• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Development of tuneable effects warheads

    2016-04-18 09:13:00MarkREYNOLDSWilliamHUNTINGTONTHRESHER
    Defence Technology 2016年3期

    Mark REYNOLDS*,William HUNTINGTON-THRESHER

    QinetiQ,F(xiàn)ort Halstead,Sevenoaks,Kent TN14 7BP,UK

    Development of tuneable effects warheads

    Mark REYNOLDS*,William HUNTINGTON-THRESHER

    QinetiQ,F(xiàn)ort Halstead,Sevenoaks,Kent TN14 7BP,UK

    The tuneable effects concept is aimed at achieving selectable blast and fragmentation output,to enable one charge to be used in different scenarios requiring different levels of blast and fragmentation lethality.It is a concept QinetiQ has been developing for an energetic f i ll consisting of three principal components arranged in co-axial layers,two explosive layers separated by a mitigating but reactive layer.The concept was originally designed to operate in two modes,a low output mode which only detonates the central core of high explosive and a high output mode which detonated both the central core and outer layer of the explosive.Two charge case designs where manufactured and tested;one of these designs showed a reduction in blast and fragment velocities of ~33%and ~20%,respectively,in the low output mode.

    Tuneable effects;Multiple effects;Blast;Fragmentation;Hydrocode;Modelling;Trial

    1.Introduction

    The tuneable effects warhead concept is based on QinetiQ patented [1]technology,previously explored using bare explosive charges [2].This work showed signif i cant differences in peak blast pressures between two detonation modes (35%)while maintaining quasi-static pressure.The study reported here looked at developing a metal cased variant with the aim to demonstrate a tuneable fragmentation output,whilst maintaining the demonstrated blast performance.

    This next step for the concept was to test it in a more representative conf i guration generating fragments and blast.To ensure the exploitability and the relevance of the study,the warhead was designed to generate fragments with a lethal effect in the high mode.

    2)Reactive,but non-detonable composition (aluminium powder loaded rubber)

    3)Highly-aluminised explosive composition (RDX/Al/PB)Two modes are available:

    ·Mode 1 (lower incident pressure)-initiate central charge (1)only,

    ·Mode 2 (higher incident pressure)-initiate both charges (1)and (3)

    2.Tuneable warhead concept

    The concept consists of an energetic f i ll constructed from three principal components arranged in co-axial layers (Fig.1),namely:

    1)High-performance High Explosive (HE)(HMX/PBPolymer Binder)

    3.Case design

    Both analytical codes and QinetiQ's Eulerian hydrocode GRIM were used to help develop two possible designs for the steel case.The cased designs were required to perforate a 5 mm steel target when operating in the high mode.Simulations were also used to predict the theoretical difference in case fragmentation between the low and high modes.Fragmentation,driven by external groove designs,was explored together with a more novel option combining a 3D printed plastic insert to initiate internal fracture circumferentially around the case,with axial external grooves.

    The diameter and length of the charge were kept at the dimensions of the previous uncased study [2],the compositions oftheenergetic layerswere also keptnominally the same.

    Fig.1.Tuneable effects charges.

    4.Split-X and hydrocode modelling

    The design study applied Split-X to calculate the required steel case thickness to perforate a 5 mm steel plate in the high mode.Split-X [3]is an analytical code for the assessment of fragmenting warheads.Given the functionality of Split-X,the explosive,detonating in the mode,was modelled as a single cylinder with an inert surround.Given the available explosive mass,the assessment indicated that a case thickness of 10 mm with def i ned fragment sizes (approximately 10 mm cubes)was required to perforate the plate.The case steel selected was EN24 condition W.It was chosen based on the expected strength and ductility properties preferred for the case.

    Hydrocode modelling with QinetiQ's Eulerian code GRIM was then applied to assess design options to control fragmentation and to assess the differences between the two detonation modes.The high mode was modelled with the detonation of both explosive components.The low mode was modelled with only the inner core of explosive detonating.The non-detonating components were modelled as inert throughout the timescales of detonation and initial fragment f l ight.

