• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental research on HEL and failure properties of alumina under impact loading

    2016-04-18 09:13:02XiaoweiFENGJingzhenCHANGYonggangLU
    Defence Technology 2016年3期

    Xiao-wei FENG*,Jing-zhen CHANG,Yong-gang LU

    Institute of Systems Engineering,China Academy of Engineering Physics,Mianyang 621900,China

    Experimental research on HEL and failure properties of alumina under impact loading

    Xiao-wei FENG*,Jing-zhen CHANG,Yong-gang LU

    Institute of Systems Engineering,China Academy of Engineering Physics,Mianyang 621900,China

    A series of plate impact experiments on alumina was conducted using a light gas gun in order to further investigate Hugoniot elastic limit(HEL)and failure properties of alumina under shock compression.The velocity interferometer system for any ref l ector (VISAR)was used to record the rear-free surface velocity histories of the alumina samples.According to the experimental results,the HELs of tested alumina samples with different thicknesses were measured,and the decay phenomenon of elastic wave in shocked alumina was studied.A phenomenological expression between HEL and thickness of sample was presented,and the causes of the decay phenomenon were discussed.The propagation of failure wave in shocked alumina was probed.The velocity and delayed time of failure wave propagation were obtained.The physical mechanism of the generation and propagation of failure was further discussed.

    Plate impact experiment;Alumina;Hugoniot elastic limit;Failure wave

    1.Introduction

    The interest to investigate the behavior of ceramics subjected to high velocity impact evolves mainly from their importance to manufacture the light-weight armor composites.The compressive strength and failure characteristics of ceramic armor under shock loading are the important factors for analyzing a ballistic performance against the penetrator.Understanding of the properties of the compressive strength and failure of ceramics under impact loading is essential in the design of improved impact resistantmaterialsfordynamicstructuralandarmorapplications.

    The Hugoniot elastic limit (HEL)is interpreted as the limit of elastic response and the onset of failure under dynamic uniaxial strain loading,which is used extensively in high velocity impact dynamics.During the past decades,the f l yer plate impact test has been the most frequently reported experimental technique for measuring the HEL of material.The previous experimental results showed an interesting phenomenon of that the elastic precursor amplitude decreased with propagation distance in the alumina sample,which was termed as precursor decay [1-4].However,Refs. [5,6]presented the conf l ictingresults that no sign of such precursor decay was observed in tested alumina.

    The failure wave,which is one of the most important discoveries in impact dynamics f i eld over the last 20 years,is a new brittle failure mechanism of some brittle materials,such as glass and ceramics,etc.,under compressive shock loading.It was observed by Rasorenov [7]and Kanel[8]through an observation of a small recompression signal on the free surface velocity historyofshockedK19glass.Continuingeffortshavebeenmade to conf i rm the existence of failure waves in other types of glasses[9-12]and ceramics,such as alumina [13,14],silicon carbide[15]and boron carbide [16].The formation and propagation mechanismsofthisfailurephenomenonhavebeenproposedover the last two decades.However,the understanding of the failure wave phenomenon is still far from complete because there are some disagreement and controversy between the available data and theoretical predictions.For example,up to now,it is not sure whether the propagating velocity of failure wave,which is a crucial parameter to characterize the failure wave phenomenon,is a constant or not under a certain dynamic loading.Refs.[7,8]reported that the failure wave velocity decreased with the increase in propagation distance in shock loaded materials. However,more researchers believed that the failure wave velocity in brittle materials is constant with the given external loading and increases with the increase in loading intensity.In this paper,the velocity of failure wave in shocked alumina was measured by the VISAR technique.And the formation mechanism of failure wave of alumina was further analyzed.

    2.Experiment

    The density of the tested alumina,ρ0,is 3.896 g/cm3,the measured longitudinal wave velocity cl is 9.259 km/s,the shear wave velocity cs is 5.557 km/s,and the Poisson ratio v is 0.218. The calculated sound velocity corresponding to the volume compressibility of the material is

    The composition of the tested alumina consists of 92.85% Al2O3,4.89%SiO2,0.36%CaO and 1.90%La2O3 by weight. We studied the samples in the form of disks with 40 mm in diameter and 4,6,8 and 10 mm in thickness.A 6 mm thick copper f l yer was designed with the longitudinal wave velocity of 3490 m/s.

    The double-thickness target developed in the study is shown in Fig.1,in which two sub-targets are embedded into a two-hole target ring,with the impact surfaces of both the target ring and two sub-targets being rigorously set on one plane.The plate impact experiments under the one-dimensional strain condition were carried out on a Φ100 mm one-stage light gas gun,and two free surface velocity histories of each sub-target were recorded simultaneously by the VISAR technique.Impact velocities were measured to 1.5%accuracy using three pairs of electric signal pins and were all in the range of 439-445 m/s.So the samples were considered to undergo the same compressive state approximately.

