• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    一系列基于雜多酸構(gòu)筑的配合物的合成,晶體結(jié)構(gòu)及光催化性能

    2016-05-03 07:06:31顧曉敏葉丹丹張文莉
    無機(jī)化學(xué)學(xué)報 2016年4期
    關(guān)鍵詞:晶體結(jié)構(gòu)

    王 蕾 顧曉敏 葉丹丹 張文莉 倪 良

    (江蘇大學(xué)化學(xué)化工學(xué)院,鎮(zhèn)江 212013)

    ?

    一系列基于雜多酸構(gòu)筑的配合物的合成,晶體結(jié)構(gòu)及光催化性能

    王蕾*顧曉敏葉丹丹張文莉倪良

    (江蘇大學(xué)化學(xué)化工學(xué)院,鎮(zhèn)江212013)

    摘要:通過引入菲咯啉衍生物配體并改變反應(yīng)體系中的金屬鹽,得到了3個新的含有雜多酸的金屬-有機(jī)配合物(MOCs),{[Cu2(Do)2(H2O)4(SiW(12)O(40))]·10H2O}n(1),[Ag3(Do)5][Ag(Do)2](SiW(12)O(40)) (2),[Cu2(Do)4(H2O)2Cl](PMo(12)O(44))·2CH3OH (3)(Do=1,10-菲咯啉-5,6-二酮)。在配合物1中,Keggin型雜多酸與Cu連接形成了二維網(wǎng)狀結(jié)構(gòu)。配合物2中的Ag顯示了多種不同的配位模式,構(gòu)建了一個新穎的線性三核簇狀結(jié)構(gòu)。在配合物3中,Cu通過氯原子連接形成了一個雙核結(jié)構(gòu)。結(jié)構(gòu)多樣性表明金屬離子與第二配體Do在構(gòu)建不同結(jié)構(gòu)的POMs中起到很重要的作用。光催化研究表明,配合物3不僅能在UV光照射下有效地催化降解羅丹明B(RhB),而且很穩(wěn)定,能夠從反應(yīng)體系中分離以循環(huán)利用。

    關(guān)鍵詞:雜多酸;水熱合成;晶體結(jié)構(gòu);催化性能

    國家自然科學(xué)基金(No.21507047)、中國博士后基金(No.2015M571695)、江蘇省博士后科學(xué)基金(No.1401176C)和江蘇大學(xué)高級人才啟動基金項目(No.14JDG053)資助。

    *通信聯(lián)系人。E-mail:wanglei86@ujs.edu.cn

    0 Introduction

    The design and construction of polyoxometalate (POMs)-based inorganic-organic hybrid compounds constitute a current topic within the fields of crystal engineering and materials chemistry. This is because their versatile applications in catalysis, photochemistry, electrochemistry, magnetism, and biochemistry[1-4]. In the process of synthesis, POMs can play different roles due to their features of oxygen-rich surface, high charge density and controllable size[5-6]. In our previous work, we report a series of POMs-based materials with various POMs as inorganic building blocks or noncoordinated templates.

    As is known to all, the selection of organic ligands plays an important role in the self-assembly process of prospective POMs-based metal-organic complexes (MOCs), because organic ligands may control and adjust the final structures of target compounds. 1,10-Phenanthroline and its derivatives are used in coordination polymers due to their strong chelating abilities and fine conjugated character[7-9]. Especially, the conjugate aromatic ring will contribute to form novel structures by hydrogen bonds and π-π stacking. Different metal ions are of primary importance in the self-assembly process due to the unclear formation mechanism and multiple coordination modes. The transition metal ions Cuand Agdisplay an ability to coordinate readily to both hard and soft donor centers, and many compounds based on the coordination flexibility of the Cuand Aghave been synthesized and studied[10].

    In this work, 1,10-phenanthroline-5,6-dione (Do) was selected as the multidentate ligand to assemble with Cu/Agions and various POMs for constructing new MOCs, in order to investigate whether the combination of multinuclear clusters with diverse metal ions could be realized, and to explore the role of polyoxoanions in the formation of the target compounds. Three POM-based MOCs containing multinuclear Cu/Agclusters and two types of POM were obtained: {[Cu2(Do)2(H2O)4(SiW12O40)]· 10H2O}n(1), [Ag3(Do)5][Ag(Do)2](SiW12O40) (2), [Cu2(Do)4(H2O)2Cl](PMo12O44)·2CH3OH (3). Their crystal structures, photoluminescent and photocatalytic properties have been studied in detail. The effect of various metal ions on the structures of the title compounds and the role of polyoxoanions was discussed. Additionally, photocatalytic activity is an appealing property of POMs[11-13]. Many organic pollutant compounds can be broken down into non-polluting small molecules and removed by light-excited POMs with high oxidizing ability[14-15]. So, the photocatalytic activities of 1~3 were also investigated in detail.

    1 Experimental

    1.1 Materials and methods

    The chelating ligands Do was synthesized according to the literature method[16]. Other reagents and solvents for synthesis were purchased from commercial sources and used as received. Transmission mode FT-IR spectra were obtained as KBr pellets between 400 and 4 000 cm-1using a Nicolet Nexus 470 infrared spectrometer. Elemental analysis was carried out with a Perkin-Elmer 240C analyzer. Thermogravimetric analysis (TG) was performed on a Germany Netzsch STA449C at a heating rate of 10℃·min-1in nitrogen. Fluorescence measurement was carried out at room temperature with a Cary Eclipse spectrometer.

    1.2 Syntheses of the compounds 1~3

    {[Cu2(Do)2(H2O)4(SiW12O40)]·10H2O}n(1): A mixture of CuI (0.036 g, 0.19 mmol), H4SiW12O40(0.288 g, 0.10 mmol), Do (0.025 g, 0.12 mmol) and H2O (18 mL) were placed in a 25 mL Teflon-lined stainless steel vessel under autogenous pressure at 160℃for five days. After cooling to room temperature, Green block crystals of compound 1 were collected by filtration and washed with distilled water in 79% yield (based on [H4SiW12O40]). Anal. Calcd. for C24H40Cu2N4O58SiW12(%): C, 7.84; H, 1.09; N, 1.52. Found(%): C, 7.85; H, 1.06; N, 1.54. IR (KBr, cm-1): 3 507(m), 3 093(m), 1 704 (s), 1 619(s), 1 579(w), 1 487(m), 1 433(m), 1 305(m), 1 131(m), 1 015(m), 970(s), 921(s), 884(m), 794(m), 726(m) , 534(w).