    The typical arrangement for the GRIM hydrocode simulations is shown in Fig.2.The central core of PBXN110 was 35 mm in diameter,the annulus of HTPB-Al was 15 mm thick and the next annulus of PBXN109 was 15 mm thick.This gave a total explosive diameter of 95 mm.The length was 200 mm.

    For constitutive models to describe metals,the physicallybased constitutive model due to Armstrong and Zerilli and modif i ed by Goldthorpe et al.[4],Equation 1,is the preferred model used by QinetiQ.The Body Centred Cubic (BCC)form of the equation,relevant to the metals (Steel)in this study,is shown.

    In this equation Y is the f l ow stress,T is the temperature,ε′is the strain rate,and εPis the plastic strain,with C1through C5,n and a1and a2,which describe the temperature dependence of the shear modulus,constants derived from the characterisation tests.

    Fig.2.GRIM model setup left-low mode,right-high mode.

    As part of the drive to develop a system of physically based material models,Goldthorpe developed a path dependent ductile failure model [5].The QinetiQ algorithm used in the code is Equation 2

    In this equation S is the measure of ductile deforγmation/ damage,σnis the stress state (pressure/stress)andis the shear strain withAsderived from characterisation tests.The material fails when S reaches SF,which was also derived from characterisation tests.

    The parameters for the EN24 W condition steel are listed in Table 1.

    The polymer composite materials,aluminised HTPB and PBXN109,were both represented with tabular equations of state,and for PBXN109 the QinetiQ Porter-Gould constitutive model [6].Table 2 lists the parameters,and the initial moduli are provided for the dynamic regime of interest (i.e.in an unrelaxed condition).

    The three explosive materials were modelled using JWL(Jones,Wilkins and Lee)equations of state;the parameters applied are listed in Table 3.

    It was acknowledged that a highly aluminised outer layer would have a lower brisance in comparison to non-aluminised compositions.The consequence was that case fracture wouldrequire careful design to introduce features to generate suff icient stress concentrations to promote cracking.

    Table 1EN24 W condition constitutive data.

    Table 2Inert polymer model data.

    Given the potential issues to ensure reliable fragmentation from the lower brisance explosives deployed in high conf i nedblast performance warheads,there was a desire in this low TRL (Technology Readiness Level)project to explore nontraditional/new methods of controlling fragmentation and new/ lower cost manufacture methods.Methods that had the potential to fragment distinctly differently in the two modes were highly desirable.

    Fig.3 shows the GRIM modelling predictions of the two designs in both modes;the external groove or “Helical”design and the plastic insert and groove combination or “Hybrid”design.The predictions indicated the potential for signif i cant differences in the size of the fragments between the two modes.

    Table 3Explosive JWL properties [7].

    Fig.3.Case breakup predictions.

    Fig.4.Velocity predictions.

    Fig.4 shows predictions from both Split-X and GRIM of the prof i le of fragment velocity along the length of the case.They both show a signif i cant difference in fragment velocity for the low mode.

    5.Gap testing

    To ensure the outer layer of explosive did not detonate,gap testing was used to guide the required thickness of the nondetonable composition.

    Gap testing used cylindrical samples.The samples were arranged with a detonator on a set length of PBXN110,with the selected thickness of the reactive,but non-detonable composition and then 15 mm of a PBXN109 “mimic” explosive (a QinetiQ formulation)in contact with a 5 mm steel witness plate.

    Based on the gap tests (Table 4)a barrier thickness was selected at a nominal 22 mm;this thickness proved to be greater than that used in the blast only charges,due to a variation in the composition of the outer explosive layer and the steel case.

    The gap tests provided data to obtain an indicative shock level required to detonate the PBXN109 mimic (QRX-293-M6).By modelling the gap test,the shock level in the explosive was observed.This level in turn was then used to assess the charge designs using 2D models.These models showed a potential issue since the peak shock level is enhanced when it hit the steel case and then was further enhanced when it combined atthe end of the charge with shock from the central explosive,F(xiàn)ig.5.This assessment was used to modify the design of the charge by increasing the thickness of the inert layer at the base of the charge.

