(gòu)。此外,磁性研究表明,1和2中都存在反鐵磁性相互作用。

    關(guān)鍵詞:甜菜堿衍生物;Co配合物;晶體結(jié)構(gòu);化學(xué)磁性

    0 Introduction

    In the past decades, coordination polymers have been the central research field of coordination chemistry and attracted much attention of researchers because of their fascinating structures, potential applications in magnetism, luminescence, adsorption, and catalysis, and so on[1-6]. Among these applicationsthe magnetic properties of coordination polymers occupy a special position, and many new single molecule magnets (SMMs) based on Mn12[7], Ni12[8], and to a lesser extent, Cohave been reported[9-10].

    Scheme 1

    1 Experimental

    1.1 Materials and physical measurements

    All chemicals and solvents were reagent grade without further purification. The 4,4′-bis(chloromethyl) biphenyl was synthesized according to method in the literature[17].1H NMR spectra were recorded with Bruker AVANCEⅢspectrometer operated at 400 MHz (1H). The IR spectra were recorded from KBr pellets in the range of 4 000~400 cm-1with a Bio-Rad Excalibur FTS 3000 spectrometer. Elemental analyses were performed on a Vario Micro cube element analyzer. Powder X-ray diffraction (PXRD) patterns were taken on a Rigaku D/Max-2500 X-ray diffractometer with Cu Kα radiation (λ=0.154 18 nm), and the PXRD patterns were examined out by the simulations of the single-crystal diffraction data by the Mercury program. The magnetic measurements were carried out with a Quantum Design MPMS-XL7 and a PPMS-9 ACMS magnetometer. The diamagnetic corrections for the coordination compounds were estimated using Pascal′s constants, and magnetic data were corrected for diamagnetic contributions of the sample holder. The thermal properties of 1 and 2 were investigated by thermogravimetric analysis (Fig.S1) under a nitrogen protective atmosphere, and the thermal degradation process was studied from 40 to 800℃at a heating rate of 10.0℃·min-1.

    1.2 Synthesis

    1.2.1 Synthesis of 1,1′-(4,4′-bis(methylene)biphenyl) bis(1-pyridinium-3-carboxylate) (L1)

    The 4,4′-bis(chloromethyl)biphenyl (3.0 g, 12.0 mmol) was dissolved in ethanol (75 cm3), and ethyl nicotinate (5 cm3, 36.7 mmol, excessive 50%) was added. The reaction mixture was refluxed for 48 h and the solvent was removed under reduced pressure. Then the syrupy product was dissolved in acetone, and white precipitate formed under continuously stirring of the solution. The precipitate was filteredand washed with acetone until the filtrate being colorless. The product was dissolved in HCl (15%, 60 cm3) and refluxed for 4 h. After removal of the solvent under reduced pressure, the residue was dissolved in minimum amount of water and treated with 1,2-epoxypropane at 30℃until pH≈7. The solvent was removed under reduced pressure, then the syrupy residual was dissolved in DMF, and the mixture was stirred until precipitate formed. After recrystallization of the precipitate in H2O/DMF, the product was obtained. Yield: 2.8 g, 41.8%. IR (cm-1): 3 458 (m), 3 067(m), 1 647(s, carboxylate νasym), 1 374 (s, carboxylate νsym), 778(s), 619(m);1H NMR (400 MHz, D2O):δ 9.04 (s, 2H), 8.77 (d, J=6.1 Hz, 2H), 8.61 (d, J=8.0 Hz, 2H), 7.91~7.78 (m, 3H), 7.24 (d, J=8.2 Hz, 4H), 7.13 (d, J=8.1 Hz, 4H), 5.67 (s, 4H), 2.91 (s, 3H), 2.76 (s, 3H). Elemental analysis Calcd. for C26H20N2O4· 3H2O·DMF(%): C, 63.16; H, 5.99; N, 7.62. Found(%): C, 63.10; H, 5.89; N, 7.58.

    The synthesis procedure of L2 was similar to that of L1 except that ethyl isonicotinate was used instead of ethyl nicotinate. Yield: 3.2 g, 52.3%. IR (cm-1): 3 423(s), 3 041(m), 1 634(s, carboxylate νasym), 1 368(s, carboxylate νsym), 774(m), 694(m);1H NMR (400 MHz, D2O)δ 8.89 (d, J=6.7 Hz, 4H), 8.16 (d, J=6.7 Hz, 4H), 7.64 (d, J=8.2 Hz, 4H), 7.46 (d, J=8.2 Hz, 4H), 5.78 (s, 4H). Elemental analysis Calcd. for C26H20N2O4·4H2O (%): C, 62.90; H, 5.65; N, 5.65. Found(%): C, 63.20; H, 5.73; N, 5.58.

    1.2.2 {[Co(L1)2(H2O)2](ClO4)2·4H2O}n(1)

    Co(ClO4)2·6H2O (366.0 mg, 1.0 mmol) and L1· 3H2O·DMF (275.5 mg, 0.5 mmol) were dissolved in 8 cm3H2O/DMF (2∶1, V/V), and the result solution was heated at ca. 80℃under stirring for 30 min. The reaction mixture was cooled to room temperature and filtered. Pink prismatic single crystals suitable for single crystal X-ray diffraction structure analysis were obtained after the filtrate was allowed to stand for several days at ambient temperature. Yield: 512 mg, 42.2%. IR(cm-1): 3 396(s), 3 081(m), 1 640(s, carboxylate νasym), 1 388 (s, carboxylate νsym), 1 089 (s), 764 (m), 684 (m), 625 (m). Elemental analysis Calcd. for C52H52Cl2CoN4O22(%): C, 51.37; H, 4.30; N, 4.61. Found (%): C, 50.77; H, 4.67; N, 4.40.

    1.2.3 {[Co(L2)2(H2O)4](ClO4)2·8H2O·L2}n(2)

    The preparation procedure of this compound was analogous to that of 1. To the aqueous solution of Co(ClO4)2·6H2O (366 mg, 1.0 mmol) and L2·4H2O (248 mg, 0.5 mmol), 8 cm3H2O/DMSO (2∶1, V/V) was added dropwise. Pink prismatic crystals were obtained. Yield: 700 mg, 40.1%. IR(cm-1): 3 410(s), 3 051(m), 1 632(s, carboxylate νasym), 1 380 (s, carboxylate νsym), 1 088(s), 856(m), 624(m). Elemental analysis Calcd. for C78H84Cl2CoN6O32(%): C, 53.57; H, 4.81; N, 4.81. Found(%): C, 53.22; H, 5.17; N, 4.71.