    [Ag3(Do)5][Ag(Do)2] (SiW12O40)] (2): Compound 2was also synthesized by using a method similar to that described for the synthesis of 1 except that AgNO3(0.033 g, 0.19 mmol) was used instead of CuI. Dark red block crystals of compound 2 were collected by filtration and washed with distilled water in 31% yield (based on Do). Anal. Calcd. for C84H42Ag4N14O54SiW12(%): C, 21.12; H, 0.87; N, 4.12. Found (%): C, 21.11; H, 0.88; N, 4.11. IR (KBr, cm-1): 3 075(m), 1 689(s), 1 570(w), 1 463(m), 1 297(m), 1 210(m), 1 120(m), 1 011(m), 966(s), 919(s), 882(m ), 793(m), 732(m), 533(w), 414(w).

    [Cu2(Do)4(H2O)2Cl](PMo12O44)·2CH3OH (3): Compound 3 was also synthesized by using a method similar to that described for the synthesis of 1 except that CuCl2·2H2O (0.032 g, 0.19 mmol) and H3PMo12O40(1.183 g, 0.10 mmol) were used instead of CuI and H4SiW12O40. Green block crystals of compound 3 were collected by filtration and washed with distilled water in 61% yield (based on [H3PMo12O40]). Anal. Calcd. for C50H36ClCu2Mo12N8O56P(%): C, 20.07; H, 1.20; N, 3.75. Found(%): C, 20.06; H, 1.22; N, 3.73. IR (KBr, cm-1): 3 564(m), 3 096(m), 1 735(s), 1 703(s), 1 577(w), 1 487 (m), 1 432(m), 1 413(m), 1 300(m), 1 261(m), 1 063(m), 957(s),877(m),798(m),755(m),727(m),503(w),404(w).

    1.3 Catalysis experiments

    The photocatalytic activity of 1~3 was tested by degradation of Rhodamine B (RhB) under UV light irradiation at room temperature. For the experiment with a typical process, a suspension containing 1 (100 mg) and a 100 mL RhB (2.0×10-5mol·L-1) solution was stirred in the dark for about 30 min. It was then stirred continuously under Hg lamp irradiation. Every 45 min (or 10 min), 4 mL of samples were taken out of the reactor and centrifuged to remove the remnant photocatalyst from the liquid. The concentrations of RhB were estimated by checking the absorbance at 553 nm on a UV-2450 (Shimadzu) spectrophotometer.

    1.4 X-ray crystallography

    X-ray diffraction data for compounds 1~3 were collected on a Bruker SMART Apex CCD diffractometer, equipped with a graphite monochromatic Mo Kα radiation (λ=0.071 073 nm) at 293(2) K. The structures were solved by direct methods implemented in SHELXS-97[17]and refined by a full-matrix least-squares procedure based on F2using SHELXL-97[18]. All non-hydrogen atoms were refined anisotropically, whereas the hydrogen atoms were placed at calculated positions and treated using appropriate riding models. The detailed crystallographic data and structure refinement parameters for the three complexes are summarized in Table 1. Selected bond lengths and angles are listed in Table S1~S6 (Supporting Information).

    CCDC: 1039184, 1; 1038117, 2; 1033951, 3.

    Table1 Crystal data and structure refinements for compounds 1~3

    Continued Table 1

    2 Results and discussion

    2.1 Structural analysis of compounds 1~3

    2.1.1 Crystal structure of {[Cu2(Do)2(H2O)4(SiW12O40)]· 10H2O}n(1)

    Single-crystal X-ray diffraction reveals that compound 1 crystallizes in the monoclinic system with P21/n space group. Crystal structure analysis reveals that compound 1 consists of two Cuions, two Do ligands, a [SiW12O40]4-polyoxoanion and fourteen water molecules. As depicted in Fig.1a, Cu1 ions possess a distorted octahedral geometry[19], and are coordinated by two nitrogen atoms (N1, N2) from a Do ligand, two oxygen atoms (O5, O20A) from [SiW12O40]4-polyoxoanions and two oxygen atoms (O18, O19) from two coordinated water molecules, respectively. The bond distances and angles around the Cuions are in the normal ranges observed in other Cu-containing complexes[20].

    The [SiW12O40]4 -anions link Cuions to generate a 2D inorganic layer, which results in the formation of channel with the space of area 1.257 3 nm×1.257 3 nm as presented in Fig.1b. The packing of the layers is dominated by hydrogen bonding interactions between water molecules and polyoxoanions (typical hydrogen bondings: O18 -H2W…O3 0.294 nm, O18-H2W…O5 0.291 nm) (Fig.1c). Such interactions led the formation of a 3D framework as shown in Fig.1d.

    2.1.2 Crystal structure of [Ag3(Do)5][Ag(Do)2] (SiW12O40) (2)

    Fig.1 (a) Coordination environment of Cuion in 1; (b) Two-dimensional layer structure of 1; (c) Hydrogen bonds of 1; (d) Three dimensional supramolecular packing structures of 1

    In order to investigate the effect of the metalcenters on the structure, Agion is selected to react with [SiW12O40]4-polyoxoanion and Do ligand under the same synthetic conditions. The asymmetric unit of compound 2 is shown in Fig.2a. It consists of one [SiW12O40]4-polyoxoanion, four Ag(I) ions and seven Do ligands. There are four crystallographically independent Agions exhibiting three kinds of coordination geometries as illustrated in Fig.2a. Ag1 possesses a distorted square pyramidal geometry[21a], and coordinated by three oxygen atom (O41, O42, O45) from two Do ligands and two nitrogen atoms (N3, N4) from a Do ligand. The interesting Ag-O bonds between oxygen atoms of organic ligands Do and metal ions are very rare in inorganic-organic hybrid compounds based on POMs. Ag2 and Ag3 are surrounded by four nitrogen atoms from two different Do ligands, and also respectively connected with O23 and O34 from [SiW12O40]4-polyoxoanions (Ag2-O23 0.281 1 nm, Ag3-O34 0.280 1 nm). Ag4 is in a slightly distorted quadrangular geometry[21b], and is surrounded by four nitrogen atoms from two Do ligands. The corresponding bond lengths and angles are in the normal ranges[22].