    Table 4Gap test results.

    Fig.5.Four simulation times showing pressure localisation at the base of the charge.

    6.Charge manufacture

    The two charge designs chosen are detailed below and shown in Figs.6 and 7:

    ·Helical cased charge:

    ○10 mm thick case with 10 mm spaced 1/3 depth helical grooves

    ·Hybrid cased charge:

    ○3D printed plastic Buxton type liner

    ○10 mm thick case with 10 mm spaced 1/3 depth and four equally spaced 1/2 depth vertical grooves.

    Fig.8 shows the high mode version of both designs at the top with a full diameter disc of sheet explosive and the low mode of both designs at the bottom with a small disc of sheet explosive designed to only detonate the central core of explosive. Examples of the assembled charges are shown in Fig.9;the right hand charge has the case painted black with a white grid applied to enable the case expansion to be calculated.

    Fig.6.Charge cases-helical(left)-hybrid (right).

    7.Trial setup

    The charges were detonated in the two modes at the MoD Pendine range.The trial setup had a 5 mm witness plate,four strawboard packs with velocity foils,four blast gauges and two Phantom high-speed cameras to capture the early case deformation and fragment f l ight.

    Fig.10 shows a view of the trial setup showing the blast gauges,velocity foils,steel witness plate,and fragment packs.

    Fig.7.Filled charges-helical cased (left)-hybrid cased (right).

    Fig.8.Detonation control with sheet explosive discs:high mode (top)-low mode (bottom)-helical case (left)-hybrid case (right).

    Fig.9.Assembled charges-helical case (left)-hybrid case (right).

    8.Helical cased charges

    The early case expansion of the helical cased charges during/ following detonation is shown in Fig.11.This f i gure shows a Helical cased charge operating in the high mode on the left and operating in low mode on the right;with the time post the f i ring trigger shown in each frame.The shape of the expansion of the case looked different when the two modes were compared,with the low mode showing a more barrelled shape.

    The last frame for the low mode (Firing 4 (F4))shows the start of possible case fragmentation near the top of the charge;similar to the middle frame on the high mode (F2)but with the possible start of fragmentation near the bottom of the charge instead.This appeared to suggest that the lower part of the outer layer of explosive was burning/def l agrating at a high or very high rate perhaps verging on detonating.

    Fig.10.Trial setup.

    Fig.11.Phantom images of helical cased charge expansion;high mode (left)-low mode (right).

    The helical cased charge formed strips in the high mode and in the f i rst low mode f i rings.The case cracks appeared to form independently from the helical grooves (Fig.12).For the second low mode helical cased f i ring the charge conf i nement was modif i ed at the base to investigate/change a postulated reactive behaviour of the outer layer.This modif i cation appeared to result in little or no signif i cant difference to the fragment velocities or peak blast pressures.It did,however,show signif i cantdifferencesto thecasefragmentation. Although the case still split into strips,some of the strips were partially def i ned by the grooves (Fig.13).This was most likely due to the difference in conf i nement at the base of the charge.

    Analysis of the recovered fragments showed that the case had stretched considerably before fracturing.This indicated the case did not fracture/shatter due to the explosive shock/brisance and therefore experienced signif i cant stretching pre-fracture.

    Fig.12.Helical case fragments split across grooves.

    To promote early case fracture it is likely that deeper grooves would be required.Alternatively a change in the explosive element with a higher brisance explosive or an increased explosive content could be considered.The experimental data generated in the tests of both concepts can be used to validate an updated modelling methodology for this type of warhead.This updated capability can then be used to revise future case designs.

    It was noted that the thickness of the middle layer,which was set to mitigate the shock from the inner layer,would remain approximately constant for larger charges.Thus a larger charge would be expected to exhibit a different fragmentation.In that sense it was recognised that the charges under test should be considered small rather than small scale.