    1.3 X-ray diffraction data collection, structure determination and refinement

    The intensities of L1·3H2O·DMF, L2·4H2O, 1 and 2 were collected on a Rigaku Saturn CCD diffractometer (confocal-monochromated Mo Kα radiation: λ=0.071 073 nm). Absorption correction based on multi-scan was applied to the intensity data processing.

    The structures were solved by direct method using SIR2014 software[18], and the non-hydrogen atoms except the oxygen atoms of the disordered perchlorate anion in 2 were refined anisotropically by full-matrix least squares method based on all the diffraction data using the SHELX 2014 program package[19]. Attempting to anisotropically refine the oxygen atoms of the disordered perchlorate anion in 2 always causes some oxygen atoms non-positively determined, thus isotropically refinements are applied to them. All hydrogen atoms unless those on coordination free water molecules were placed at their calculated positions, however, the hydrogen atoms on water molecules were located by calculation using Wingx[20]or from the difference Fourier map, and allowed to ride on their respective parent atoms and included in the structure factor calculations. One of the benzene rings in 1 adopts two orientations with the occupation of 0.471 and 0.529, respectively, and a perchlorate anion in 2 displays two-fold disorder about Cl2-O20 bond with the occupation of 0.456 and 0.544, respectively. Checking the structure of 2 with Platon program shows it may crystallize in space group P1, however, transforming the structure from space group P1 to P1with Platon and refining it using SHELX 2014 lead to unacceptable R factors and abnormal thermal parameters. The existence of disordered perchlorate ion in 2 may be responsible for the structure only solved and refined in space group P1.

    CCDC: 1439325, L1·3H2O·DMF; 1442802, L2· 4H2O; 1439327, 1; 1439328, 2.

    2 Results and discussion

    2.1 IR spectra of the compounds

    The IR spectra of L1·3H2O·DMF, L2·4H2O, 1 and 2 were measured. The absorptions at 1 647, 1 634, 1 640, 1 632 cm-1are assigned to the asymmetric stretching vibration νasym, and the absorptions at 1 374, 1 368, 1 388, 1 380 cm-1correspond to the symmetric stretching vibration νsymof the carboxylate groups in L1·3H2O·DMF, L2·4H2O, 1 and 2, respectively. It is well known that the Δν value (Δν=νasym-νsym) of carboxylate group is relative to its coordination mode with metal ions[21]. The similar Δν values (273, 266, 252, 252 cm-1for L1·3H2O·DMF, L2·4H2O, 1 and 2, respectively) indicate that the environments of the carboxylate groups of these compounds in solid state have little difference, which implies that the hydrogen bond formation have a significant effect on the vibration of the carboxylate group.

    2.2 Crystal structure analysis

    2.2.1 Crystal structure of L1·3H2O·DMF

    Compound L1·3H2O·DMF crystallizes in space group P21/c with the asymmetric unit consisting of one L1 molecule, one DMF molecule and three water molecules. The L1 molecule exhibits a Z-conformation(relative to biphenyl group) with the pyridinium rings being nearly perpendicular to the phenyl rings (106.77(7)°and 106.02(6)°) (Fig.1). Adjacent L1 molecules and two water molecules are joined by hydrogen bonds (O…O distances: 0.281 7(2)~0.288 1(2) nm) to zig-zag chains with nodes of hydrogen bonded 8-membered rings in chair conformation. Sinusoidal planes are constructed by gluing adjacent chains through hydrogen bonds between oxygen atoms of carboxylate groups and O3W′s molecules (O…O distances: 0.272 5(2) and 0.269 3(2) nm) (Fig.2), and DMF molecules are fitted in between sinusoidal planes. Although there are four phenyl and pyridinium rings in the compound, no π-π interactions are found in L1·3H2O·DMF in solid state.

    Table1 Crystallographic and data collection parameters for L1·3H2O·DMF, L2·4H2O, 1 and 2

    Hydrogen atoms are omitted for clarity; Thermal ellipsoids are drawn at 45% probability levelFig.1 Molecular structure of L1

    Symmetry code: A: x-1, y, z-1Fig.2 Sinusoidal plane in L1·3H2O·DMF

    2.2.2 Crystal structure of L2·4H2O

    L2 together with four water molecules crystallizes in the space group P21/c. Similar to L1, the L2 molecule also adopts a Z-conformation relative to the biphenyl group. However, the dihedral angles between the pyridinium ring and the adjacent phenyl ring being 88.51(8)°and 90.40(8)°indicate that they are more close to mutually perpendicular (Fig.3). Like that in 1, adjacent L2 molecules and water molecules are linked by hydrogen bonds (O…O distances: 0.273 2(3)~ 0.279 5(3) nm) to zig-zag chains with 8-membered hydrogen bonded rings in chair conformation running down a axis. The hydrogen bonded rings can be classified into two types. One of which forms 3-membered hydrogen bonded rings with O4W′s (O…O …O angles: 55.58(6)°~63.73(6)°, O…O distances: 0.279 5(3)~0.303 9(6) nm), and the other links to adjacent chains through hydrogen bonding to a pair of water molecules (O3W′s) (O…O…O angle: 107.55(5)°, O…O distances: 0.279 2(4) and 0.308 2(4) nm), where O2W′s act both as bi-hydrogen bonding donors and bi-hydrogen bonding acceptors, thus forming hydrogen bonded planes (Fig.4). It is worthy to note that there exist π-π interactions between pyridinium and phenyl rings (centroid-centroid distance: 0.372 6(2) nm, shift distance: 0.132 7(3) nm) of the screw-axis related adjacent planes, which further stabilize the 3D structure of the compound.

