劉靜華,韓國(guó)慶,景紫巖
(1.中國(guó)石油大學(xué)(北京)石油工程學(xué)院,北京 102249;2.中國(guó)石油勘探開(kāi)發(fā)研究院西北分院,甘肅 蘭州 730000)
低滲透油藏爆炸壓裂產(chǎn)能分析及壓裂改造區(qū)域優(yōu)化設(shè)計(jì)*
劉靜華1,韓國(guó)慶1,景紫巖2
(1.中國(guó)石油大學(xué)(北京)石油工程學(xué)院,北京 102249;2.中國(guó)石油勘探開(kāi)發(fā)研究院西北分院,甘肅 蘭州 730000)
基于爆炸壓裂裂縫分布規(guī)律,提出爆炸壓裂縫網(wǎng)雙重介質(zhì)復(fù)合流動(dòng)產(chǎn)能模型,應(yīng)用Laplace變換Stehfest數(shù)值反演,得到了定壓條件下封閉外邊界低滲透油藏爆炸壓裂生產(chǎn)井產(chǎn)能表達(dá)式。在模型正確性驗(yàn)證的基礎(chǔ)上結(jié)合某低滲透油藏儲(chǔ)層特征參數(shù)研究了爆炸壓裂改造區(qū)域參數(shù)對(duì)封閉邊界油藏產(chǎn)量的影響,同時(shí)對(duì)爆炸壓裂改造改造體積優(yōu)化設(shè)計(jì)進(jìn)行了研究。研究結(jié)果表明,爆炸壓裂改造區(qū)域半徑主要影響生產(chǎn)中期產(chǎn)能,改造區(qū)域滲透率對(duì)生產(chǎn)早期和中期影響比較大,且對(duì)于實(shí)例油藏爆炸壓裂改造比為0.1時(shí)效果最好。
爆炸力學(xué);爆炸壓裂;復(fù)合流動(dòng)模型;改造區(qū)域半徑;優(yōu)化設(shè)計(jì);低滲透油藏
我國(guó)低滲透油藏資源豐富,此類油藏儲(chǔ)層孔隙吼道發(fā)育較差[1],需采用增產(chǎn)改造措施改善低滲儲(chǔ)層物性以達(dá)到經(jīng)濟(jì)有效開(kāi)發(fā)的目的[2-3]。傳統(tǒng)水力壓裂技術(shù)能在一定程度上改善油層滲流能力,但受儲(chǔ)層物性和注水開(kāi)發(fā)的限制水力壓裂裂縫長(zhǎng)度通常較短[4-7]。爆炸壓裂技術(shù)是一種非常規(guī)壓裂技術(shù),利用爆炸產(chǎn)生的沖擊波,沖擊井壁巖石,制造裂縫,爆生氣體進(jìn)入裂縫并進(jìn)一步擴(kuò)展裂縫,達(dá)到改善低滲透儲(chǔ)層物性、提高油藏采收率的目的[8-11]。學(xué)者們從理論和試驗(yàn)等2個(gè)方面對(duì)爆炸壓裂后裂縫分布規(guī)律進(jìn)行研究[10,12-13],結(jié)果表明爆炸近區(qū)壓裂裂縫分布較為復(fù)雜,爆炸點(diǎn)較遠(yuǎn)處儲(chǔ)層基本不受影響。目前儲(chǔ)層產(chǎn)能模型主要基于雙重或單重介質(zhì)模型,無(wú)法準(zhǔn)確反映爆炸壓裂儲(chǔ)層改造特征,因而適合于爆炸壓裂滲流機(jī)理及產(chǎn)能預(yù)測(cè)模型方面的理論研究較少[14]。本文中在雙重介質(zhì)模型的基礎(chǔ)上,結(jié)合爆炸壓裂儲(chǔ)層改造區(qū)域的特征,提出爆炸壓裂縫網(wǎng)雙重介質(zhì)復(fù)合流動(dòng)模型,求得拉式空間內(nèi)定壓生產(chǎn)下不同邊界條件時(shí)油井產(chǎn)量半解析解,利用反演計(jì)算得到真實(shí)空間內(nèi)產(chǎn)量變化規(guī)律,對(duì)改造區(qū)域范圍等產(chǎn)能影響因素進(jìn)行分析及優(yōu)化設(shè)計(jì),以期為爆炸壓裂優(yōu)化設(shè)計(jì)提供一定的參考。
圖1 爆炸壓裂物理模型示意圖Fig.1 Physical model of explosive fracturing well
根據(jù)爆炸壓裂儲(chǔ)層改造區(qū)域特征,考慮儲(chǔ)層存在2個(gè)不同的區(qū)域:靠近井筒區(qū)域受爆炸壓裂影響而形成眾多裂縫,將該區(qū)域考慮為縫網(wǎng)雙重介質(zhì)區(qū)域;遠(yuǎn)離井筒的區(qū)域受到爆破壓裂沖擊波影響較小,儲(chǔ)層基本保持原狀,考慮為單重介質(zhì)結(jié)構(gòu)。因此可以描述復(fù)合油藏為:井位于系統(tǒng)中心,井徑為rw,爆炸壓裂區(qū)域記為內(nèi)區(qū),改造區(qū)域半徑為r1;未改造區(qū)域記為外區(qū),半徑為re,如圖1所示。
2.1 模型建立與求解
在厚度為h、原始地層壓力為pi的徑向圓形系統(tǒng)地層中,從t=0時(shí)刻起有一口井定產(chǎn)量生產(chǎn),那么儲(chǔ)層內(nèi)壓力p(r,t)滿足下列定解問(wèn)題。
內(nèi)區(qū):rw≤r≤r1
(1)
(2)