    9.Hybrid cased charge

    The early case expansion of the Hybrid cased charges during/following detonation is shown in Fig.14.This f i gure shows a charge operating in the high mode on the left and in the low mode on the right,with the time post the f i ring trigger shown in each frame.The high mode charge showed a conical shaped expansion,whereas the low mode showed a more barrelled shape.The difference in early case expansion was an indication of the difference in explosive energy release rate.As was expected the low mode was shown to be more akin to a pressure burst,whereas the high mode showed a more typical conical shape with radial case displacement linked to detonation time.Given the low brisance of the outer layer and warhead geometry,snapshots of the early case shape were not expected to equate to a signif i cantly different fragment scatter between the modes.

    Fig.13.Helical case fragments from the modif i ed low mode f i ring.

    Fig.14.Phantom images of hybrid cased charge expansion;high mode (left)-low mode (right).

    Fig.15.Hybrid case fragments,high mode f i ring.

    Fig.16.Hybrid case fragments,low mode f i ring.

    The Hybrid cased charge split along the axial grooves producing large heavy fragments (Fig.15).The Buxton liner in the high mode generated regular shallow cuts into the case,but the cuts did not appear deep enough to promote regular fracture across the strips def i ned by the grooves.Occasionally the strips had fractured at a location of a Buxton liner formed cut,but the timing of the fracture was unknown.

    When the Hybrid cased charge operated in the low mode,the case split in a similar manner.The Buxton liner again generated regular small cuts into the case (Fig.16).

    10.Case expansion

    The Phantom camera images of the charges allowed the observation of the case expansion at early times.Measurements were taken to calculate the case radius at the grid position marked on the case of the charges,this gave up to four radius values at each position along the case length.At later times,obscuration prevented some measurements and limited how many times were measurable.The case radius from the trial has been compared with a GRIM 2D simulation for the high modes of both charge designs.Fig.17 shows three times from the Hybrid high mode from round 7.The GRIM modelling results are plotted with a time offset from the experiment to take account of the detonator and pellet delay.This is assumed to be approximately 7 μs.The points from the experiment show some variation which is due to errors in measurement;however they show good agreement with the modelling.These data will also help validate the early expansion of the case for 3D modelling of the design.Low brisance explosives typically continue to accelerate fragments during the expansion of the explosive products;due to the early obscuration this assessment method would not be expected to yield a reliable measure of fragment velocity.

    Fig.17.Round 7 Buxton high mode case expansion.

    Table 5Fragment velocities and peak pressures.

    Similar data for the low mode experiment might be used to help calibrate a model for the low mode using a method to account for the def l agration of the explosive.

    11.Velocity and blast results

    In total the trial consisted of 9 f i rings;the f i rst was a PE4 bare charge followed by the eight test charges.Table 5 shows a summary of the fragment velocities recorded by the velocity foils and the peak blast pressures recorded by the f i rst two blast gauges.

    The Helical cased charges showed a small decrease in fragment velocities ~5%between modes but negligible differences in the peak pressures at the f i rst gauge location.

    The Hybrid cased charges showed a decrease in fragment velocities and peak pressures with reductions of ~20%and~33%respectively.

    The Helical and Hybrid cased charges showed similar peak pressures but differences in fragment velocities.These differences would be consistent with the differences in case fracture.

    12.Conclusions

    The Helical cased charge design showed only a small variation in fragment velocity between the modes and no discernible difference in the peak pressures.The grooves in the case had little if any effect on the case fractures.

    The Hybrid cased charge design showed differences in fragment velocities and peak pressures between the two modes. However,the Buxton liner did not appear suff i cient to promote regular case fracture.

    The earlier case fracture for the Hybrid cased charge appeared to be required to realise the differences between thehigh and low modes.This was evidenced by the thinner case fragments and the lower fragment masses from the Helical cased charges.

    The realisation of lower than predicted differences between the modes in the experimental trials suggested that in the low mode,extra energy was released above that represented in the modelling.This suggested that while the barrier stopped propagation of the detonation,it did not stop ignition of the outer layer.