    Fig.2 (a) Coordination environment of Agion in compound 2; (b)π-π stacking interactions in compound 2; (c) Three dimensional supramolecular packing structure of compound 2

    2.1.3 Crystal structure of [Cu2(Do)4(H2O)2Cl] (PMo12O44)·2CH3OH (3)

    To evaluate the effect of polyoxoanion on the framework formation of complex, we select [PMo12O44]3-polyoxoanion to react with copper salt in the presence of the same Do ligand. The X-ray structure analysis reveals that complex 3 contains two [Cu(Do)2(H2O)] units, a chlorine ion, a [PMo12O44]3-polyoxoanion and two methanol molecules. Cu1 is coordinated by four nitrogen atoms from two Do ligands, one oxygen atom from a water molecule and one chlorine ion (Fig.3a). The Cu-N distances vary from 0.200 5(11) to 0.229 7(15) nm, the Cu-O distance is 0.214 4(12) nm, and the Cu-Cl distance is 0.251 0(9) nm.

    Two crystallographically independent Cuions in the complex 3 are bridged by one chlorine ion to form a binuclear structure with Cu-Cu distance of 0.528 99 nm (Fig.3b). The most interesting feature of the structure is that it contains strong intermolecular hydrogen bonding interactions between uncoordinated methanol molecules and oxygen atoms of Do ligands to form two dimensional layer (Fig.3d) (the main hydrogen bonding interactions included in the 2D layer: O1W-H1W…O27 0.240 nm,O27-H29B…O26 0.280 nm) (Fig.3c).

    2.2 FT IR analysis

    In the IR spectra (Fig.S1, Supporting Information), the band of 1 463~1 487 cm-1is attributed to the skeleton vibration of the benzene ring from the Do group. Characteristic vibration peaks of the Kegginpolyoxoanions are observed for ν(Si-Oa),ν(W-Ot), corner-sharing ν(W-Oc-W), and edge-sharing ν(W-Oe-W) at 1 015, 970, 921, and 794 cm-1for 1 and 1 011, 966, 919, and 793 cm-1for 2, respectively[23]. For compound 3, the characteristic peaks at 1 063, 957, 877, and 798 cm-1are attributed to ν(P-Oa),ν(Mo-Ot), ν(Mo-Oc-Mo), and ν(Mo-Oe-Mo)[24]. The signal at 534 cm-1for 1 (533 cm-1for 2, 503 cm-1for 3) also proves coordination of metal ions and nitrogen.

    Fig.3 (a) Coordination environment of Cuion in compound 3; (b) View of dinuclear core structure in compound 3; (c) Hydrogen bonds of the compound 3; (d) Two dimensional supramolecular layer formed by hydrogen bonding interactions

    2.3 Thermal properties

    The thermal behavior was studied by a thermogravimetric (TG) analyzer to characterize the three compounds more fully in terms of thermal stability (Fig.S2). The TG curve of 1 shows a two-step weight loss: the first weight loss of 6.04% (Calcd. 6.86%) from 24 to 284℃may be assigned to the removal of H2O, and the second weight loss of 10.09% (Calcd. 11.43%) in the range of 414~774℃may be ascribed to decomposition of Do ligands. Compound 2 only has one-step weight loss of 29.16% (Calcd. 30.77%) from 460 to 770℃, which can be ascribed to the decomposition of Do ligands. In 3, a total weight loss of 32.90% is accordant with the calculated value of 31.44% in the range of 35~743℃, ascribed to the release of two methanol molecules, two water molecules and four Do ligands. These results, in good agreement with the calculated value, further confirm the formula of the title compounds.

    2.4 Fluorescent properties

    The solid-state fluorescence spectra of 1~3 were recorded at room temperature. Free Do ligand possesses intense emission at 594 nm upon excitation at 424 nm, assigned to π→π* transitions[25]. It can be observed that the three compounds all display a broad emission band at around 550 nm in the visible region upon excitation at 424 nm (Fig.S3), which can be attributed to the Do ligand. Blue shift of about 50 nm for 1~3 compared to the emission peak of free ligandDo is probably related to ligand-to-metal charge transfer[26].

    2.5 Catalytic properties

    The use of POMs, as one kind of green and cheap photocatalysts, to decompose waste organic molecules so as to purify the water resources has attracted great attention in recent years[27]. RhB is difficult to decompose in waste water. Herein we selected RhB as an organic pollutant to evaluate the photocatalytic efficiency of the three compounds as heterogeneous catalysts under UV light irradiation.

    As shown in Fig.4, the absorption peaks of RhB aqueous solution decrease obviously with increasing reaction time for the compounds 1~3. For 1, the RhB solution has been taken out every 45 min, and 95.40% of RhB decompose after 315 min of irradiation. For 2, 92.13% of RhB decomposes after 450 min of irradiation. For 3, the RhB solution has been taken out every 10 min, and 98.84% of RhB decomposes after 80 min of irradiation. Changes in the concentration ratios (C/C0) of RhB solutions versus reaction time of the three compounds are plotted in Fig.5. It can be clearly seen that their photocatalytic efficiency is different. Clearly, the photocatalytic efficiency of compound 2 is lower than compound 1, and the photocatalytic efficiency of compound 3 based on [PMo12O40]3-is obviously higher than compounds 1 and 2 based on [SiW12O40]4-.