外區(qū):r1 (3) 式中:p2為外區(qū)儲(chǔ)層壓力,0.1 MPa;φ2為外區(qū)儲(chǔ)層孔隙度;C2為外區(qū)綜合壓縮系數(shù),0.1 MPa-1;k2為外區(qū)儲(chǔ)層滲透率,10-3μm2;下標(biāo)2代表外區(qū)儲(chǔ)層。 假設(shè)該油藏定產(chǎn)生產(chǎn),外邊界封閉,結(jié)合邊界條件對(duì)上式進(jìn)行量綱一化和Laplace變換,并求解,可得出不考慮井筒存儲(chǔ)和表皮效應(yīng)時(shí)井底壓力表達(dá)式: (4) A.F.V.Everdingen等[16]給出了拉式空間內(nèi)定產(chǎn)條件下井底流動(dòng)壓力和定壓條件下油井產(chǎn)量之間的關(guān)系: (5) 聯(lián)立式(4)~(5)即可計(jì)算得到拉氏空間內(nèi)油井產(chǎn)量,利用Stehfest反演計(jì)算可以得到實(shí)時(shí)域空間內(nèi)的產(chǎn)量變化規(guī)律。對(duì)量綱一產(chǎn)量進(jìn)行量綱化,可得到定壓生產(chǎn)時(shí)的油井實(shí)際產(chǎn)量q,單位為t/d。 2.2 模型驗(yàn)證 圖2 儲(chǔ)層壓裂改造前后生產(chǎn)井產(chǎn)量對(duì)比Fig.2 Comparison of production before and after reservoir stimulation 孔祥言等[17]推導(dǎo)了儲(chǔ)層為雙重介質(zhì)時(shí)圓形封閉儲(chǔ)層中油井的擬穩(wěn)態(tài)壓力半解析解。采用的某低滲透油藏實(shí)際礦產(chǎn)參數(shù)為:井筒半徑為0.124 m,供給半徑250 m,基質(zhì)滲透率為0.000 23 μm2,原油黏度為13.5 mPa·s,基質(zhì)孔隙度為10.8%,原始地層壓力為30 MPa,原油壓縮系數(shù)為0.001 4 MPa-1,井底流動(dòng)壓力為8 MPa,巖石壓縮系數(shù)為0.000 38 MPa-1,原油密度為0.75 g/cm3,縫網(wǎng)裂縫滲透率為0.1 μm2。將文獻(xiàn)[17]中模型計(jì)算結(jié)果與本文中推導(dǎo)得到爆炸壓裂復(fù)合流動(dòng)模型結(jié)果進(jìn)行對(duì)比。可以看出,當(dāng)r1=re即儲(chǔ)層完全被改造時(shí),復(fù)合流動(dòng)模型與文獻(xiàn)[17]中模型計(jì)算所得到的生產(chǎn)井動(dòng)態(tài)數(shù)據(jù)吻合較好,但是本文中模型與之前模型相比可以考慮改造區(qū)域范圍的影響,可以更準(zhǔn)確描述儲(chǔ)層實(shí)際改造情況。計(jì)算分析得到的爆炸壓裂改造前后生產(chǎn)井產(chǎn)量對(duì)比,如圖2所示,從圖中可以看出改造區(qū)域半徑對(duì)產(chǎn)能影響較大,對(duì)儲(chǔ)層進(jìn)行爆炸壓裂改造可顯著提高產(chǎn)量。 低滲透油藏儲(chǔ)層爆炸壓裂開(kāi)發(fā)效果受到很多因素的影響,基于低滲透油藏爆炸壓裂復(fù)合流動(dòng)產(chǎn)能模型研究了儲(chǔ)層改造體和改造區(qū)域滲透率對(duì)儲(chǔ)層開(kāi)發(fā)效果的影響。采用上述參數(shù),在定井底流動(dòng)壓力為8 MPa下進(jìn)行計(jì)算分析。 圖3 不同改造區(qū)域半徑下油井日產(chǎn)量對(duì)比Fig.3 Comparison of daily production between different reservoir stimulation region radii 圖4 不同裂縫滲透率下油井日產(chǎn)量對(duì)比Fig.4 Comparison of daily production between different fracture permeabilities 圖5 壓裂改造比與累積產(chǎn)量的關(guān)系Fig.5 Relation between between accumulation production and reservoir stimulation ratios 3.1 爆炸壓裂改造區(qū)域半徑 爆炸壓裂改造半徑對(duì)油井產(chǎn)能影響如圖3所示。改造區(qū)域半徑對(duì)產(chǎn)能的影響主要體現(xiàn)在生產(chǎn)中期,改造半徑越大,中期產(chǎn)能越高。生產(chǎn)早期壓力波及范圍較小,井筒附近的改造區(qū)域向井筒供液,改造區(qū)域半徑對(duì)該階段的油井產(chǎn)能沒(méi)有影響;生產(chǎn)20 d以后壓力開(kāi)始逐漸波及到邊界,改造區(qū)域半徑較小時(shí)產(chǎn)能迅速下降,改造區(qū)域半徑越大,縫網(wǎng)雙重介質(zhì)區(qū)域竄流量越大,產(chǎn)能相應(yīng)也就越高;生產(chǎn)約1 000 d之后,未改造區(qū)域儲(chǔ)層流體開(kāi)始滲流,改造區(qū)域半徑越大,該階段未改造區(qū)域產(chǎn)能貢獻(xiàn)度越小,因而改造區(qū)域半徑對(duì)產(chǎn)能的影響逐漸減小。 3.2 爆炸壓裂改造區(qū)域裂縫滲透率 爆炸壓裂改造區(qū)域縫網(wǎng)雙重介質(zhì)滲透率對(duì)生產(chǎn)井產(chǎn)能的影響,如圖4所示。