    The reduction in peak pressures for the Hybrid design of~33%was very similar to the value observed in the previous bare charge study [1]at ~35%.The similarity in the peak pressure reductions suggested that,when the case fracture is not delayed,both cased and uncased conf i gurations operate in the same manner.

    The insight these cased tests provided through the effect on the fragment velocities was that the outer layer burned/ def l agrated in these designs.This indicated that an additional feature of this Tuneable Effects Warhead concept was that the barrier thickness could be potentially adjusted to vary the explosive output by designing a burn rate for the outer layer. Adjusting the mitigant layer would thus enable a much more varied output from the charge concept than the two modes originally envisaged.

    The study has therefore demonstrated a tuneable warhead concept and increased understanding of its operation,plus it has indicated future developments.It has therefore helped demonstrate the art of the possible with tuneable effects warhead concepts.

    13.Recommendations

    A subsequent requirement is an evaluation of the operational requirement for tuneable effects warheads.This should be completed,considering the results of this study.

    This warhead concept should then be further developed to deliver the user requirement identif i ed.

    Acknowledgments

    The authors would like to acknowledge the f i nancial support of the Anglo-French Materials and Components for Missiles,Innovation and Technology Partnership (MCM ITP)program jointly funded by UK MoD (Dstl)and DGA.

    [1]Haskins P.Controllable output warhead,EP2564150A1,2011.

    [2]Colclough E.A novel tuneable effects explosive charge,2012 Insensitive Munitions&EnergeticMaterialsTechnologySymposium,LasVegas,2012.

    [3]N.N.SPLIT-X v5.2.10,An Expert System for Design of Fragmentation Warheads,NUMERICS GmbH,Petershausen,Germany,2005.User's Manual.

    [4]Goldthorpe B,Butler A,Church P.A wide ranging constitutive model for BCC steels.Journal de Physique 1994;C8-471.

    [5]Goldthorpe B.A path dependent model for ductile fracture.Journal de Physique 1997;7:C3-705.

    [6]Cornish R,Porter D,Church P,Gould P,Andrews T,Proud B,et al.Elert M,F(xiàn)urnish MD,Chau R,Holmes NC,Nguyen J,editors.Comparison of Porter-Gould constitutive modelwith compression testdata for HTPB/SUGAR.Shock compression of condensed matter-2007.Melville,NY:American Institute of Physics;2007.p.777-80.

    [7]Carleone J.Tactical Missile warheads,vol.155.1993.p.120-1 Table 19.

    Received 7 October 2015;revised 20 January 2016;accepted 21 January 2016 Available online 24 March 2016

    Peer review under responsibility of China Ordnance Society.

    *Corresponding author.Tel.:+44 1959514911.

    E-mail address:mwreynolds@qinetiq.com (M.REYNOLDS).