    3.Results and discussions

    Fig.2 shows the measured free surface velocity prof i les of alumina samples with different thicknesses.These prof i les show an initial elastic precursor wave followed by the onset of a dispersive inelastic wave which characterizes the material yielding.The onset point is denoted as HEL,which can be determined by the well-known relation

    where ρ0is the density of alumina,clis the longitudinal wave velocity,and uHis the free surface velocity.

    However,the free surface velocity prof i les of alumina show that the transition from elastic phase to inelastic phase occurs gradually.There is no sharp distinction between the elastic part and inelastic part.The rounded transition from the elastic part to inelastic part makes the unambiguous determination of HEL value diff i cult.We tried to distinguish a turning point of elastic phase to inelastic phase in Fig.2,and obtained σHof alumina using Eq. (1),as shown in Table 1.It is noted that the HEL of alumina obtained in the present study ranges from 4.41 GPa to 5.59 GPa.These data and the HELs of other aluminas [4,17,18]similar in composition are presented in Fig.3.It is shown that the HELs of tested alumina are lower than the data presented by others.The difference in the value of σHhere may be attributed to the differences in the composition,density,preparation process of samples,or the distinction of turning point.

    In order to investigate the properties of HEL of alumina under shocked loading,the HELs of tested alumina were plotted against the thicknesses of samples in Fig.4.It is found that HEL of alumina decreases with the increase in sample thickness,which is termed as the elastic precursor decay.This phenomenon is considered to be similar to the phenomenon of size effect of other brittle materials,such as concrete and rock,namely the strength of brittle material decreases with the increase in its volume.However,the physical mechanism of this phenomenon is very complex and no complete satisfactory theory exists presently.A simpler model has been proposed to describe the size effect of brittle materials under compression

    Fig.1.Schematic diagram of double-target impact experimental setup.

    Fig.2.Free surface velocity prof i les of shocked alumina in present experiments.

    where Y is the dynamic yield strength of material,D is the volume of sample,and A0,A1,and k are positive parameters.k is determined to be 0.4 for brittle materials [19].In the present paper,Y is related to σHthrough the well-known relation

    where D can be represented as πr2h.Because v and r are constants,Eq.(3)can be rewritten as

    A0and B can be determined to be 3.04 and 3.84,respectively,by f i tting the experimental data shown in Fig.4.

    Table 1Hugoniot elastic limits of alumina ceramics.

    Fig.3.HELs of aluminas under shock loading.

    Fig.4.HEL vs.thickness for tested alumina.

    Murray et al.[4]studied this phenomenon in three grades of alumina through the stress-time measurements,and showed that the precursor decay effect was the greatest in the low purity aluminas.However,the further analysis [20]revealed that this phenomenon was probably a measurement artifact,resulting from the relatively slow response time of mangan in gauge. Obviously,the data obtained in our experiments did not support this point of view,which showed an apparent decay in HEL with the increase in sample thickness.VISAR is a non-contact technique without measurement errors existing in stress measurement,so it can be deduced that this phenomenon is an essential characteristic of the alumina under shock loading.The HEL is known as a point of transition from elastic response to inelastic response,so the phenomenon of elastic precursor decay should be studied combined with the failure mechanism of shocked alumina.The previous works reported that cracking,dislocation activity and twinning were observed in shock-loaded alumina,even when the peak-shock stress is less than the magnitude of HEL [21-27].In authors'opinion,the failure process occurring below HEL may play the dominant role in the phenomenon of elastic precursor decay.As is known to all,the evolution process of cracking or plasticity is an energy dissipation process essentially.In the region behind the elastic precursor wave,the preexisting microdetects act as stress concentrators and provide the nucleation sites for damage evolution,which dissipate the elastic energy.Thus,the longer distance the elastic wave passes through,the more elastic energy will be dissipated,which causes the amplitude of elastic wave decay.

    From the free surface velocity prof i les,we can also observe the apparent recompressive wave signals which are marked by dashed line in Fig.5.This phenomenon is interpreted as a failure wave.Itfollowsfromconsiderationofthetime-distancediagram shown in Fig.5 that the failure waves meet the unloading waves ref l ected from the free surfaces of the samples with different thicknesses at the distance xiand time ti,as determined by Eq.(5)

    Fig.5.The time-distance diagram for failure wave.

    Here,the longitudinal wave velocity clin the sample is assumed to be a constant during wave propagation.The arrival time t1iof failure waves can be obtained from the free surface velocity prof i les.The failure wave trajectories for the four samples with 4,6,8 and 10 mm in thickness are obtained by the Eq.(5)mentioned above as shown in Fig.6.It can be seen from Fig.6 that the four points locate just on a straight line in a good approximation,which can be f i tted well by a linear equation between the time [t(μm)]and distance [x(mm)]as follows

    From Eq. (6),it can also be seen that there exists an initial delay time for the failure wave on the impact surface,which is about 0.105 μs.This delay failure mechanism is considered to be related to the evolution of microdetects under impact loading,such as microcracks growth and accumulation,etc.,which was discussed in our earlier works [13].