    Hydrogen atoms are omitted for clarity; Thermal ellipsoids are drawn at 45% probability levelFig.3 Molecular structure of L2

    Symmetry code: A: -2-x, 4-y, 1-z; B: 1-x, 4-y, 2-zFig.4 Hydrogen bonded planes in L2·4H2O

    2.2.3 Crystal structure of 1

    As depicted in Fig.5, the Coatom locates at the crystallographic inverse center, and is six coordinated in a MO6octahedral sphere, in which the four oxygen atoms (O1, O1A, O3, O3A) from monodentate carboxylate groups (Co-O distances: 0.209 1(2) and 0.209 5(2) nm) lay on the equatorial plane, and the two oxygen atoms (O1W, O1WA) from aqua ligands occupy axial positions (Co-O distance: 0.212 5(2) nm). Each of the aqua ligands forms hydrogen bonds with a pair of uncoordinated oxygen atoms of the carboxylate groups. Although the coordination octahedron is elongated somewhat along axial directions, it isobviously in a nearly perfect octahedral conformation (O…Co…O angles: 86.89(9)°~93.11(9)°). Each Coatom is connected to nearby four Coatoms through four L1 molecules thus leading to the formation of coordination plane with large holes (Fig.6). The hole is formed by 84-membered ring with a dimension of 1.892 5(6) nm (Co…Co)×1.587 8(4) nm (Co…Co). Three planes which are shifted along a axis by a relative to each other pack together to form a layer. By careful analysis, there are no obvious interactions, either hydrogen bonding or π-π interactions, found between these planes. The distance between adjacent layers is 1.341 1 nm, and the minimum distance between Coatoms is 0.824 8(3) nm.

    Table2 Selected bond lengths (nm) and angles (°) for L1·3H2O·DMF and L2·4H2O

    Hydrogen atoms are omitted for clarity; Thermal ellipsoids are drawn at 45% probability level; Symmetry code: A: -x+1, -y+1, -z+1Fig.5 Coordination environment of Coin 1

    Fig.6  Plane with holes in 1

    2.2.4 Crystal structure of 2

    Analogous to that in 1 the Coatoms are also in an octahedral MO6coordination environment (Fig. 7), however, the Coatoms do not locate at crystallography inverse centers. Furthermore the equatorial coordination positions are occupied by a pair of transrelated monodentate carboxylate groups and a pair of trans-related aqua ligands, which forces the MO6coordination sphere in 2 being more distorted from perfect octahedron than that in 1 (Co-O distances: 0.205 4(3)~0.215 6(3) nm, O-Co-O angles: 83.6(1)°~ 100.7(1)°). Unlike that in 1, the cation which is discrete rather than coordination polymer contains a pair of L2 molecules with only two of their four carboxylate groups being involved in coordination to the metal ion, and two coordination free carboxylate groups positioning at the ends of the cation as shown in Fig. 7. As hydrogen bond accepters, one of the oxygen atoms from each coordination free carboxylate group link to the aqua ligands (O…O distances: 0.267 4(4) and 0.277 8(4) nm) of the adjacent cations in the direction (111), and a chain, which is along the (111)direction, with quasi-parallel quadrilateral rings (48-membered, 1.672 9 (0) nm (Co1…Co1A)×1.538 4(4) nm (C7…C46A)) is formed (Fig.8). The other oxygen atoms of the coordination free carboxylate groups on the chain attach to the aqua ligands of the adjacent chains thus extending the structure to a layer of channels running down the a direction (Fig.9).

    Hydrogen atoms are omitted for clarity; Thermal ellipsoids are drawn at 45% probability levelFig.7 Coordination environment of Coin 2

    In spite of the coordinating L2 molecules, the crystal of 2 also contains coordination free L2 molecules, which are connected by hydrogen bonds (O …O distances: 0.273 8(5)~0.279 1(5) nm) between the carboxylate groups and water molecules to form a zig-zag thread (Fig.10). The conformation of L2 is nearly the same with that in L2·4H2O, which implies that it may be the most stable conformation of L2 molecule. It is interesting to note that the thread penetrates the channels of different layers, and interacts with channels through hydrogen bonds (O…O distances: 0.257 3(5)~0.287 9(5) nm) and π-π interactions (centroid-centroid distance: 0.389 7(3) and 0.385 8(3) nm, shift: 0.146 1(8) and 0.131 0(7) nm, respectively), weaving the channeled layers to a hydrogen bonded and π-π stacked 3D structure (Fig.11).

    Symmetry code: A: x+1, y+1, z+1; B: x-1, y-1, z-1Fig.8 48-membered quasi-parallel quadrilateral rings in a chain

    Symmetry code: A: x+1, y+1, z+1; B: x+2, y+1, z+1; C: x-1, y, zFig.9  Layer of channels in 2

    Table3 Selected bond lengths (nm) and angles (°) for 1 and 2

    Table4 Selected bond lengths and bond angles of hydrogen bonds in L1·3H2O·DMF, L2·4H2O, 1 and 2

    Symmetry code: A: x+2, y, z+1Fig.10 zig-zag thread constructed by coordination free L2 molecules in 2

    Fig.11 Threads penetrate the channels of different layers in 2

    2.3 Powder X-ray diffraction results

    The powder X-ray diffraction (PXRD) experiments were carried out on the as-synthesized samples. As can be seen in Fig.S2, the experimental PXRD patterns and the simulated patterns generated from the single-crystal diffraction data of L1·3H2O·DMF, L2· 4H2O, 1 and 2 are in good agreement, which indicates that each compound obtained is in single phase state.

    2.4 Thermogravimetric Analyses of 1 and 2

    The TG curve of 1 exhibits four main steps of weight losses occurring in the range of 30~130℃, 130~193℃, 233~280℃and 280~680℃, which corresponds to the weight losses of free water molecules (Obsd. 5.82%, Calcd. 5.93%), aqua ligands (Obsd. 2.85%, Calcd. 2.96%), the ClO4-anions (Obsd. 16.30%, Calcd. 16.38%) and the completely decomposition of the organic ligands, respectively. Although the residuals are known as cobalt oxides, their composition can′t be identified. The TG curve of 2 shows three main steps of weight losses. Firstly, it losses twelve water molecules from 30 to 105℃(Obsd. 12.30% , Calcd. 12.36% ). The dehydrated compound remains stable up to 230℃and then upon further heating the weight loss of 39.30% (Calcd. 39.60%) from 230 to 310℃tallies with the loss of two ClO4-anions and one coordination free ligand. Then upon further heating, it decomposes to unidentified products which are speculated as some oxides of the cobalt.