    Fig.4 UV spectra of RhB solution after photocatalytic degradation by compound 1 (a), 2 (b) and 3 (c)

    Fig.5  Plots of the concentration ratios of RhB (C/C0) vs irradiation time (min) in the absence and presence of 1~3 during the degradation reaction under UV irradiation

    Fig.6  Effect of recycle times on the degradation ratio of RhB solution by compound 3

    Additionally, the reproducibility of the photocatalytic degradation of RhB is an important factor to evaluate the applicability of photocatalyst, and further studies have shown that 3 are also very stable and easily separated from the reaction system for reuse. After each cycle of RhB degradation, 3 is collected by centrifugation, washed and dried at room temperature to repeat the test. As shown in Fig.6, no significant loss in the photocatalytic activity is observed for 3 after three cycles of the RhB degradation experiments (98.84% for the first cycle,98.18% for the second cycle and 97.73% for the third cycle). The results indicate that the photocatalytic activity of 3 has a good reproducibility. The different photocatalytic activity of 1~3 on the decomposition of RhB may be due to their different structures and different POMs in the title compounds.

    3 Conclusions

    In conclusion, by introducing two types of POMs into the Cu-Do and Ag-Do reaction system, three POM-based organic-inorganic hybrid compounds containing various multinuclear clusters have been successfullyprepared.Thecompounds 1~3 show diverse structures ranging from a 0D binuclear cluster, 0D trinuclear cluster, to a 2D layer. The structural diversities show that different polyoxoanions and metal ions play key roles in the construction of various architectures. In addition, photocatalytic activities indicate that the three complexes present good degradation activity and may be photocatalysts to decompose some organic dyes.

    Acknowledgements: This work is supported from the National Natural Science Foundation of China (Grant No. 21507047), Postdoctoral Science Foundation of China (Grant No.2015M571695), Postdoctoral Science Foundation of Jiangsu Province (Grant No.1401176C) and the Programs of Senior Talent Foundation of Jiangsu University (Grant No.14JDG053).

    Supporting information is available at http://www.wjhxxb.cn

    References:

    [1] Kamata K, Yamaguchi S, Kotani M, et al. Angew. Chem. Int. Ed., 2008,47:2407-2410

    [2] Zhang J, Song Y F, Cronin L, et al. J. Am. Chem. Soc., 2008,130:14408-14409

    [3] Miras H N, Wilsonw E F, Cronin L. Chem. Commun., 2009, 1297-1311

    [4] Lisnard L, Mialane P, Dolbecq A, et al. Chem. Eur. J., 2007, 13:3525-3536

    [5] (a)Long D L, Tsunashima R, Cronin L. Angew. Chem. Int. Ed., 2010,49:1736-1758

    (b)Ma F J, Liu S X, Sun C Y, et al. J. Am. Chem. Soc., 2011,133:4178-4181

    [6] Kan W Q, Yang J, Liu Y Y, et al. Inorg. Chem., 2012,51: 11266-11278

    [7] Wang X L, Chen Y Q, Gao Q, et al. Cryst. Growth Des., 2010,10:2174-2184

    [8] Wang L, Ni L. J. Coord. Chem., 2012,65:1475-1483

    [9] Wang L, Ni L, Yao J. Polyhedron, 2013,59:115-123

    [10](a)Han Z G, Wang Y N, Wu J J, et al. Solid State Sci., 2011,13:1560-1566

    (b)Li S B, Ma H Y, Pang H J, et al. Cryst. Growth Des., 2014,14:4450-4460

    [11]Hu Y, Luo F, Dong F. Chem. Commun., 2011,47:761-763

    [12]Guo Y, Wang Y, Hu C, et al. Chem. Mater., 2000,12:3501-3508

    [13]Wu Q, Chen W L, Liu D, et al. Dalton Trans., 2011,40:56-61

    [14]Fontananova E, Donato L, Drioli E, et al. Chem. Mater., 2006,18:1561-1568

    [15]Chen C C, Zhao W, Lei P X, et al. Chem. Eur. J., 2004,10: 1956-1965

    [16]Hiort C, Lincoln P, Nordén B. J. Am. Chem. Soc., 1993, 115:3448-3454

    [17]Sheldrick G M. SHELXS-97, Program for Automatic Solution of Crystal Structure, University of G?ttingen, Germany, 1997.

    [18]Sheldrick G M. SHELXL-97, Programs for Crystal Structure Refinement, University of G?ttingen, Germany, 1997.

    [19]Tian A X, Ying J, Peng J, et al. Inorg. Chem., 2009,48:100-110

    [20]Sha J Q, Peng J, Zhang Y, et al. Cryst. Growth Des., 2009, 9:1708-1715

    [21](a)Zhang Z, Yang J, Liu Y Y, et al. CrystEngComm, 2013, 15:3843-3853

    (b)Wang X L, Hu H L, Liu G C, et al. Chem. Commun., 2010,46:6485-6487

    [22]Yang G P, Wang Y Y, Liu P, et al. Cryst. Growth Des., 2010,10(3):1443-1450

    [23]Thouvenot R, Fournier M, Franck R, et al. Inorg. Chem., 1984,23:598-605

    [24]Rocchiccioli-Deltcheff C, Fournier M, Franck R, et al. Inorg. Chem., 1983,22:207-216

    [25]LIU Chun-Bo(劉春波), WANG Qian-Qian(王倩倩), BAI Hong-Ye(白紅葉), et al. Chinese J. Inorg. Chem.(無機(jī)化學(xué)學(xué)報), 2014,30(2):391-397

    [26]Sun Y Q, Hu J, Zhang H H, et al. J. Solid State Chem., 2012,186:189-194

    [27]Hu Y, Luo F, Dong F. Chem. Commun., 2011,47:761-763

    Hydrothermal Syntheses, Crystal Structures and Catalytic Performance of a Series of Polyoxometalate-Based Hybrid Compounds

    WANG Lei*GU Xiao-Min YE Dan-Dan ZHANG Wen-Li NI Liang
    (School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China)

    Abstract:By using phenanthroline ligand and changing the metal salts in the reaction system, three new Kegginbased metal-organic complexes (MOCs), {[Cu2(Do)2(H2O)4(SiW(12)O(40))]·10H2O}n(1), [Ag3(Do)5][Ag(Do)2](SiW(12)O(40)) (2), [Cu2(Do)4(H2O)2Cl](PMo(12)O(44))·2CH3OH (3) (Do=1,10-phenanthroline-5,6-dione), have been successfully synthesized under hydrothermal conditions. In compound 1, the Keggin-type POMs act as highly connected inorganic ligands and connect Cuions to exhibit 2D network, which are modified by the Do polymeric motifs. For compound 2, the Agcenters exhibit various coordination types, and are linked by Do ligand to construct a linear trinuclear cluster structure. In compound 3, Cuions are connected by one chlorine ion to form a binuclear structure. The structural diversities indicate that the metal ions and the secondary ligand Do play an important role in the assembly and the structures of different POMs. Photocatalytic studies indicate that compound 3 is not only actively photocatalytic for degradation of Rhodamine B (RhB) under UV light irradiation, but also very stable and easily separated from the reaction system for reuse. CCDC: 1039184, 1; 1038117, 2; 1033951, 3.