    http://dx.doi.org/10.1016/j.dt.2016.01.006

    2214-9147/? 2016 China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    ? 2016 China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    国产精品久久久人人做人人爽| 在线av久久热| 91成年电影在线观看| 亚洲精品久久成人aⅴ小说| 亚洲人成网站在线播放欧美日韩| 中文字幕高清在线视频| 久久草成人影院| 两个人视频免费观看高清| 国产精品免费一区二区三区在线| 日韩中文字幕欧美一区二区| 亚洲 欧美一区二区三区| 一区二区三区精品91| 日韩欧美三级三区| 色哟哟哟哟哟哟| 91老司机精品| 一级作爱视频免费观看| 成人免费观看视频高清| 日本欧美视频一区| 色尼玛亚洲综合影院| 岛国视频午夜一区免费看| 国产熟女xx| 欧美日本中文国产一区发布| 亚洲免费av在线视频| 免费女性裸体啪啪无遮挡网站| 亚洲色图av天堂| 可以在线观看的亚洲视频| 在线天堂中文资源库| 国产xxxxx性猛交| 精品第一国产精品| 国产免费av片在线观看野外av| 国产成人免费无遮挡视频| 久久中文字幕一级| 99国产精品99久久久久| 日韩大码丰满熟妇| 亚洲视频免费观看视频| 亚洲va日本ⅴa欧美va伊人久久| 大码成人一级视频| 天天添夜夜摸| 纯流量卡能插随身wifi吗| 日日爽夜夜爽网站| 日韩一卡2卡3卡4卡2021年| 亚洲男人天堂网一区| 在线十欧美十亚洲十日本专区| 亚洲精品国产精品久久久不卡| 国产一区二区三区视频了| 老司机福利观看| 性色av乱码一区二区三区2| 一级毛片精品| 天堂动漫精品| 51午夜福利影视在线观看| 男男h啪啪无遮挡| 免费不卡黄色视频| 欧美老熟妇乱子伦牲交| www日本在线高清视频| 欧美日韩福利视频一区二区| 国产又爽黄色视频| 又紧又爽又黄一区二区| 天堂动漫精品| 一个人免费在线观看的高清视频| 天天躁狠狠躁夜夜躁狠狠躁| 精品国产超薄肉色丝袜足j| 中文字幕高清在线视频| aaaaa片日本免费| 在线观看午夜福利视频| 亚洲精华国产精华精| 久久久久久久精品吃奶| 日韩欧美免费精品| or卡值多少钱| 亚洲av电影在线进入| 久久国产精品男人的天堂亚洲| 丰满人妻熟妇乱又伦精品不卡| 国产97色在线日韩免费| 国产精品久久视频播放| 久久久国产精品麻豆| 欧美性长视频在线观看| www.www免费av| 午夜福利一区二区在线看| 国产激情欧美一区二区| 久久性视频一级片| 久久国产乱子伦精品免费另类| 国产成人欧美在线观看| 午夜激情av网站| 午夜成年电影在线免费观看| 亚洲,欧美精品.| 一区二区三区激情视频| 欧美一级a爱片免费观看看 | a级毛片在线看网站| 亚洲国产精品sss在线观看| 精品久久久久久成人av| 日韩欧美在线二视频| 亚洲久久久国产精品| av天堂久久9| 久久久久国产精品人妻aⅴ院| av在线播放免费不卡| 日韩大码丰满熟妇| 日韩中文字幕欧美一区二区| 黄色丝袜av网址大全| 国产av又大| 久久天堂一区二区三区四区| 精品国产超薄肉色丝袜足j| 欧美性长视频在线观看| 制服诱惑二区| 免费女性裸体啪啪无遮挡网站| av在线播放免费不卡| 自线自在国产av| 国产成+人综合+亚洲专区| 精品第一国产精品| 好男人在线观看高清免费视频 | 国产成年人精品一区二区| 变态另类成人亚洲欧美熟女 | 日日夜夜操网爽| 18禁黄网站禁片午夜丰满| 