    2.5 Magnetic studies of 1 and 2

    The direct-current (dc) magnetic susceptibility of 1 and 2 have been carried out in an applied magnetic field of 1 kOe in the range of 2~300 K. The plots of χMT versus T, where χMT is the molar magnetic susceptibility, are shown in Fig.12. Upon cooling, the χMT values of 1 remain almost unchanged between 300 and 150 K. When temperature further decreases, the χMT product decreases slowly to reach a minimum value of 1.96 cm3·mol-1·K at 2 K. For 2, the χMT values keep nearly unvaried between 300 and 100 K and reach a minimum value of 1.82 cm3·mol-1·K at 2 K. The falling trends can be ascribed to the antiferromagnetic interactions among the Coatoms in compounds 1 and 2[22]. At room temperature the χMT values of 1 and 2 are 2.91 cm3·mol-1·K (μeff=4.82μB) and 2.96 cm3·mol-1·K (μeff=4.86μB), respectively, both of which are higher than that expected for one highspin d7ion (1.87 cm3·mol-1·K,μeff=3.87μB, g=2.0), but are close to the value expected for independent spin and orbital moments (L=3, S=3/2,μLS=[L(L+1)+4S(S+ 1)]1/2=5.2μB). It is well known that when coordinated the orbital and spin coupling of Coatom at high temperature would produce effect magnetic moments in the range of 4.7μB~5.2μBfor CoX6coordination sphere, and the effects on magnetic moments vary with how much of the distortion of CoX6sphere from octahedron[23-25]. In 1 and 2, the Coatoms are both in CoO6coordination spheres, but they are distorted from octahedron in different extent, and this may be responsible for the different values of χMT at roomtemperature. In addition, the differences in the minimum Co…Co distances (0.824 8(3) nm for 1 and 0.907 5(2) nm for 2) and the pore sizes (1.892 5(6) nm (Co…Co)×1.587 8 (4) nm (Co…Co) for 1 and 1.672 9(0) nm (Co1…Co1A)×1.538 4(4) nm (C7…C46A) for 2) may also have some influence on the distinctions of their magnetism[13,26-27]. The relations of χMT vs T data for both 1 and 2 show Curie-Weiss behaviors in the range of 100~300 K, with C=2.98 cm3·K·mol-1and θ=-7.99 K for 1, and C=3.04 cm3· K·mol-1and θ=-7.27 K for 2, respectively. The negative values of θ for both compounds also indicate an antiferromagnetic interaction in 1 and 2.

    Fig.12  Plots of χMT vs T (circles) and χM-1vs T (triangles) for 1 and 2

    3 Conclusions

    Two new bidentate betaine derivatives 1,1′-(4,4′-bis(methylene)biphenyl)bis(1-pyridinium-3-carboxylate) (L1) and 1, 1′-(4, 4′-bis(methylene)biphenyl)bis(1-pyridinium-4-carboxylate) (L2) have been synthesized. Both the molecules of L1 and L2 contain four aromatic rings and two naked carboxylate groups which occupy the ends of the molecule and are separated by an 18-membered atomic chain. The connective -CH2groups in the molecules enable it readily adjusting its conformation to accommodate its coordination environment. All these characteristics of the compounds enable them to suitably construct coordinated or hydrogen bonded networks with large pores. In addition, the plenty of aromatic rings in the molecules can be involved in π-π interactions, which could contribute certain stability to the compounds in solid state.

    Supporting information is available at http://www.wjhxxb.cn

    References:

    [1] Yin F, Chen J, Liang Y F, et al. J. Solid State Chem., 2015, 225:310-314

    [2] Zhao M X, Xiong L Q, Qi C M. J. Inorg. Organomet. Polym., 2015,25:1239-1249

    [3] Sun Y Q, Liu S Y, Xu Y Y, et al. Polyhedron, 2014,74:39-48

    [4] Raptopoulou C P, Psycharis V. Inorg. Chem. Commun., 2008, 11:1194-1197

    [5] Maguerb P. L, Ouahab L, Golhen J S, et al. Inorg. Chem., 1994,33:5180-5187

    [6] GUO Hai-Fu(郭海福), LEI Jia-Mei(雷佳眉), MA De-Yun(馬德運(yùn)). Chinese J. Inorg. Chem.(無機(jī)化學(xué)學(xué)報(bào)), 2015,31 (12):2385-2392

    [7] Sessoli R, Gatteschi D, Caneschi A, et al. Nature, 1993,365: 141-143

    [8] Cadiou C, Murrie M, Paulsen C, et al. Chem. Commun., 2001,37:2666-2667

    [9] Wang L F, Li C J, Chen Y C, et al. Chem. Eur. J., 2015,21: 2560-2567

    [10]Greg B, Ekk S. Inorg. Chem., 1985,24:4580-4584

    [11]Carlin R L, Dekker C. Transition Metal Chemistry. New York: Marcel Dekker, Inc., 1965.

    [12]Desiraju G R. Crystal Design: Structure and Function. Chichester: John Wiley & Sons, Ltd. 2003.

    [13]Murray K S. Eur. J. Inorg. Chem., 2008:3101-3121

    [14]Kostakis G E, Perlepes S P, Blatov V A, et al. Coord. Chem. Rev., 2012,256:1246-1278

    [15]Kahn O. Molecular Magnetism. New York: VCH Publishers, 1993.

    [16]Murrie M. Chem. Soc. Rev., 2010,39:1986-1995

    [17]FANG Qi(方奇), ZHU Chun-Yan(朱春燕), REN Xiao-Li(任曉麗), et al. Fine and Specialty Chemicals(精細(xì)與專用化學(xué)品), 2005,13(10):25-27

    [18]Burla M C, Caliandro R, Camalli M, et al. J. Appl. Cryst., 2012,45:357-361

    [19]SHELXTL Version 6. 14 8/06/00, Bruker AXS, 2000-2003.

    [20]Farrugia L J. J. Appl. Crystallogr., 1999,32:837-838

    [21]Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. 6th Ed. New Jersey: John Wiley & Sons, Inc., 2009.

    [22]Nemec I, Machata M, Herchel R, et al. Dalton Trans., 2012, 41:14603-14610

    [23]Carlin R L. Magnetochemistry. New York: Springer-Verlag, 1986.