    Keywords:polyoxometalates; hydrothermal synthesis; crystal structure; catalytic properties

    收稿日期:2015-11-03。收修改稿日期:2015-12-28。

    DOI:10.11862/CJIC.2016.054

    文獻(xiàn)標(biāo)識碼:中國分類號:O614.121;O614.122A

    文章編號:1001-4861(2016)04-0691-08

    猜你喜歡
    晶體結(jié)構(gòu)
    例談晶體結(jié)構(gòu)中原子坐標(biāo)參數(shù)的確定
    化學(xué)軟件在晶體結(jié)構(gòu)中的應(yīng)用
    N,N’-二(2-羥基苯)-2-羥基苯二胺的鐵(Ⅲ)配合物的合成和晶體結(jié)構(gòu)
    五元瓜環(huán)與氯化鈣配合物的合成及晶體結(jié)構(gòu)
    鎳(II)配合物{[Ni(phen)2(2,4,6-TMBA)(H2O)]·(NO3)·1.5H2O}的合成、晶體結(jié)構(gòu)及量子化學(xué)研究
    含能配合物Zn4(C4N6O5H2)4(DMSO)4的晶體結(jié)構(gòu)及催化性能
    二維網(wǎng)狀配聚物[Co(btmb)2(SCN)2]n的合成、晶體結(jié)構(gòu)和Pb2+識別性能
    基于2-苯基-1H-1,3,7,8-四-氮雜環(huán)戊二烯并[l]菲的Pb(Ⅱ)、Co(Ⅱ)配合物的晶體結(jié)構(gòu)與發(fā)光
    氨荒酸配合物([M(MeBnNCS2)3],M=Sb(Ⅲ),Bi(Ⅲ))的合成、晶體結(jié)構(gòu)及抑菌活性
    一個雙核β-二酮鏑(Ⅲ)配合物的超聲化學(xué)合成、晶體結(jié)構(gòu)和磁性
    91字幕亚洲| 日韩欧美在线二视频 | 下体分泌物呈黄色| 啦啦啦在线免费观看视频4| 国产精品 国内视频| 天天躁夜夜躁狠狠躁躁| 国产成人欧美| 久久国产精品影院| 日韩一卡2卡3卡4卡2021年| 法律面前人人平等表现在哪些方面| 丝袜在线中文字幕| e午夜精品久久久久久久| 视频在线观看一区二区三区| 91成年电影在线观看| 久久草成人影院| 中国美女看黄片| 精品国产亚洲在线| 中文字幕高清在线视频| 久久国产精品人妻蜜桃| 少妇的丰满在线观看| 午夜亚洲福利在线播放| 两个人免费观看高清视频| 啦啦啦视频在线资源免费观看| tocl精华| 亚洲av欧美aⅴ国产| 亚洲九九香蕉| av天堂在线播放| 成人国语在线视频| 满18在线观看网站| 91av网站免费观看| 亚洲精品在线美女| 久久久久精品国产欧美久久久| 一级作爱视频免费观看| 亚洲七黄色美女视频| 国产欧美日韩一区二区三| 999久久久国产精品视频| 一本综合久久免费| 亚洲avbb在线观看| 国内毛片毛片毛片毛片毛片| 国产亚洲精品第一综合不卡| 色老头精品视频在线观看| 国产人伦9x9x在线观看| 99久久国产精品久久久| 日韩视频一区二区在线观看| 亚洲第一av免费看| 侵犯人妻中文字幕一二三四区| 久久青草综合色| 日韩欧美在线二视频 | 两性夫妻黄色片| 老司机影院毛片| 精品第一国产精品| 啦啦啦 在线观看视频| 欧美性长视频在线观看| 黄片播放在线免费| 久久久国产成人免费| 高清视频免费观看一区二区| 天天躁狠狠躁夜夜躁狠狠躁| 天天躁夜夜躁狠狠躁躁| 日日爽夜夜爽网站| 精品国产一区二区三区久久久樱花| 看片在线看免费视频| 无遮挡黄片免费观看| 夜夜躁狠狠躁天天躁| 中国美女看黄片| 人成视频在线观看免费观看| 亚洲九九香蕉| 国产av精品麻豆| 亚洲,欧美精品.| 精品国产一区二区三区四区第35| 少妇 在线观看| 国产片内射在线| 法律面前人人平等表现在哪些方面| 久久天躁狠狠躁夜夜2o2o| 身体一侧抽搐| 欧美国产精品va在线观看不卡| 久久久久视频综合| 国产区一区二久久| 国产精品一区二区在线观看99| 午夜福利乱码中文字幕| 亚洲精品在线观看二区| 999精品在线视频| 一边摸一边做爽爽视频免费| 777久久人妻少妇嫩草av网站| 色尼玛亚洲综合影院| 精品无人区乱码1区二区| 亚洲黑人精品在线| 女人被躁到高潮嗷嗷叫费观| 中文字幕人妻丝袜制服| 亚洲精品一二三| 丝瓜视频免费看黄片| 欧美国产精品va在线观看不卡| av国产精品久久久久影院| 精品国产一区二区久久| 狠狠狠狠99中文字幕| 99在线人妻在线中文字幕 | 岛国毛片在线播放| 1024香蕉在线观看| 精品亚洲成国产av| 一级a爱视频在线免费观看| 99精品在免费线老司机午夜| 国产亚洲精品久久久久5区| 久久久国产欧美日韩av| 亚洲va日本ⅴa欧美va伊人久久| 欧美最黄视频在线播放免费 | 日韩欧美三级三区| 午夜免费鲁丝| ponron亚洲| 精品国产亚洲在线| 