在生產(chǎn)初期,滲透率對(duì)生產(chǎn)井產(chǎn)能影響很大;生產(chǎn)中期改造區(qū)域發(fā)生竄流,縫網(wǎng)區(qū)域內(nèi)基質(zhì)系統(tǒng)對(duì)產(chǎn)能的貢獻(xiàn)逐漸增大,裂縫滲透率對(duì)生產(chǎn)井產(chǎn)能影響逐漸減?。簧a(chǎn)后期滲透率對(duì)生產(chǎn)井產(chǎn)能影響很小。其主要原因在于:縫網(wǎng)雙重介質(zhì)中裂縫系統(tǒng)的滲透率遠(yuǎn)遠(yuǎn)大于基質(zhì)系統(tǒng)滲透率,生產(chǎn)早期主要是裂縫系統(tǒng)內(nèi)存儲(chǔ)的流體向井筒供液,滲透率對(duì)該階段產(chǎn)能影響較大;生產(chǎn)中期發(fā)生竄流,滲透率越大,裂縫網(wǎng)絡(luò)系統(tǒng)與基質(zhì)系統(tǒng)滲透率差異越大,系統(tǒng)之間流體交換越容易,生產(chǎn)井產(chǎn)能越大,該階段基質(zhì)內(nèi)流體對(duì)產(chǎn)能貢獻(xiàn)度較大,因而裂縫滲透率對(duì)產(chǎn)能的影響逐漸減?。簧a(chǎn)后期竄流結(jié)束后,油藏表現(xiàn)為均質(zhì)流動(dòng)特征,基巖和微裂縫壓力同步變化,裂縫滲透率對(duì)產(chǎn)能的影響很小。 低滲透油藏儲(chǔ)層爆炸壓裂改造過(guò)程中可以通過(guò)加大炸藥量增加壓裂改造區(qū)域的體積。改造區(qū)域體積越大,生產(chǎn)井產(chǎn)量就越高,但是當(dāng)改造體積達(dá)到一定程度時(shí),繼續(xù)增加改造區(qū)域體積對(duì)產(chǎn)能的影響會(huì)越來(lái)越小,因而最大的改造區(qū)域體積并不能達(dá)到最好的經(jīng)濟(jì)效益。基于上述研究理論,定義壓裂改造比R為爆炸壓裂改造區(qū)域體積與油藏總體積的比值。在儲(chǔ)層總體積不變的情況下,壓裂改造比可以用于表征爆炸壓裂改造區(qū)域體積的大小,壓裂改造比與油井累積產(chǎn)量的關(guān)系如圖5所示。當(dāng)改造體積較小時(shí),生產(chǎn)井累積產(chǎn)量受改造體積影響較大,在該階段增加爆炸壓裂改造體積可以明顯的提高累積產(chǎn)量。當(dāng)壓裂改造比大于0.1后,繼續(xù)增加改造體積時(shí)生產(chǎn)井產(chǎn)量增幅較小,因而該低滲透油藏存在最優(yōu)的壓裂改造比為0.1,即爆炸壓裂改造區(qū)域半徑約為25 m時(shí)效果最好。不同儲(chǔ)層物性對(duì)單位質(zhì)量炸藥的改造范圍具有較大的影響,在確定最優(yōu)改造半徑的條件下,采用實(shí)際儲(chǔ)層的巖石進(jìn)行爆炸壓裂實(shí)驗(yàn)以獲得壓裂改造范圍與爆炸量用量的對(duì)應(yīng)關(guān)系,進(jìn)而可以得到該儲(chǔ)層最優(yōu)的炸藥設(shè)計(jì)量。 在雙重介質(zhì)模型的基礎(chǔ)上,結(jié)合爆炸壓裂形成的裂縫分布規(guī)律,提出爆炸壓裂縫網(wǎng)雙重介質(zhì)復(fù)合流動(dòng)模型,求得拉式空間內(nèi)定壓生產(chǎn)時(shí)不同邊界條件下生產(chǎn)井產(chǎn)能半解析解,利用反演計(jì)算得到真實(shí)空間內(nèi)產(chǎn)量變化規(guī)律。 低滲透油藏爆炸壓裂產(chǎn)能受壓裂改造區(qū)域范圍、縫網(wǎng)改造區(qū)域滲透率等因素影響較大;對(duì)壓裂改造區(qū)域半徑、縫網(wǎng)改造區(qū)域滲透率等因素進(jìn)行分析后發(fā)現(xiàn)爆炸壓裂改造區(qū)域半徑主要影響生產(chǎn)中期產(chǎn)能,改造區(qū)域滲透率對(duì)生產(chǎn)早期和中期影響均比較大。 對(duì)儲(chǔ)層實(shí)施爆炸壓裂改造時(shí)存在最優(yōu)的改造進(jìn)行半徑,計(jì)算表明,當(dāng)爆炸壓裂改造比為0.1時(shí)改造效果最好。 [1] 王鳳琴,廖紅偉,蔣峰華,等.低滲油田注水能力下降原因分析及其對(duì)策研究[J].西安石油大學(xué)學(xué)報(bào):自然科學(xué)版,2009,24(1):52-55. Wang Fengqin, Liao Hongwei, Jiang Fenghua, et al.Causes and counter measures for the descend of the water injection capacity of low permeability reservoirs[J]. Journal of Xi’an Shiyou University: Natural Science Edition, 2009,24(1):52-55. [2] 黃榮樽.水力壓裂裂縫的起裂和擴(kuò)展[J].石油勘探與開(kāi)發(fā),1981,8(5):62-74. Huang Rongzun. Crack hydraulic fracturing cracks and the extension[J]. Petroleum Exploration and Development, 1981,8(5):62-74. [3] 傅尤校.