    The propagating velocity of failure wave in test alumina can be alsoobtainedfromthetrajectory,whichistheslopeofthetrajectory curveabout5.051 km/sinFig.6.Thisvelocityisapparentlyhigher than those of the failure waves observed in the shocked glasses,where they are usually 1-3 km/s [7,10-12].The formation mechanismoffailurewavesinshockedglassesisalwaysinterpreted as the activation and growth of microcracks on the impact surface[7,15].From this point of view,the propagating velocity of failure wave should be slower than the limiting growth velocity of crack whichisalwaysslowerthanRayleighwavevelocity [28].Oncethe velocityofcracksreachesalimitedvaluewhichismuchslowerthan Rayleighwavevelocity,theytendtobranchout[29].TheRayleigh wave velocity in tested alumina can be calculated directly by the shear wave velocity and the Poisson's ratio as follows [28]

    Fig.6.Experimental data and its linear f i tting line.

    Fig.7.SEM micrographs of alumina samples.

    It is shown that the failure wave velocity measured in tested alumina is very close to the Rayleigh wave velocity.Thus,the formation mechanism of failure waves in shocked alumina may be different from that in shocked glass.

    According to the SEM micrographs of alumina sample shown in Fig.7,it is known that the microstructure of alumina consists of alumina grains,pores and intergranular glassy phase.The grains and pores distribute randomly with the diameters of 1-15 μm.Intergranular glassy phase is distinct in a compact area.Pores and glassy phase weaken the mechanical capabilities of alumina,and these heterogeneous microstructures act as the stress concentrators.It has been well known that a high shear stress would be produced due to the large conf i ning stress under the uniaxial strain loading.The localized stress concentrations are expected to arise from the propagation of cracks and f l aws at grain boundaries.The failure is proposed to proceed essentially through rapid in situ grain boundary microcracks nucleation and comminution with very limited crack growth after a delay time once a shock wave travels through the sample.As the microcracks in situ nucleate in the stressed alumina and do not need time to transmit from the impact surface,the failure front with lower dynamic impedance in the shocked alumina could be detected much earlier from the rear surface,and it therefore gives a higher observed failure wave velocity.This failure mechanism is different from that in the shocked glass,but similar to that in the shocked rocks [30].

    4.Summary

    In this paper,the plate impact experiments were performed on aluminas with different thicknesses,and the free surface velocity histories of alumina samples were traced by VISAR technique.The HELs of tested alumina were obtained from the temporal curves of free surface velocity.We found an elastic precursordecay phenomenon in shockedalumina, and proposed that the physical mechanism of this phenomenon was related to the failure processes of shocked alumina occurring below HEL.Moreover,a simple model was applied to describe this phenomenon.In addition,the failure wave trajectory was derived from the free surface velocity histories,which presented the failure wave velocity of about 5.051 km/s under the given impact loading.The formation mechanism of failure waves in shocked alumina was proposed to proceed essentially through rapid in situ grain boundary microcracks nucleation,which was different from that in shocked glass.

    Acknowledgments

    The project is supported by the Science and Technology Development Foundation of China Academy of Engineering Physics (Grant No.2014B0101009)and the National Natural Science Foundation of China (Grant No.11502258,11272300).

    [1]Yaziv D,Yeshurun Y,Partom Y,Rosenberg Z.Shock compression of condensed matter-1987.APS Conference Proceedings;1988.p.297.

    [2]Rosenberg Z,Brar NS,Bless SJ.J Phys Colloq 1988;49:707.

    [3]Bourne NK,Rosenberg Z,F(xiàn)ield JE,Crouch IG.J Phys IV 1994;4:269.

    [4]Murray NH,Bourne NK,Rosenberg Z.J Appl Phys 1998;84:4866.

    [5]Cagnoux J,Longy F.In:Schmidt SC,Holmes NC,editors.Shock waves in condensed matter 1987.Amsterdam:North-Holland;1988.p.293.

    [6]Grady DE.Mech Mater 1998;29:181.

    [7]Rasorenov SV,Kanel GI,F(xiàn)ortov VE,Abasehov M.High Press Res 1991;6.

    [8]Kanel GI,F(xiàn)ortov VE,Rasorenov SV.Shock compression of condensed matter-1991.Elsevier Science Publishers BV;1992.p.451.

    [9]Brar NS,Rosenberg Z,Bless SJ.J Phys IV 1991;1(C3):639.