    [24]Laget V, Hornick C, Rabu P, et al. Coord. Chem. Rev., 1998, 178-180:1533-1553

    [25]Figgis B N, Hitchman M A. Ligand Field Theory and its Applications. Canada: Wiley-VCH, 2000.

    [26]Leznoff D B, Lefebvre J. Gold Bull., 2005,38(2):47-54

    [27]Herve K, Cardor O, Golhen S, et al. Res. Chem. Intermed., 2008,34(2/3):191-199

    Crystal Structures and Magnetic Properties of Two CoCoordination Compounds Based on Bidentate Betaine Derivatives

    WANG Xue-Ling1LI Song-Lin*,1LIU Xue-Jia2
    (1Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China)
    (2Beijing Institute of Aeronautical Materials, Beijing 100095, China)

    Abstract:Two new Cocoordination compounds, namely {[Co(L1)2(H2O)2](ClO4)2·4H2O}n(1) and {[Co(L2)2(H2O)4] (ClO4)2·8H2O·L2}n(2) have been synthesized based on bidentate betaine derivatives (L1=1,1′-(4,4′-bis(methylene) biphenyl)bis(1-pyridinium-3-carboxylate), L2=1,1′-(4,4′-bis(methylene)biphenyl)bis(1-pyridinium-4-carboxylate)), and have been characterized by infrared spectrum, thermogravimetric analysis, powder X-ray diffraction (PXRD) and single crystal X-ray diffraction method. Single crystal X-ray analyses revealed that L1, L2, 1 and 2 crystallize in space group P21/c, P21/c, P1 and P1, respectively. The Coions in 1 coordinated with L1 molecules form 2D coordination polymer, the Coions in 2 coordinated with L2 molecules are discrete cations. The crystal structures of both compounds exhibit large hydrogen bonded or coordinated pores. Magnetic measurements indicated that there exist antiferromagnetic interactions in compounds 1 and 2. CCDC: 1439325, L1·3H2O·DMF; 1442802, L2·4H2O; 1439327, 1; 1439328, 2.

    Keywords:bidentate betaine derivative; Cocoordination compound; crystal structure; chemomagnetism