水力壓裂裂縫的延伸與儲(chǔ)層的連續(xù)性[J].石油學(xué)報(bào),1984,5(2):55-62. Fu Youxiao. Extension of fractures created by hydraurrac and continuity of reservoir[J]. Acta Petrolei Sinica, 1984,5(2):55-62. [4] Yew C H. Mechanics of hydraulic fracturing[J]. Developments in Petroleum Science, 1997,210(07):369-390. [5] Britt L K. Optimization oil well fractures of mode rate permeability reservoir[C]∥SPE Annual Technical Conference and Exhibition. Las Vegas, Nevada, 1985. [6] Shlyapobersky J K, Chudnovsky A K. Fracture mechanics in hydraulic fracturing[C]∥US Symposium on Rock Mechanics. 1992. [7] Jeffrey R G, Zhang Xi. Mechanics of Hydraulic Fracture Growth From a Borehole[C]∥Canadian Unconventional Resources and International Petroleum Conference. Calgary, Alberta, Canada, 2010. [8] 徐鵬,程遠(yuǎn)方,張曉春,等.水泥試樣爆炸壓裂實(shí)驗(yàn)及裂紋分形評(píng)價(jià)[J].爆炸與沖擊,2011,31(2):179-184. Xu Peng, Cheng Yuanfang, Zhang Xiaochun, et al. Fractal evaluation of explosive fracturing simulation test on cement samples[J]. Explosion and Shock Waves, 2011,31(2):179-184. [9] 趙志紅,郭建春.層內(nèi)爆炸壓裂技術(shù)原理及分析[J].石油天然氣學(xué)報(bào),2008,30(2):297-299. Zhao Zhihong, Guo Jianchun. Experimental study on plug removal technology with self-excited oscillation[J]. Journal of Oil and Gas Technology, 2008,30(2):297-299. [10] 程遠(yuǎn)方,寇永強(qiáng),徐鵬,等.水泥試樣爆炸壓裂模擬試驗(yàn)[J].中國(guó)石油大學(xué)學(xué)報(bào):自然科學(xué)版,2010,34(5):69-72. Cheng Yuanfang, Kou Yongqiang, Xu Peng, et al. Explosive fracturing simulation test of cement samples[J]. Journal of China University of Petroleum: Edition of Natural Science, 2010,34(5):69-72. [11] 謝賢東.爆炸壓裂后儲(chǔ)層裂縫的滲流機(jī)理研究[D].北京:中國(guó)石油大學(xué),2009. [12] 徐鵬,程遠(yuǎn)方,劉新云,等.低滲透油氣藏爆炸壓裂模擬試驗(yàn)及裂縫分形特征[J].石油勘探與開(kāi)發(fā),2013,40(5):636-670. Xu Peng, Cheng Yuanfang, Liu Xinyun, et al. Explosive fracturing simulation experiment for low permeability reservoirs and fractal characteristics of cracks produced by explosive fracturing[J]. Petroleum Exploration and Development, 2013,40(5):636-670. [13] Grady D E, Kipp M E, Smith C S. Explosive fracture studies on oil shale[J]. Society of Petroleum Engineers Journal, 1980,20(5):349-356. [14] Cui Mingyue, Shan Wenwen, Liang Jin, et al. In fracture explosive hydraulic fracturing fluid and its rhelogical study[C]∥International Oil & Gas Conference and Exhibition in China. 