    [10]Bless SJ,Brar NS,Kanel GI,Rosenberg Z.J Am Ceram Soc 1992;75:1002.

    [11]Bourne NK,Rosenberg Z,F(xiàn)ield JE.J Appl Phys 1995;78:3736.

    [12]Zhang YG,Duan ZP,Zhang LS,Ou ZC,Huang FL.Exp Mech 2011;51:247.

    [13]Feng XW,Liu ZF,Chen G,Yao GW.Adv Appl Ceram 2012;110:335.

    [14]Bourne NK,Millett JCF,Rosenberg Z,Murray N.J Mech Phys Solids 1998;46:1887.

    [15]Bourne NK,Millett JCF,Pickup I.J Appl Phys 1997;81:6019.

    [16]Bourne NK,Gray GT.Shock compression of condensed matter-2001. USA;2001.p.775.

    [17]Rosenberg Z,Brar NS,Bless SJ.J Phys 1988;c3:707.

    [18]Gust WH,Royce EB.J Appl Phys 1971;42:1.

    [19]Bazant ZP,Xiang Y.J Eng Mech-ASCE 1997;123:162.

    [20]Marom H,Sherman D,Rosenberg Z.J Appl Phys 2000;88:10.

    [21]Chen MW,McCauley JW,Dandekar DP,Bourne NK.Nat Mater 2006;5:614.

    [22]Longy F,Cagnoux J.J Am Ceram Soc 1989;72:971.

    [23]Nemat-Nasser S.Ceram Trans 2002;134:403.

    [24]Espinosa HD,Raiser G,Clifton RJ,Ortiz M.J Appl Phys 1992;72:3451.

    [25]MeralaTB,ChanHW,HowittDG,KelseyPV,KorthGE,WilliamsonRL,et al.Mater Sci Eng A Struct Mater 1988;105-106:293.

    [26]Lankford J,Predebon WW,Staehler JM,Subhash G,Pletka BJ,Anderson CE.Mech Mater 1998;29:205.

    [27]Rajendran AM,Dandekar DP.Int J Impact Eng 1995;17:649.

    [28]Achenbach JD.Wave propagation in elastic solids.New York:North-Holland Publishing Company;1973.

    [29]Meyers MA.Dynamic behavior of materials.New York:John Wiley& Sons,Inc.;1994.

    [30]Chen D,He H,Jing F.J Appl Phys 2007;102:033519.

    Received 5 October 2015;revised 4 January 2016;accepted 20 January 2016 Available online 3 March 2016

    Peer review under responsibility of China Ordnance Society.

    *Corresponding author.Tel.:+8608162493743.

    E-mail address:xiaowei_feng@126.com (X.W.FENG).