    DOI:10.11862/CJIC.2016.089

    中圖分類號(hào):O614.81+2

    文獻(xiàn)標(biāo)識(shí)碼:A

    文章編號(hào):1001-4861(2016)04-0720-11

    收稿日期:2015-12-23。收修改稿日期:2016-02-27。(*)通信聯(lián)系人。E-mail:slli@tju.edu.cn

    猜你喜歡
    晶體結(jié)構(gòu)
    例談晶體結(jié)構(gòu)中原子坐標(biāo)參數(shù)的確定
    化學(xué)軟件在晶體結(jié)構(gòu)中的應(yīng)用
    N,N’-二(2-羥基苯)-2-羥基苯二胺的鐵(Ⅲ)配合物的合成和晶體結(jié)構(gòu)
    五元瓜環(huán)與氯化鈣配合物的合成及晶體結(jié)構(gòu)
    鎳(II)配合物{[Ni(phen)2(2,4,6-TMBA)(H2O)]·(NO3)·1.5H2O}的合成、晶體結(jié)構(gòu)及量子化學(xué)研究
    含能配合物Zn4(C4N6O5H2)4(DMSO)4的晶體結(jié)構(gòu)及催化性能
    二維網(wǎng)狀配聚物[Co(btmb)2(SCN)2]n的合成、晶體結(jié)構(gòu)和Pb2+識(shí)別性能
    基于2-苯基-1H-1,3,7,8-四-氮雜環(huán)戊二烯并[l]菲的Pb(Ⅱ)、Co(Ⅱ)配合物的晶體結(jié)構(gòu)與發(fā)光
    氨荒酸配合物([M(MeBnNCS2)3],M=Sb(Ⅲ),Bi(Ⅲ))的合成、晶體結(jié)構(gòu)及抑菌活性
    一個(gè)雙核β-二酮鏑(Ⅲ)配合物的超聲化學(xué)合成、晶體結(jié)構(gòu)和磁性
    日韩av不卡免费在线播放| 在线看a的网站| 老熟女久久久| 一个人看视频在线观看www免费| 永久免费av网站大全| 日本vs欧美在线观看视频 | 水蜜桃什么品种好| 人妻 亚洲 视频| av.在线天堂| 精华霜和精华液先用哪个| 久久ye,这里只有精品| 亚洲精品日本国产第一区| 亚洲av综合色区一区| 一级毛片aaaaaa免费看小| 一级毛片黄色毛片免费观看视频| 国产精品人妻久久久影院| 欧美成人一区二区免费高清观看| 国产欧美日韩一区二区三区在线 | 极品教师在线视频| 国产在线免费精品| 亚洲欧美精品专区久久| 亚洲精品久久午夜乱码| 欧美极品一区二区三区四区| 99re6热这里在线精品视频| 亚洲精品久久久久久婷婷小说| 2018国产大陆天天弄谢| 在现免费观看毛片| 午夜免费观看性视频| 欧美xxⅹ黑人| 国产男女内射视频| 午夜激情福利司机影院| 国产午夜精品一二区理论片| 欧美亚洲 丝袜 人妻 在线| 欧美少妇被猛烈插入视频| 国产片特级美女逼逼视频| tube8黄色片| 黑丝袜美女国产一区| 精品一区二区免费观看| videossex国产| 九九爱精品视频在线观看| 国产在线视频一区二区| 少妇人妻 视频| 免费观看无遮挡的男女| 在线亚洲精品国产二区图片欧美 | 成年av动漫网址| 成人高潮视频无遮挡免费网站| 男女边摸边吃奶| 中文精品一卡2卡3卡4更新| 亚洲成人手机| tube8黄色片| 欧美三级亚洲精品| 久久久国产一区二区| 精品一区二区三区视频在线| 中国美白少妇内射xxxbb| 午夜福利在线在线| 一区二区三区四区激情视频| 久久精品国产鲁丝片午夜精品| 免费av不卡在线播放| 亚洲精品视频女| 日韩中文字幕视频在线看片 | 永久网站在线| av又黄又爽大尺度在线免费看| 麻豆精品久久久久久蜜桃| 免费看av在线观看网站| 黄色欧美视频在线观看| 亚洲第一区二区三区不卡| 色婷婷av一区二区三区视频| 亚洲va在线va天堂va国产| 亚洲av不卡在线观看| 日本黄色日本黄色录像| 少妇人妻 视频| 91精品国产国语对白视频| 中文字幕免费在线视频6| 国产成人精品福利久久| 亚洲国产精品专区欧美| 国模一区二区三区四区视频| 国产乱人偷精品视频| 大陆偷拍与自拍| 久久久久久伊人网av| 性色avwww在线观看| 老女人水多毛片| 肉色欧美久久久久久久蜜桃| 国产精品欧美亚洲77777| 最近2019中文字幕mv第一页| 国产成人freesex在线| av免费观看日本| 在线观看免费高清a一片| 亚洲图色成人| 人妻夜夜爽99麻豆av| 国产精品国产三级国产av玫瑰| 免费观看的影片在线观看| 在线观看一区二区三区激情| 身体一侧抽搐| 国产精品女同一区二区软件| 91精品国产九色| 亚洲,欧美,日韩| 精品少妇黑人巨大在线播放| 国产深夜福利视频在线观看| 亚洲精品456在线播放app| 如何舔出高潮| 久久精品国产鲁丝片午夜精品| 精品一区二区三卡| 久久这里有精品视频免费| 日韩国内少妇激情av| 欧美xxⅹ黑人| av网站免费在线观看视频| 蜜臀久久99精品久久宅男| 少妇人妻 视频| 十分钟在线观看高清视频www | av卡一久久| 国产爽快片一区二区三区| 黄色日韩在线| 麻豆国产97在线/欧美| 最近2019中文字幕mv第一页| 麻豆成人av视频| 国产一区二区在线观看日韩| 亚洲av免费高清在线观看| 在线观看免费视频网站a站| 国产黄色免费在线视频| 亚洲色图综合在线观看| 在线观看一区二区三区激情| 街头女战士在线观看网站| 最近中文字幕高清免费大全6| 熟妇人妻不卡中文字幕| 交换朋友夫妻互换小说| 视频中文字幕在线观看| 蜜桃久久精品国产亚洲av| 色网站视频免费| 国产成人精品婷婷| 晚上一个人看的免费电影| 国产精品一区二区在线观看99| 色吧在线观看| 建设人人有责人人尽责人人享有的 | 国产一区二区三区综合在线观看 | 午夜免费观看性视频| 久久99蜜桃精品久久| 国产成人免费无遮挡视频| 尤物成人国产欧美一区二区三区| 亚洲一区二区三区欧美精品| 啦啦啦视频在线资源免费观看| 免费黄频网站在线观看国产| 国产精品国产三级专区第一集| 美女xxoo啪啪120秒动态图| 女的被弄到高潮叫床怎么办| 免费观看av网站的网址| 欧美一区二区亚洲| 国产亚洲av片在线观看秒播厂| 高清黄色对白视频在线免费看 | 妹子高潮喷水视频| 免费观看在线日韩| 国产精品精品国产色婷婷| 中文字幕制服av| 肉色欧美久久久久久久蜜桃| 亚洲精品久久午夜乱码| 一级毛片aaaaaa免费看小| 中文欧美无线码| 美女内射精品一级片tv| 久热这里只有精品99| 亚洲精品久久久久久婷婷小说| 