2006. [15] Brown M L, Ozkan E, Raghavan R S, et al. Practical solutions for pressure transient responses of fractured horizontal wells in unconvertional reservoirs[J]. SPE Reservoir Evaluation & Engineering, 2009,14(6):663-676. [16] Everdingen A F V, Hurst W. The application of the Laplace transformation to flow problems in reservoirs[J]. Journal of Petroleum Technology, 1949,1(12):305-324. [17] 孔祥言.高等滲流力學(xué)[M].合肥:中國(guó)科學(xué)技術(shù)大學(xué)出版社,1999. (責(zé)任編輯 王易難) Production analysis and optimal design of explosive fracturing technology for low permeability reservoir Liu Jinghua1, Han Guoqing1, Jing Ziyan2 (1.CollegeofPetroleumEngineering,ChinaUniversityofPetroleum(Beijing),Beijing102249,China;2.ResearhInstituteofPetroleumExploration&Development-Northwest,ChinaNationalPetroleumCorporation,Lanzhou730000,Gansu,China) The explosive fracturing technique is often adopted to produce and expand fractures due to its great shock waves, thus improving the low permeability of oil reservoirs. Based on the distribution characteristics of the explosive fracturing network and applying the Laplace transform and the Stehfest numerical inversion, this paper presents a new analytic mathematical production model for the complex-flow to an explosive fracturing well and obtains the formulas for the oil output under the constant pressure in different boundary conditions. On the basis of the model validation, this paper investigates the influence of the fracture network parameters on the output and the optimal design of the explosive fracturing. It is shown that the permeability of the fracture network exerts a great influence on the production. In addition, this paper offers an optimal design for explosive fracturing. The results from this study are expected to be significantly helpful for the optimal design of explosive fracturing and provide a rational design about the explosive quantity in low permeable reservoirs. mechanics of explosion; explosive fracturing; complex-flow model; radius of stimulation reservoir area; optimal design; low permeable reservoirs 10.11883/1001-1455(2016)02-0224-06 014-08-28; 劉靜華(1989— ),女,碩士研究生,liujinghua0810@163.com。 O383;TE122.1 國(guó)標(biāo)學(xué)科代碼:13035 A 修回日期:2014-11-263 爆炸壓裂產(chǎn)能影響因素分析
4 爆炸壓裂改造體積優(yōu)化設(shè)計(jì)
5 結(jié) 論