村上凉子中文字幕在线| 99re在线观看精品视频| 一级黄色大片毛片| bbb黄色大片| 欧美人与性动交α欧美精品济南到| av超薄肉色丝袜交足视频| 色精品久久人妻99蜜桃| 亚洲少妇的诱惑av| 欧美日韩国产mv在线观看视频| 久久久久久久久免费视频了| 自拍欧美九色日韩亚洲蝌蚪91| 在线观看66精品国产| 在线观看免费视频网站a站| 99精品久久久久人妻精品| 最近最新中文字幕大全免费视频| 久久中文看片网| 亚洲成人免费av在线播放| 亚洲精品成人av观看孕妇| 免费在线观看亚洲国产| 国产国语露脸激情在线看| 国产精品亚洲av一区麻豆| 一级,二级,三级黄色视频| 亚洲伊人色综图| 精品久久久久久久久久免费视频 | 免费在线观看视频国产中文字幕亚洲| 最新美女视频免费是黄的| 亚洲成国产人片在线观看| 亚洲熟女精品中文字幕| 国产精华一区二区三区| 国产精品久久久久久人妻精品电影| 在线天堂中文资源库| 纯流量卡能插随身wifi吗| 97人妻天天添夜夜摸| 亚洲av片天天在线观看| 搡老乐熟女国产| 成人三级做爰电影| 亚洲黑人精品在线| 51午夜福利影视在线观看| 亚洲视频免费观看视频| 国产无遮挡羞羞视频在线观看| 欧美 亚洲 国产 日韩一| 又黄又粗又硬又大视频| 日日摸夜夜添夜夜添小说| 国产一区有黄有色的免费视频| 国产精品一区二区精品视频观看| 不卡av一区二区三区| 国产激情欧美一区二区| 中文字幕色久视频| 十分钟在线观看高清视频www| 黄片大片在线免费观看| 久久久国产成人免费| 老鸭窝网址在线观看| 国产成人影院久久av| 香蕉丝袜av| 国产成人影院久久av| 色婷婷av一区二区三区视频| 亚洲国产精品一区二区三区在线| 久久久久精品人妻al黑| 99在线人妻在线中文字幕 | 一区在线观看完整版| 天天操日日干夜夜撸| 免费人成视频x8x8入口观看| 男女下面插进去视频免费观看| 狠狠婷婷综合久久久久久88av| 午夜亚洲福利在线播放| 国产有黄有色有爽视频| 色精品久久人妻99蜜桃| 久久性视频一级片| 热99re8久久精品国产| av在线播放免费不卡| 亚洲国产毛片av蜜桃av| 午夜福利乱码中文字幕| 亚洲男人天堂网一区| 少妇裸体淫交视频免费看高清 | 欧美日本中文国产一区发布| 宅男免费午夜| 99在线人妻在线中文字幕 | 99精品在免费线老司机午夜| 亚洲在线自拍视频| 午夜免费鲁丝| 日韩免费高清中文字幕av| 欧美性长视频在线观看| 人妻丰满熟妇av一区二区三区 | 亚洲精品在线美女| 国产在线一区二区三区精| 国产亚洲精品久久久久久毛片 | 国产无遮挡羞羞视频在线观看| 黑人巨大精品欧美一区二区mp4| 婷婷精品国产亚洲av在线 | 捣出白浆h1v1| 精品亚洲成a人片在线观看| 国产一区在线观看成人免费| 日韩欧美一区二区三区在线观看 | 一级,二级,三级黄色视频| 国产成人精品在线电影| 天天添夜夜摸| 夜夜爽天天搞| 电影成人av| 满18在线观看网站| 亚洲五月天丁香| 丝袜人妻中文字幕| 亚洲aⅴ乱码一区二区在线播放 | 国产精品久久电影中文字幕 | 亚洲免费av在线视频| 热99re8久久精品国产| 老司机午夜十八禁免费视频| 国产精品欧美亚洲77777| 久久这里只有精品19| 久久久久国产一级毛片高清牌| 成年女人毛片免费观看观看9 | 欧美乱码精品一区二区三区| 大码成人一级视频| 人人妻人人澡人人看| 香蕉国产在线看| 国产单亲对白刺激| 国产成人精品久久二区二区免费| 欧美不卡视频在线免费观看 | 国产极品粉嫩免费观看在线| 久久精品国产亚洲av香蕉五月 | 黄色怎么调成土黄色| 亚洲国产欧美网| 自拍欧美九色日韩亚洲蝌蚪91| 欧美一级毛片孕妇| 国产单亲对白刺激| 国产成人啪精品午夜网站| 欧美性长视频在线观看| 欧美日韩亚洲国产一区二区在线观看 | 精品午夜福利视频在线观看一区| 国产极品粉嫩免费观看在线| 亚洲一区高清亚洲精品| 亚洲免费av在线视频| 首页视频小说图片口味搜索| 美女扒开内裤让男人捅视频| 91老司机精品| 91九色精品人成在线观看| 少妇 在线观看| 嫩草影视91久久| 国产精品1区2区在线观看. | 乱人伦中国视频| 亚洲少妇的诱惑av| 久久国产乱子伦精品免费另类| 18禁观看日本| 久久久久久人人人人人| 涩涩av久久男人的天堂| 国产av一区二区精品久久| 高清视频免费观看一区二区| 久久久久久久午夜电影 | 一本一本久久a久久精品综合妖精| 五月开心婷婷网| 最近最新中文字幕大全免费视频| 成人手机av| 亚洲欧美激情综合另类| 男女高潮啪啪啪动态图| 一级毛片精品| 亚洲一区中文字幕在线| 999久久久精品免费观看国产| videos熟女内射| 宅男免费午夜| 高清黄色对白视频在线免费看| 桃红色精品国产亚洲av| 国产亚洲欧美精品永久| 日本wwww免费看| 黄色怎么调成土黄色| 精品国产超薄肉色丝袜足j| 老司机靠b影院| 精品一品国产午夜福利视频| 精品亚洲成国产av| 男女午夜视频在线观看| 欧美激情 