成人漫画全彩无遮挡| 国模一区二区三区四区视频| 国产淫片久久久久久久久| 亚洲图色成人| 日产精品乱码卡一卡2卡三| 久久韩国三级中文字幕| 另类亚洲欧美激情| 男女下面进入的视频免费午夜| 午夜老司机福利剧场| 成年女人在线观看亚洲视频| 在线观看一区二区三区| 狂野欧美白嫩少妇大欣赏| 免费看光身美女| 久久久成人免费电影| 亚洲国产精品成人久久小说| 精品酒店卫生间| 777米奇影视久久| 成年免费大片在线观看| 夜夜看夜夜爽夜夜摸| 久久久精品94久久精品| 国产深夜福利视频在线观看| 只有这里有精品99| 大香蕉97超碰在线| 国产成人freesex在线| 各种免费的搞黄视频| 亚洲精品成人av观看孕妇| 黄色一级大片看看| 97在线视频观看| 国产精品蜜桃在线观看| 亚洲精品aⅴ在线观看| 久久综合国产亚洲精品| 夜夜爽夜夜爽视频| 26uuu在线亚洲综合色| av不卡在线播放| 在线播放无遮挡| 99久久精品热视频| 国产视频内射| 在线天堂最新版资源| 美女视频免费永久观看网站| 国产一区有黄有色的免费视频| 天堂中文最新版在线下载| 日韩强制内射视频| 99热这里只有是精品50| 亚洲成人中文字幕在线播放| 中文乱码字字幕精品一区二区三区| 尾随美女入室| 国产欧美另类精品又又久久亚洲欧美| 欧美 日韩 精品 国产| 国产免费福利视频在线观看| 国产成人a∨麻豆精品| 精品视频人人做人人爽| 草草在线视频免费看| 国产亚洲精品久久久com| 在线精品无人区一区二区三 | 80岁老熟妇乱子伦牲交| 少妇丰满av| 老司机影院成人| 国产一区二区三区综合在线观看 | 内射极品少妇av片p| 成人国产av品久久久| 校园人妻丝袜中文字幕| 午夜视频国产福利| 777米奇影视久久| 特大巨黑吊av在线直播| 亚洲激情五月婷婷啪啪| 色婷婷久久久亚洲欧美| 成人亚洲欧美一区二区av| 男女国产视频网站| 日日啪夜夜爽| 日本与韩国留学比较| 国产精品精品国产色婷婷| 欧美性感艳星| 夜夜骑夜夜射夜夜干| 人妻 亚洲 视频| 久久99热这里只有精品18| 狂野欧美激情性bbbbbb| 亚洲欧美一区二区三区黑人 | 国产v大片淫在线免费观看| 亚洲欧美精品自产自拍| 亚洲色图综合在线观看| 熟女av电影| 十分钟在线观看高清视频www | 亚洲国产毛片av蜜桃av| 精品国产乱码久久久久久小说| 成年人午夜在线观看视频| 岛国毛片在线播放| 国产综合精华液| 免费少妇av软件| 又大又黄又爽视频免费| 国产视频内射| 亚洲激情五月婷婷啪啪| 久久久久网色| 精品国产露脸久久av麻豆| 一级二级三级毛片免费看| 国产色爽女视频免费观看| av免费观看日本| 乱系列少妇在线播放| 一个人看的www免费观看视频| 噜噜噜噜噜久久久久久91| 观看免费一级毛片| 少妇人妻 视频| 国产精品一二三区在线看| 国产有黄有色有爽视频| 91精品国产国语对白视频| 蜜桃在线观看..| 一级毛片 在线播放| 亚洲成人一二三区av| av在线蜜桃| 91精品伊人久久大香线蕉| 国产午夜精品一二区理论片| 色哟哟·www| 乱码一卡2卡4卡精品| 日本色播在线视频| 国产亚洲一区二区精品| 亚洲av国产av综合av卡| 亚洲国产精品成人久久小说| 永久网站在线| 免费观看的影片在线观看| 五月开心婷婷网| 精品一区在线观看国产| 久久精品熟女亚洲av麻豆精品| 亚洲欧美成人综合另类久久久| 国产精品国产三级国产专区5o| 日本黄大片高清| 国产成人a∨麻豆精品| 国产伦理片在线播放av一区| 狂野欧美激情性xxxx在线观看| 国产日韩欧美在线精品| 日韩三级伦理在线观看| 老师上课跳d突然被开到最大视频| 亚洲成人中文字幕在线播放| 妹子高潮喷水视频| 国产精品偷伦视频观看了| 国产精品久久久久久精品电影小说 | 99九九线精品视频在线观看视频| 一级毛片aaaaaa免费看小| 日韩大片免费观看网站| 亚洲图色成人| 亚洲怡红院男人天堂| 建设人人有责人人尽责人人享有的 | 高清av免费在线| 亚洲图色成人| 精品久久久久久电影网| 纯流量卡能插随身wifi吗| av播播在线观看一区| 国产老妇伦熟女老妇高清| 国产高清不卡午夜福利| 18禁在线无遮挡免费观看视频| 亚洲最大成人中文| 亚洲,一卡二卡三卡| 日韩在线高清观看一区二区三区| 成人影院久久| 国产午夜精品一二区理论片| 国产精品爽爽va在线观看网站| 成人综合一区亚洲| 日韩中文字幕视频在线看片 | 男女国产视频网站| av视频免费观看在线观看| 国产亚洲欧美精品永久| 欧美97在线视频| 国产精品一及| 国产大屁股一区二区在线视频| 久久精品国产自在天天线| 建设人人有责人人尽责人人享有的 | 有码 亚洲区| 精品亚洲成a人片在线观看 | 欧美日本视频| 91久久精品国产一区二区三区| 青春草视频在线免费观看| 高清日韩中文字幕在线| 亚洲人成网站在线播| 日本av免费视频播放| 青春草国产在线视频| 国产永久视频网站| 国产 精品1| 日本黄大片高清| 成人无遮挡网站| 伊人久久精品亚洲午夜| 精品少妇久久久久久888优播| kizo精华| 国产亚洲最大av| 一级毛片aaaaaa免费看小| 中文精品一卡2卡3卡4更新| 精品人妻一区二区三区麻豆| 亚洲综合色惰| 亚洲不卡免费看| 少妇被粗大猛烈的视频| 中文字幕制服av| 久久国产乱子免费精品| 晚上一个人看的免费电影| 欧美日韩视频精品一区| 国产精品伦人一区二区| 久久精品久久久久久噜噜老黄| 超碰97精品在线观看| av播播在线观看一区| 国产精品一二三区在线看| 极品少妇高潮喷水抽搐| 亚洲av中文字字幕乱码综合| 91午夜精品亚洲一区二区三区| 一级片'在线观看视频| 免费看日本二区| 亚洲中文av在线| 亚洲欧洲国产日韩| av国产久精品久网站免费入址| 美女中出高潮动态图| 日产精品乱码卡一卡2卡三| 欧美日韩视频高清一区二区三区二| 国产精品久久久久久精品古装| 伦理电影大哥的女人| 亚洲av男天堂| 久久久久网色| 亚洲欧美成人精品一区二区| 亚洲伊人久久精品综合| 免费黄色在线免费观看| 性高湖久久久久久久久免费观看| 777米奇影视久久| 亚洲国产毛片av蜜桃av| 国产精品免费大片| 在线播放无遮挡| 成人18禁高潮啪啪吃奶动态图 | 国产亚洲一区二区精品| 哪个播放器可以免费观看大片| 妹子高潮喷水视频| 久久精品久久久久久噜噜老黄| 亚洲人成网站在线播| 一区二区av电影网| 观看免费一级毛片| 日本猛色少妇xxxxx猛交久久| 日韩欧美一区视频在线观看 | 久久精品夜色国产| 