    http://dx.doi.org/10.1016/j.dt.2016.01.007

    2214-9147/? 2016 China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    ? 2016 China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    女人被躁到高潮嗷嗷叫费观| 欧美国产精品一级二级三级| 久久人人爽av亚洲精品天堂| 国产免费视频播放在线视频| 中文字幕亚洲精品专区| 91成人精品电影| 国产在线免费精品| 国产精品无大码| www.熟女人妻精品国产| 欧美人与性动交α欧美软件| 亚洲图色成人| 亚洲成人av在线免费| 欧美日韩一级在线毛片| 亚洲av电影在线观看一区二区三区| 美女国产高潮福利片在线看| 久久国产精品男人的天堂亚洲| 色网站视频免费| 久久性视频一级片| 亚洲情色 制服丝袜| 国产精品熟女久久久久浪| 国产日韩欧美亚洲二区| 成人免费观看视频高清| 男人操女人黄网站| 人体艺术视频欧美日本| 亚洲婷婷狠狠爱综合网| 校园人妻丝袜中文字幕| 亚洲av男天堂| 最新在线观看一区二区三区 | 国产精品三级大全| 午夜久久久在线观看| 欧美久久黑人一区二区| 91精品国产国语对白视频| 日本欧美国产在线视频| 久久精品久久久久久久性| 国产乱人偷精品视频| 波多野结衣av一区二区av| 久久天堂一区二区三区四区| 女人久久www免费人成看片| 国产伦人伦偷精品视频| 成人毛片60女人毛片免费| 欧美日韩视频精品一区| 精品久久蜜臀av无| 亚洲色图综合在线观看| 国产99久久九九免费精品| 日本av免费视频播放| 国产精品麻豆人妻色哟哟久久| 国产 精品1| 99久久综合免费| 日本wwww免费看| 久久久精品国产亚洲av高清涩受| 两性夫妻黄色片| 亚洲欧洲国产日韩| 777米奇影视久久| 精品第一国产精品| 中文字幕高清在线视频| 久久精品亚洲熟妇少妇任你| 青春草国产在线视频| 三上悠亚av全集在线观看| 亚洲欧美色中文字幕在线| kizo精华| 国产av精品麻豆| 亚洲一区二区三区欧美精品| 亚洲欧美成人综合另类久久久| 免费观看a级毛片全部| 免费不卡黄色视频| 嫩草影院入口| 美女中出高潮动态图| 国产免费福利视频在线观看| 久久久精品94久久精品| 婷婷色av中文字幕| 国产免费现黄频在线看| 久久这里只有精品19| 91精品伊人久久大香线蕉| 久久人人97超碰香蕉20202| 午夜福利一区二区在线看| 丰满饥渴人妻一区二区三| xxx大片免费视频| 99热网站在线观看| 国产精品秋霞免费鲁丝片| 欧美人与性动交α欧美精品济南到| av免费观看日本| 一级,二级,三级黄色视频| 看非洲黑人一级黄片| 又粗又硬又长又爽又黄的视频| 日本爱情动作片www.在线观看| 欧美人与性动交α欧美软件| 国产无遮挡羞羞视频在线观看| tube8黄色片| 99re6热这里在线精品视频| 成年美女黄网站色视频大全免费| 久久性视频一级片| 国产一区亚洲一区在线观看| 久久精品久久精品一区二区三区| 下体分泌物呈黄色| 乱人伦中国视频| 蜜桃在线观看..| 欧美日本中文国产一区发布| 一级毛片黄色毛片免费观看视频| 免费高清在线观看视频在线观看| 一区二区av电影网| 多毛熟女@视频| 精品少妇内射三级| 午夜福利视频精品| 精品国产国语对白av| 亚洲国产精品成人久久小说| 久热爱精品视频在线9| 国产欧美日韩一区二区三区在线| 精品国产一区二区三区四区第35| 五月开心婷婷网| 国产熟女欧美一区二区| 纵有疾风起免费观看全集完整版| a级毛片在线看网站| 女人精品久久久久毛片| 青青草视频在线视频观看| 美女国产高潮福利片在线看| 久久久久久人妻| 久久亚洲国产成人精品v| 亚洲美女黄色视频免费看| 亚洲精品久久午夜乱码| av在线app专区| 精品国产乱码久久久久久男人| 亚洲免费av在线视频| 最近中文字幕高清免费大全6| 在线亚洲精品国产二区图片欧美| 男女下面插进去视频免费观看| 国产亚洲午夜精品一区二区久久| 韩国av在线不卡| 人妻一区二区av| 国产熟女欧美一区二区| 18禁国产床啪视频网站| 一边摸一边抽搐一进一出视频| 欧美 亚洲 国产 日韩一| 亚洲av综合色区一区| 国产淫语在线视频| 久久久国产精品麻豆| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美日韩综合久久久久久| 