高清一区二区三区| 亚洲男人天堂网一区| 精品一品国产午夜福利视频| 大型黄色视频在线免费观看| 女人高潮潮喷娇喘18禁视频| 精品人妻熟女毛片av久久网站| 69av精品久久久久久| 久久这里只有精品19| 久久这里只有精品19| 热99re8久久精品国产| 色精品久久人妻99蜜桃| 欧美丝袜亚洲另类 | 亚洲精品在线观看二区| 国产蜜桃级精品一区二区三区 | 18禁裸乳无遮挡动漫免费视频| av国产精品久久久久影院| 丰满饥渴人妻一区二区三| 精品国产美女av久久久久小说| 男女免费视频国产| 欧美色视频一区免费| 成人18禁高潮啪啪吃奶动态图| 老司机亚洲免费影院| 亚洲国产欧美日韩在线播放| 亚洲第一av免费看| 亚洲精品中文字幕一二三四区| 久久久国产成人精品二区 | 免费人成视频x8x8入口观看| 国产精品久久视频播放| 很黄的视频免费| 亚洲欧洲精品一区二区精品久久久| 91精品国产国语对白视频| 少妇猛男粗大的猛烈进出视频| 欧美日韩精品网址| 亚洲国产毛片av蜜桃av| 91成人精品电影| 亚洲熟妇中文字幕五十中出 | 亚洲人成77777在线视频| а√天堂www在线а√下载 | av电影中文网址| 亚洲精品在线观看二区| videos熟女内射| 精品乱码久久久久久99久播| а√天堂www在线а√下载 | 日日爽夜夜爽网站| 欧美日韩精品网址| 国产无遮挡羞羞视频在线观看| 侵犯人妻中文字幕一二三四区| 少妇粗大呻吟视频| 日韩三级视频一区二区三区| 后天国语完整版免费观看| 18在线观看网站| 国产熟女午夜一区二区三区| 亚洲黑人精品在线| tocl精华| 午夜免费鲁丝| 亚洲精品在线美女| 深夜精品福利| 超色免费av| 自拍欧美九色日韩亚洲蝌蚪91| 99国产精品一区二区三区| 日韩成人在线观看一区二区三区| 亚洲av第一区精品v没综合| 首页视频小说图片口味搜索| 真人做人爱边吃奶动态| 国产成人欧美| 热99久久久久精品小说推荐| 久久亚洲精品不卡| 大陆偷拍与自拍| 99久久精品国产亚洲精品| 亚洲中文日韩欧美视频| 久久人人97超碰香蕉20202| 国产又爽黄色视频| 黄色 视频免费看| 日韩精品免费视频一区二区三区| 免费观看人在逋| 啦啦啦 在线观看视频| 高清视频免费观看一区二区| 18禁黄网站禁片午夜丰满| 成人18禁在线播放| 国产精品亚洲一级av第二区| 丁香欧美五月| 国产成人精品在线电影| e午夜精品久久久久久久| 在线观看舔阴道视频| 97人妻天天添夜夜摸| 国产av一区二区精品久久| 免费人成视频x8x8入口观看| 91麻豆av在线| 老司机深夜福利视频在线观看| 久久久久久人人人人人| 美女高潮到喷水免费观看| 午夜老司机福利片| 热re99久久国产66热| 精品国产超薄肉色丝袜足j| 少妇被粗大的猛进出69影院| 国产成人精品久久二区二区91| 成人三级做爰电影| 岛国在线观看网站| a级片在线免费高清观看视频| 久久精品国产亚洲av高清一级| 精品久久蜜臀av无| 女人爽到高潮嗷嗷叫在线视频| 黑人巨大精品欧美一区二区蜜桃| 日韩视频一区二区在线观看| 69精品国产乱码久久久| 亚洲 欧美一区二区三区| www.自偷自拍.com| av有码第一页| x7x7x7水蜜桃| 真人做人爱边吃奶动态| 国产欧美日韩一区二区三区在线| 午夜亚洲福利在线播放| 成熟少妇高潮喷水视频| 日韩免费高清中文字幕av| 免费看a级黄色片| 亚洲中文av在线| 麻豆国产av国片精品| 一级片'在线观看视频| 亚洲自偷自拍图片 自拍| 飞空精品影院首页| 一进一出好大好爽视频| 久久亚洲真实| av网站在线播放免费| 丝袜美足系列| 悠悠久久av| 国产蜜桃级精品一区二区三区 | 日韩欧美在线二视频 | 国产在线观看jvid| 亚洲av日韩在线播放| 777米奇影视久久| 一级a爱视频在线免费观看| 18禁国产床啪视频网站| 99香蕉大伊视频| 99久久99久久久精品蜜桃| 啦啦啦免费观看视频1| 日本a在线网址| 国产精品 欧美亚洲| 亚洲精品一卡2卡三卡4卡5卡| 亚洲片人在线观看| 高清毛片免费观看视频网站 | 亚洲国产精品一区二区三区在线| 亚洲熟妇中文字幕五十中出 | 1024视频免费在线观看| 高潮久久久久久久久久久不卡| 久久精品国产a三级三级三级| 国产一区二区三区在线臀色熟女 | 满18在线观看网站| 两个人看的免费小视频| 欧美亚洲日本最大视频资源| 国产成人精品在线电影| 欧美在线一区亚洲| 久久久国产成人精品二区 | 美女国产高潮福利片在线看| 日韩欧美三级三区| 两人在一起打扑克的视频| 欧美 亚洲 国产 日韩一| 天天躁夜夜躁狠狠躁躁| 在线看a的网站| 色综合欧美亚洲国产小说| 女同久久另类99精品国产91| av有码第一页| 色综合欧美亚洲国产小说| 国产精品久久久久久精品古装| 免费高清在线观看日韩| 欧美中文综合在线视频| 少妇粗大呻吟视频| 午夜亚洲福利在线播放| 成人影院久久| 一二三四在线观看免费中文在| 国产三级黄色录像| 