国产黄频视频在线观看| 纯流量卡能插随身wifi吗| 成人国产麻豆网| 亚洲美女搞黄在线观看| 七月丁香在线播放| 欧美高清性xxxxhd video| 天天躁夜夜躁狠狠久久av| 国产欧美另类精品又又久久亚洲欧美| 精品久久久久久久末码| 国产欧美日韩精品一区二区| 久久99精品国语久久久| 国产精品久久久久久av不卡| 一级爰片在线观看| 久久99精品国语久久久| 国产精品熟女久久久久浪| 晚上一个人看的免费电影| 美女脱内裤让男人舔精品视频| 亚洲国产欧美人成| 亚洲av在线观看美女高潮| 日产精品乱码卡一卡2卡三| 欧美日韩国产mv在线观看视频 | 狂野欧美激情性xxxx在线观看| 亚洲av中文字字幕乱码综合| 欧美日韩视频高清一区二区三区二| 亚洲国产日韩一区二区| 毛片一级片免费看久久久久| 国产有黄有色有爽视频| 人妻少妇偷人精品九色| 一区二区三区精品91| 国产v大片淫在线免费观看| 日韩伦理黄色片| 欧美高清性xxxxhd video| 精品一区二区免费观看| 亚洲三级黄色毛片| 国产精品精品国产色婷婷| 99国产精品免费福利视频| 久久国产亚洲av麻豆专区| 欧美日韩综合久久久久久| 亚洲综合精品二区| 欧美精品人与动牲交sv欧美| 日本黄色片子视频| 日韩不卡一区二区三区视频在线| av在线老鸭窝| 一级毛片电影观看| 成人高潮视频无遮挡免费网站| 嫩草影院入口| 大话2 男鬼变身卡| 99热这里只有是精品在线观看| 亚洲成人中文字幕在线播放| 日日啪夜夜爽| 色哟哟·www| 国产毛片在线视频| 一二三四中文在线观看免费高清| 成人高潮视频无遮挡免费网站| 国产精品精品国产色婷婷| 亚洲人与动物交配视频| 97在线人人人人妻| 看十八女毛片水多多多| 免费大片18禁| 秋霞伦理黄片| 国内揄拍国产精品人妻在线| 老司机影院成人| 日本黄大片高清| 亚洲国产精品成人久久小说| av.在线天堂| 久久午夜福利片| 99re6热这里在线精品视频| 一区在线观看完整版| 高清欧美精品videossex| 国产毛片在线视频| 有码 亚洲区| 国产高清三级在线| 草草在线视频免费看| 蜜桃久久精品国产亚洲av| 亚洲精品乱码久久久久久按摩| 国产精品一区www在线观看| 国产高潮美女av| 亚洲国产精品成人久久小说| 免费av不卡在线播放| 黄色怎么调成土黄色| 国产成人一区二区在线| 色视频在线一区二区三区| 国产伦在线观看视频一区| 天美传媒精品一区二区| 在线播放无遮挡| 欧美少妇被猛烈插入视频| 高清在线视频一区二区三区| www.色视频.com| 精品亚洲成国产av| 亚洲一级一片aⅴ在线观看| 新久久久久国产一级毛片| 菩萨蛮人人尽说江南好唐韦庄| av黄色大香蕉| 免费不卡的大黄色大毛片视频在线观看| 99久久人妻综合| 国产真实伦视频高清在线观看| 午夜激情福利司机影院| 国产黄频视频在线观看| 日本黄色片子视频| 只有这里有精品99| 简卡轻食公司| 亚洲精品亚洲一区二区| 欧美成人精品欧美一级黄| 国产成人免费观看mmmm| 联通29元200g的流量卡| 免费大片18禁| 肉色欧美久久久久久久蜜桃| 麻豆精品久久久久久蜜桃| 99久久精品热视频| 国产在线男女| 91久久精品国产一区二区成人| 全区人妻精品视频| 欧美xxxx性猛交bbbb| 亚洲精品日韩av片在线观看| 少妇精品久久久久久久| 噜噜噜噜噜久久久久久91| 亚洲色图av天堂| 国产精品久久久久久精品电影小说 | 97超视频在线观看视频| 午夜免费男女啪啪视频观看| 卡戴珊不雅视频在线播放| 亚洲欧美一区二区三区黑人 | 亚洲最大成人中文| 亚洲av免费高清在线观看| 免费人妻精品一区二区三区视频| 日日啪夜夜爽| 激情 狠狠 欧美| 黑丝袜美女国产一区| 国产精品99久久99久久久不卡 | 亚洲色图综合在线观看| 大话2 男鬼变身卡| 美女视频免费永久观看网站| 中文精品一卡2卡3卡4更新| 成人一区二区视频在线观看| av国产精品久久久久影院| 身体一侧抽搐| 特大巨黑吊av在线直播| 亚洲内射少妇av| 国产欧美亚洲国产| 久久久久网色| 精品久久久久久久久亚洲| 99热这里只有是精品50| 观看美女的网站| 精品熟女少妇av免费看| 免费在线观看成人毛片| 亚洲av.av天堂| 国产成人午夜福利电影在线观看| 欧美成人a在线观看| 91午夜精品亚洲一区二区三区| 欧美高清性xxxxhd video| 黑人猛操日本美女一级片| 三级经典国产精品| 国产中年淑女户外野战色| www.色视频.com| 日韩在线高清观看一区二区三区| 精品久久久精品久久久| 只有这里有精品99| 国产高清三级在线| 最近中文字幕高清免费大全6| 大话2 男鬼变身卡| 亚洲精品国产av蜜桃| 色哟哟·www| 波野结衣二区三区在线| 久久精品国产亚洲网站| 一本—道久久a久久精品蜜桃钙片| 中文资源天堂在线| 婷婷色综合www| 深夜a级毛片| 日韩视频在线欧美| 亚洲,一卡二卡三卡| 亚洲av欧美aⅴ国产| 99热这里只有精品一区| a级毛片免费高清观看在线播放| 久久久久久久久久久免费av| 秋霞在线观看毛片| 日韩大片免费观看网站| 国产探花极品一区二区| 人妻少妇偷人精品九色| 国产伦精品一区二区三区视频9| 亚洲精华国产精华液的使用体验| 一本久久精品| 国产精品无大码| 日韩电影二区| 99久久综合免费| 欧美亚洲 丝袜 人妻 在线| 丝袜喷水一区| 精品少妇久久久久久888优播| 永久免费av网站大全| 欧美高清性xxxxhd video| 国产精品爽爽va在线观看网站| 在线天堂最新版资源| 99热6这里只有精品| 亚洲欧美日韩无卡精品| 女的被弄到高潮叫床怎么办| 秋霞伦理黄片| 九九久久精品国产亚洲av麻豆| 国产在线一区二区三区精| www.色视频.com| 午夜免费观看性视频| 一区二区三区免费毛片| 久久99蜜桃精品久久| 联通29元200g的流量卡| 99久久综合免费| 91aial.com中文字幕在线观看| 免费少妇av软件| 亚洲成人手机| 黄片无遮挡物在线观看| 男人添女人高潮全过程视频| 欧美成人a在线观看| 亚洲精品,欧美精品| 欧美97在线视频| 国产成人a∨麻豆精品| 蜜臀久久99精品久久宅男| 精品久久久噜噜| 精品少妇久久久久久888优播| 久久精品人妻少妇| 在线观看人妻少妇| 久久97久久精品| 婷婷色麻豆天堂久久| 久久久久久久亚洲中文字幕| 91精品伊人久久大香线蕉| 欧美亚洲 丝袜 人妻 在线| 联通29元200g的流量卡| 精品久久久久久久末码| 国产 一区精品| 亚洲丝袜综合中文字幕|