久久久久网色| av女优亚洲男人天堂| av在线app专区| 在线精品无人区一区二区三| av网站免费在线观看视频| 七月丁香在线播放| av在线播放精品| 秋霞在线观看毛片| 一本一本久久a久久精品综合妖精| 国产熟女午夜一区二区三区| 日日爽夜夜爽网站| av在线app专区| 中文天堂在线官网| 久久影院123| 天天躁夜夜躁狠狠躁躁| 欧美精品一区二区大全| 中文字幕av电影在线播放| 极品少妇高潮喷水抽搐| 亚洲精品日韩在线中文字幕| 女人精品久久久久毛片| 精品一区在线观看国产| 久久精品人人爽人人爽视色| 欧美激情高清一区二区三区 | 久久人人爽av亚洲精品天堂| 欧美成人午夜精品| av在线app专区| 国产成人午夜福利电影在线观看| 捣出白浆h1v1| 一级,二级,三级黄色视频| 日本vs欧美在线观看视频| 丰满迷人的少妇在线观看| 超碰成人久久| 嫩草影视91久久| 亚洲国产日韩一区二区| 18在线观看网站| 成人18禁高潮啪啪吃奶动态图| 女的被弄到高潮叫床怎么办| 国产精品久久久久久人妻精品电影 | 日韩成人av中文字幕在线观看| 日日啪夜夜爽| 精品福利永久在线观看| 国产免费视频播放在线视频| 亚洲第一av免费看| 成年美女黄网站色视频大全免费| 人成视频在线观看免费观看| 如何舔出高潮| 国产av一区二区精品久久| 欧美xxⅹ黑人| 日韩大片免费观看网站| 欧美国产精品va在线观看不卡| 极品少妇高潮喷水抽搐| 亚洲欧美精品自产自拍| 一级毛片 在线播放| 天堂8中文在线网| 亚洲国产精品成人久久小说| av在线老鸭窝| 亚洲成色77777| 日韩精品有码人妻一区| 一本大道久久a久久精品| 80岁老熟妇乱子伦牲交| 99热网站在线观看| 如何舔出高潮| 丝袜人妻中文字幕| 久久韩国三级中文字幕| 免费在线观看完整版高清| 亚洲欧美成人综合另类久久久| 9热在线视频观看99| 捣出白浆h1v1| 欧美另类一区| 日本91视频免费播放| 亚洲精品日韩在线中文字幕| 最近手机中文字幕大全| 国产在线视频一区二区| 亚洲欧洲精品一区二区精品久久久 | 久久精品国产a三级三级三级| 天天操日日干夜夜撸| 观看美女的网站| 国产日韩欧美在线精品| 日本wwww免费看| 精品少妇一区二区三区视频日本电影 | 免费观看a级毛片全部| 超碰成人久久| 久久久久精品人妻al黑| 免费av中文字幕在线| 18禁观看日本| 亚洲人成电影观看| 欧美国产精品va在线观看不卡| 国产在线视频一区二区| 夫妻午夜视频| 无遮挡黄片免费观看| 亚洲美女黄色视频免费看| 日本欧美国产在线视频| 国产高清不卡午夜福利| 色视频在线一区二区三区| 天天影视国产精品| 一区二区av电影网| 如何舔出高潮| 国产精品成人在线| a 毛片基地| 看十八女毛片水多多多| svipshipincom国产片| 久久久久久人妻| 亚洲精品日韩在线中文字幕| 亚洲国产精品成人久久小说| av.在线天堂| 看免费av毛片| 成年动漫av网址| 国产欧美日韩综合在线一区二区| 老司机亚洲免费影院| 欧美av亚洲av综合av国产av | 涩涩av久久男人的天堂| 香蕉国产在线看| 国产片特级美女逼逼视频| 男人添女人高潮全过程视频| 超色免费av| 日韩免费高清中文字幕av| 丝袜喷水一区| 亚洲精品久久久久久婷婷小说| 丰满少妇做爰视频| 国产欧美亚洲国产| 成人漫画全彩无遮挡| 国产xxxxx性猛交| 老鸭窝网址在线观看| 亚洲国产欧美一区二区综合| 黑人巨大精品欧美一区二区蜜桃| 丝瓜视频免费看黄片| videosex国产| 亚洲av男天堂| www日本在线高清视频| 精品视频人人做人人爽| 纵有疾风起免费观看全集完整版| 十分钟在线观看高清视频www| 国产精品免费视频内射| 欧美黑人精品巨大| 免费观看a级毛片全部| 精品国产国语对白av| 人人妻,人人澡人人爽秒播 | 国产日韩一区二区三区精品不卡| 欧美精品亚洲一区二区| 国产成人一区二区在线| 波多野结衣一区麻豆| 亚洲精品日本国产第一区| 色94色欧美一区二区| 国产一区二区 视频在线| 男人添女人高潮全过程视频| 日日撸夜夜添| 精品亚洲乱码少妇综合久久| 欧美日韩一级在线毛片| 精品国产超薄肉色丝袜足j| 永久免费av网站大全| 毛片一级片免费看久久久久| 国产成人精品福利久久| 成人漫画全彩无遮挡| 成年动漫av网址| 七月丁香在线播放| 国产乱人偷精品视频| 日本午夜av视频| 亚洲精品成人av观看孕妇| 大话2 男鬼变身卡| 亚洲综合精品二区| 亚洲成人av在线免费| 