欧美日韩亚洲国产一区二区在线观看 | aaaaa片日本免费| 一级毛片高清免费大全| 精品高清国产在线一区| 三上悠亚av全集在线观看| 18禁观看日本| 99久久综合精品五月天人人| 窝窝影院91人妻| 丝袜在线中文字幕| 欧美激情高清一区二区三区| 人妻久久中文字幕网| 岛国在线观看网站| 精品乱码久久久久久99久播| 日本一区二区免费在线视频| 欧美人与性动交α欧美软件| 黄色女人牲交| 国产熟女午夜一区二区三区| 韩国av一区二区三区四区| 丁香欧美五月| 欧美日韩一级在线毛片| 成人永久免费在线观看视频| 欧美激情 高清一区二区三区| 18禁黄网站禁片午夜丰满| 老司机深夜福利视频在线观看| 国产精品久久久av美女十八| 午夜福利在线免费观看网站| 国产精品一区二区在线不卡| 啦啦啦免费观看视频1| 一边摸一边抽搐一进一小说 | 人人妻,人人澡人人爽秒播| 久久精品91无色码中文字幕| 成人影院久久| 国产在线一区二区三区精| 亚洲五月婷婷丁香| 咕卡用的链子| 亚洲国产毛片av蜜桃av| 高清毛片免费观看视频网站 | 人人妻人人澡人人看| 欧美日韩精品网址| 久久香蕉国产精品| svipshipincom国产片| 欧美日韩亚洲高清精品| 交换朋友夫妻互换小说| 一级毛片女人18水好多| 国产深夜福利视频在线观看| 日韩熟女老妇一区二区性免费视频| 大码成人一级视频| 一二三四在线观看免费中文在| 亚洲精品美女久久久久99蜜臀| 久久草成人影院| 欧美日韩黄片免| 十八禁人妻一区二区| www日本在线高清视频| 亚洲精品国产精品久久久不卡| 国产单亲对白刺激| 自线自在国产av| 欧美日韩成人在线一区二区| 女人爽到高潮嗷嗷叫在线视频| 他把我摸到了高潮在线观看| 国产成人av教育| 每晚都被弄得嗷嗷叫到高潮| 俄罗斯特黄特色一大片| 久久青草综合色| 久久精品国产清高在天天线| 熟女少妇亚洲综合色aaa.| 国产视频一区二区在线看| 日韩视频一区二区在线观看| 亚洲国产中文字幕在线视频| 老汉色∧v一级毛片| 久久精品国产清高在天天线| 国产97色在线日韩免费| 日韩免费高清中文字幕av| 精品国产美女av久久久久小说| 操出白浆在线播放| 亚洲欧美日韩另类电影网站| 精品久久久久久久毛片微露脸| 精品第一国产精品| 精品国产一区二区三区四区第35| 18禁黄网站禁片午夜丰满| 免费日韩欧美在线观看| 欧美日韩中文字幕国产精品一区二区三区 | av超薄肉色丝袜交足视频| 免费在线观看日本一区| 免费在线观看完整版高清| 久久久久视频综合| 欧美 日韩 精品 国产| 亚洲aⅴ乱码一区二区在线播放 | 国产成人精品在线电影| xxx96com| 久久天堂一区二区三区四区| 久久久久视频综合| 国产日韩欧美亚洲二区| 在线观看免费午夜福利视频| 在线观看www视频免费| 久久99一区二区三区| 看黄色毛片网站| 视频区欧美日本亚洲| 国产成人av激情在线播放| 国产免费av片在线观看野外av| 三级毛片av免费| 午夜两性在线视频| av网站免费在线观看视频| 国产成人av激情在线播放| av在线播放免费不卡| 三级毛片av免费| 亚洲三区欧美一区| cao死你这个sao货| 看黄色毛片网站| 欧美激情极品国产一区二区三区| 亚洲综合色网址| 在线视频色国产色| 亚洲熟女精品中文字幕| 成人永久免费在线观看视频| 宅男免费午夜| 成人三级做爰电影| 精品亚洲成a人片在线观看| 亚洲色图 男人天堂 中文字幕| 国产精品免费视频内射| 一个人免费在线观看的高清视频| 人人妻人人添人人爽欧美一区卜| 国产淫语在线视频| 久久草成人影院| 搡老岳熟女国产| 国产亚洲欧美98| 亚洲人成伊人成综合网2020| 国产精品乱码一区二三区的特点 | 亚洲国产中文字幕在线视频| av天堂在线播放| 一区在线观看完整版| 亚洲中文字幕日韩| 欧美日韩成人在线一区二区| 亚洲三区欧美一区| 69av精品久久久久久| 高清欧美精品videossex| 久久久国产精品麻豆| 制服人妻中文乱码| 精品一品国产午夜福利视频| 欧洲精品卡2卡3卡4卡5卡区| 久久国产乱子伦精品免费另类| 久久性视频一级片| 动漫黄色视频在线观看| 一级片免费观看大全| 欧美日韩av久久| 国产精品久久久久久人妻精品电影| 无限看片的www在线观看| 在线看a的网站| 一本综合久久免费| 久久人妻福利社区极品人妻图片| 一区二区三区国产精品乱码| 欧美日韩中文字幕国产精品一区二区三区 | 9色porny在线观看| 免费在线观看完整版高清| 亚洲在线自拍视频| 久久精品国产亚洲av香蕉五月 | 免费看a级黄色片| 亚洲人成伊人成综合网2020| 99久久人妻综合| 99热网站在线观看| 国产精品久久久av美女十八| 亚洲第一欧美日韩一区二区三区| 久久久国产欧美日韩av| 精品欧美一区二区三区在线| 亚洲第一av免费看| av网站在线播放免费| 国产一区在线观看成人免费| 亚洲精品国产一区二区精华液| 人妻 亚洲 视频| 国产在线精品亚洲第一网站| 精品人妻熟女毛片av久久网站|