亚洲,一卡二卡三卡| av视频免费观看在线观看| 爱豆传媒免费全集在线观看| 午夜福利视频在线观看免费| 精品一区二区免费观看| 亚洲精品一区蜜桃| 日韩精品有码人妻一区| 纯流量卡能插随身wifi吗| 亚洲精品久久久久久婷婷小说| 女性被躁到高潮视频| 90打野战视频偷拍视频| 国产av国产精品国产| 亚洲精华国产精华液的使用体验| 国产亚洲最大av| 免费少妇av软件| 99热网站在线观看| 国产日韩欧美亚洲二区| 极品人妻少妇av视频| 国产成人欧美| 国产一区二区三区av在线| 亚洲精品成人av观看孕妇| 男女下面插进去视频免费观看| 亚洲欧美清纯卡通| 人体艺术视频欧美日本| 最近手机中文字幕大全| 中文字幕人妻丝袜制服| 国产在视频线精品| av.在线天堂| 亚洲欧美一区二区三区久久| 国产精品一区二区在线观看99| 亚洲色图综合在线观看| 黄色一级大片看看| 日本爱情动作片www.在线观看| 欧美变态另类bdsm刘玥| √禁漫天堂资源中文www| 亚洲图色成人| 日韩av在线免费看完整版不卡| 免费观看性生交大片5| 无遮挡黄片免费观看| 亚洲精品自拍成人| 色播在线永久视频| 午夜福利一区二区在线看| 亚洲一卡2卡3卡4卡5卡精品中文| 女性被躁到高潮视频| 熟女av电影| 看非洲黑人一级黄片| 亚洲自偷自拍图片 自拍| 亚洲人成网站在线观看播放| 国产国语露脸激情在线看| av电影中文网址| 赤兔流量卡办理| 亚洲天堂av无毛| 国产在视频线精品| 亚洲成av片中文字幕在线观看| 极品人妻少妇av视频| 下体分泌物呈黄色| 精品人妻熟女毛片av久久网站| 日韩制服骚丝袜av| 热99国产精品久久久久久7| 日韩制服丝袜自拍偷拍| 免费黄频网站在线观看国产| 国产一区二区三区综合在线观看| 国产伦人伦偷精品视频| 操出白浆在线播放| 久久久久久久久免费视频了| 国产 精品1| 丁香六月天网| 久久女婷五月综合色啪小说| 午夜av观看不卡| 日本爱情动作片www.在线观看| 搡老岳熟女国产| 91aial.com中文字幕在线观看| 国产在视频线精品| 人妻一区二区av| 亚洲免费av在线视频| 天堂俺去俺来也www色官网| 大陆偷拍与自拍| 精品一区在线观看国产| 欧美成人午夜精品| 亚洲成色77777| 欧美国产精品一级二级三级| 三上悠亚av全集在线观看| 性高湖久久久久久久久免费观看| 少妇被粗大猛烈的视频| 国产老妇伦熟女老妇高清| 一本一本久久a久久精品综合妖精| 欧美人与性动交α欧美精品济南到| 最近手机中文字幕大全| 人妻一区二区av| 可以免费在线观看a视频的电影网站 | 国产深夜福利视频在线观看| 久久久亚洲精品成人影院| 嫩草影院入口| 亚洲精品一二三| 十分钟在线观看高清视频www| 久久精品久久久久久久性| 在线天堂最新版资源| 黄片播放在线免费| 一个人免费看片子| 免费观看a级毛片全部| 9热在线视频观看99| 女性生殖器流出的白浆| 午夜激情久久久久久久| 婷婷色av中文字幕| 黄频高清免费视频| 午夜免费鲁丝| 精品视频人人做人人爽| 日韩伦理黄色片| 丝袜脚勾引网站| 国产精品.久久久| 亚洲精品国产色婷婷电影| 国产亚洲av片在线观看秒播厂| av在线观看视频网站免费| 女人爽到高潮嗷嗷叫在线视频| 亚洲,欧美,日韩| 2018国产大陆天天弄谢| 999久久久国产精品视频| 亚洲精品视频女| 精品久久久精品久久久| 少妇被粗大的猛进出69影院| 性少妇av在线| 韩国高清视频一区二区三区| 丝袜美腿诱惑在线| 久久热在线av| videos熟女内射| 亚洲专区中文字幕在线 | 大片电影免费在线观看免费| 亚洲国产成人一精品久久久| 午夜福利网站1000一区二区三区| 日本猛色少妇xxxxx猛交久久| 国产极品粉嫩免费观看在线| 亚洲国产精品一区三区| 狠狠精品人妻久久久久久综合| 久久久久久久久久久久大奶| 黑人欧美特级aaaaaa片| 国产亚洲av高清不卡| 美女高潮到喷水免费观看| 国产亚洲欧美精品永久| 黄网站色视频无遮挡免费观看| 制服丝袜香蕉在线| 欧美日韩亚洲国产一区二区在线观看 | 欧美精品一区二区免费开放| 青青草视频在线视频观看| 老汉色∧v一级毛片| 老汉色av国产亚洲站长工具| 视频区图区小说| 99久久99久久久精品蜜桃| tube8黄色片| 亚洲av欧美aⅴ国产| 欧美中文综合在线视频| 女性被躁到高潮视频| 乱人伦中国视频| 99国产综合亚洲精品| av片东京热男人的天堂| 美女福利国产在线| 国产精品蜜桃在线观看| 精品酒店卫生间| 国产精品欧美亚洲77777| 国产精品久久久av美女十八| 一区二区av电影网| 亚洲成人一二三区av| 国产精品 国内视频| 欧美国产精品va在线观看不卡| 亚洲成人av在线免费| 校园人妻丝袜中文字幕| 亚洲人成网站在线观看播放| 成人国语在线视频| 妹子高潮喷水视频| 亚洲欧美一区二区三区黑人| 中文字幕av电影在线播放| 国产毛片在线视频| 亚洲成国产人片在线观看| 亚洲成人一二三区av| 欧美激情高清一区二区三区 | 日韩电影二区| 爱豆传媒免费全集在线观看| 国产亚洲av片在线观看秒播厂| 中国三级夫妇交换| 狠狠精品人妻久久久久久综合| 午夜免费观看性视频| 人体艺术视频欧美日本| 在线观看免费高清a一片| 亚洲国产精品999| 免费久久久久久久精品成人欧美视频| 精品亚洲成国产av| 日韩伦理黄色片| 如何舔出高潮| 如日韩欧美国产精品一区二区三区| 亚洲熟女毛片儿| 亚洲精品,欧美精品| 亚洲一区中文字幕在线| 亚洲精品自拍成人| 18禁观看日本| 熟女少妇亚洲综合色aaa.| 18禁国产床啪视频网站| 色播在线永久视频| 一级片免费观看大全| 超碰97精品在线观看| 性少妇av在线| 国产精品国产av在线观看| 啦啦啦在线免费观看视频4| 精品国产一区二区三区久久久樱花| 国产 精品1| 亚洲一卡2卡3卡4卡5卡精品中文| 少妇精品久久久久久久| 欧美精品av麻豆av| 人人妻人人澡人人爽人人夜夜| 亚洲国产精品成人久久小说| 一区在线观看完整版| 一个人免费看片子| 久久热在线av| 欧美日韩亚洲综合一区二区三区_| 一级a爱视频在线免费观看| 亚洲色图 男人天堂 中文字幕| 亚洲国产精品国产精品| 欧美中文综合在线视频| 欧美激情极品国产一区二区三区| 高清欧美精品videossex| 汤姆久久久久久久影院中文字幕| 午夜精品国产一区二区电影| 高清av免费在线| 老汉色av国产亚洲站长工具| 亚洲四区av| 两性夫妻黄色片| 91成人精品电影| 久久久久人妻精品一区果冻| 午夜福利免费观看在线| 亚洲欧美中文字幕日韩二区| 亚洲天堂av无毛| 在线观看一区二区三区激情| 午夜免费鲁丝| 亚洲七黄色美女视频| 亚洲精品国产区一区二| 久久久久国产一级毛片高清牌| 深夜精品福利| av不卡在线播放| 欧美日韩成人在线一区二区| 新久久久久国产一级毛片| 夫妻午夜视频| 国产成人精品在线电影| 少妇 在线观看| 操出白浆在线播放| 欧美黑人精品巨大| 美女福利国产在线| 麻豆av在线久日| 久久精品国产a三级三级三级| 一边亲一边摸免费视频| 精品酒店卫生间| 国产 精品1| 亚洲美女视频黄频| 日韩欧美一区视频在线观看| 毛片一级片免费看久久久久| 1024视频免费在线观看| 高清在线视频一区二区三区| 国产亚洲最大av| 欧美日韩综合久久久久久| 最近的中文字幕免费完整| 日本wwww免费看| 热99久久久久精品小说推荐| 大片免费播放器 马上看| 亚洲av中文av极速乱| 黄网站色视频无遮挡免费观看| 如日韩欧美国产精品一区二区三区| 超碰成人久久| 亚洲精品国产区一区二| 亚洲色图 男人天堂 中文字幕| 美女视频免费永久观看网站| 别揉我奶头~嗯~啊~动态视频 | 精品一区在线观看国产| 久久国产精品大桥未久av| 亚洲熟女毛片儿| 久久人人97超碰香蕉20202| xxx大片免费视频| 欧美激情极品国产一区二区三区| 国产精品99久久99久久久不卡 | 国产xxxxx性猛交| 久久97久久精品| 电影成人av| 国产深夜福利视频在线观看| 国产精品一区二区在线不卡| 欧美日韩一区二区视频在线观看视频在线| 韩国高清视频一区二区三区| 一区二区av电影网| 亚洲精品一二三| av不卡在线播放| 操出白浆在线播放| 亚洲人成网站在线观看播放| 午夜福利影视在线免费观看| av免费观看日本| 精品人妻在线不人妻| 毛片一级片免费看久久久久| 免费高清在线观看视频在线观看| 国产一区有黄有色的免费视频| 久久97久久精品| 亚洲精品自拍成人| 丝袜喷水一区| 中文字幕av电影在线播放| 亚洲精品自拍成人| 午夜福利视频在线观看免费| av国产精品久久久久影院| 久久天躁狠狠躁夜夜2o2o | 成人亚洲欧美一区二区av| 国产亚洲av高清不卡| 少妇的丰满在线观看| 老汉色av国产亚洲站长工具| 九色亚洲精品在线播放| 桃花免费在线播放| 日本黄色日本黄色录像| 狂野欧美激情性bbbbbb| 操美女的视频在线观看| 精品人妻熟女毛片av久久网站| 国产老妇伦熟女老妇高清| 国产麻豆69| 国产精品二区激情视频| a 毛片基地| 色吧在线观看| 精品酒店卫生间|