少妇裸体淫交视频免费看高清 | 国产亚洲精品久久久久5区| 欧美在线黄色| 午夜激情av网站| 久久久久精品国产欧美久久久| 亚洲人成电影免费在线| 中文字幕另类日韩欧美亚洲嫩草| 亚洲片人在线观看| 亚洲中文字幕日韩| 欧美另类亚洲清纯唯美| 黄色视频,在线免费观看| 欧美不卡视频在线免费观看 | 99精品欧美一区二区三区四区| 欧美乱色亚洲激情| 精品高清国产在线一区| 男男h啪啪无遮挡| 色播在线永久视频| 精品第一国产精品| 午夜福利成人在线免费观看| 中国美女看黄片| 久久婷婷人人爽人人干人人爱 | av天堂在线播放| 国产精品一区二区精品视频观看| 黑人操中国人逼视频| av天堂久久9| 性欧美人与动物交配| 在线观看午夜福利视频| 叶爱在线成人免费视频播放| 亚洲av电影在线进入| 亚洲精品久久成人aⅴ小说| 最好的美女福利视频网| 亚洲 欧美 日韩 在线 免费| 国产视频一区二区在线看| 成人三级做爰电影| 91成人精品电影| 欧美乱色亚洲激情| 伦理电影免费视频| 亚洲精品国产色婷婷电影| 久久香蕉激情| 午夜免费激情av| 夜夜爽天天搞| 天堂√8在线中文| 巨乳人妻的诱惑在线观看| 曰老女人黄片| 丰满人妻熟妇乱又伦精品不卡| 久久香蕉激情| 久久亚洲真实| 精品免费久久久久久久清纯| 亚洲熟妇中文字幕五十中出| 少妇被粗大的猛进出69影院| 久久国产精品男人的天堂亚洲| 午夜影院日韩av| 午夜福利18| 亚洲精品在线观看二区| 18禁观看日本| 久久久久久免费高清国产稀缺| 在线观看66精品国产| 激情在线观看视频在线高清| 午夜福利影视在线免费观看| 成人欧美大片| 亚洲国产欧美网| 国内精品久久久久精免费| 一边摸一边抽搐一进一小说| 19禁男女啪啪无遮挡网站| 亚洲片人在线观看| 久久国产精品男人的天堂亚洲| 身体一侧抽搐| 色哟哟哟哟哟哟| 欧美在线黄色| 在线观看一区二区三区| 国产一区二区三区综合在线观看| 岛国视频午夜一区免费看| 18禁国产床啪视频网站| 女生性感内裤真人,穿戴方法视频| 精品久久久久久久毛片微露脸| 亚洲精品美女久久av网站| 美女高潮到喷水免费观看| or卡值多少钱| 18禁裸乳无遮挡免费网站照片 | 国产精品一区二区免费欧美| 亚洲精品国产精品久久久不卡| 久久精品国产清高在天天线| 免费在线观看视频国产中文字幕亚洲| 国产精品 国内视频| 日本精品一区二区三区蜜桃| 国产欧美日韩精品亚洲av| av欧美777| 一区二区日韩欧美中文字幕| 亚洲熟妇中文字幕五十中出| 俄罗斯特黄特色一大片| 黑丝袜美女国产一区| 中国美女看黄片| 亚洲成av人片免费观看| 亚洲中文字幕一区二区三区有码在线看 | 日本免费a在线| 国产一区在线观看成人免费| 欧美老熟妇乱子伦牲交| 久久香蕉国产精品| 久久亚洲精品不卡| 亚洲国产精品sss在线观看| 无遮挡黄片免费观看| 久久人人精品亚洲av| 日本 av在线| www.999成人在线观看| cao死你这个sao货| 精品久久蜜臀av无| 啦啦啦韩国在线观看视频| 免费在线观看视频国产中文字幕亚洲| 亚洲精品av麻豆狂野| 麻豆一二三区av精品| 久久久久国产精品人妻aⅴ院| 亚洲自偷自拍图片 自拍| 久久精品亚洲精品国产色婷小说| 女人爽到高潮嗷嗷叫在线视频| 亚洲国产日韩欧美精品在线观看 | 日韩精品青青久久久久久| 人人妻人人爽人人添夜夜欢视频| 亚洲七黄色美女视频| 欧美色视频一区免费| 精品第一国产精品| 欧美日韩精品网址| 欧美黑人精品巨大| 香蕉丝袜av| 国产成人欧美在线观看| 久久国产亚洲av麻豆专区| 黑人巨大精品欧美一区二区mp4| 男女下面进入的视频免费午夜 | 亚洲 国产 在线| 丁香欧美五月| 亚洲欧美一区二区三区黑人| 国产亚洲欧美98| 在线av久久热| 国产成人免费无遮挡视频| 亚洲va日本ⅴa欧美va伊人久久| 亚洲一区二区三区色噜噜| 18禁国产床啪视频网站| 亚洲精品国产精品久久久不卡| 国产高清有码在线观看视频 | 香蕉丝袜av| 亚洲欧美日韩另类电影网站| 夜夜躁狠狠躁天天躁| 中文字幕高清在线视频| 黄色毛片三级朝国网站| 久久精品亚洲熟妇少妇任你| 在线观看免费视频日本深夜| 亚洲国产精品合色在线| 亚洲电影在线观看av| 色哟哟哟哟哟哟| 一进一出抽搐gif免费好疼| 12—13女人毛片做爰片一| 韩国精品一区二区三区| 中文字幕人成人乱码亚洲影| 久久精品aⅴ一区二区三区四区| 最好的美女福利视频网| 激情视频va一区二区三区| 天天躁夜夜躁狠狠躁躁| 嫩草影视91久久| 黑人巨大精品欧美一区二区蜜桃| 麻豆久久精品国产亚洲av| 午夜精品国产一区二区电影| 久久人人97超碰香蕉20202| 国产野战对白在线观看| av中文乱码字幕在线| 亚洲第一av免费看| 亚洲国产精品sss在线观看| 亚洲激情在线av| 亚洲av美国av| 男女做爰动态图高潮gif福利片 | 在线观看www视频免费| 悠悠久久av| 日韩欧美国产一区二区入口| 精品久久久久久,| 一区二区日韩欧美中文字幕| 国产精品免费一区二区三区在线| 91麻豆精品激情在线观看国产| 国产av一区二区精品久久| 成年版毛片免费区| 国产乱人伦免费视频| 国产亚洲av高清不卡| 亚洲天堂国产精品一区在线| 国产精品电影一区二区三区| 欧美性长视频在线观看| 亚洲国产精品久久男人天堂| 国产片内射在线| 老司机福利观看| 无限看片的www在线观看| 免费无遮挡裸体视频| 久久狼人影院| or卡值多少钱| 午夜福利视频1000在线观看 | 制服人妻中文乱码| 黄片大片在线免费观看| 国产成人精品久久二区二区91| 久9热在线精品视频| 中文字幕人妻丝袜一区二区| 精品福利观看| 搡老熟女国产l中国老女人| 色婷婷久久久亚洲欧美| 在线观看免费视频日本深夜| 波多野结衣高清无吗| 国产在线观看jvid| 人人妻人人爽人人添夜夜欢视频| 91成年电影在线观看| 亚洲精品久久国产高清桃花| 大香蕉久久成人网| 国产精品美女特级片免费视频播放器 | 精品日产1卡2卡| 美国免费a级毛片| 色哟哟哟哟哟哟| 亚洲男人天堂网一区| 国产精华一区二区三区| 国内久久婷婷六月综合欲色啪| 精品国产亚洲在线| 黄色视频不卡| 免费搜索国产男女视频| 成年女人毛片免费观看观看9| 久久久久精品国产欧美久久久| 成人国产综合亚洲| 韩国精品一区二区三区| 久久久水蜜桃国产精品网| 久久天躁狠狠躁夜夜2o2o| 亚洲第一电影网av| 日本黄色视频三级网站网址| 亚洲片人在线观看| 久久国产精品男人的天堂亚洲| 久久中文字幕一级| 欧美中文日本在线观看视频| 亚洲av片天天在线观看| 老熟妇仑乱视频hdxx| 欧美黑人欧美精品刺激| 搡老妇女老女人老熟妇| 在线av久久热| 欧美 亚洲 国产 日韩一| 亚洲av成人不卡在线观看播放网| 欧美激情 高清一区二区三区| 国产高清有码在线观看视频 | 91麻豆av在线| 国产精品亚洲美女久久久| av中文乱码字幕在线| 大陆偷拍与自拍| 免费不卡黄色视频| 一本综合久久免费| 国产在线观看jvid| 黄色视频,在线免费观看| 中文字幕色久视频| 日韩精品中文字幕看吧| 亚洲国产毛片av蜜桃av| 视频区欧美日本亚洲| 国产熟女午夜一区二区三区| 人人澡人人妻人| 色哟哟哟哟哟哟| 啦啦啦 在线观看视频| 91国产中文字幕| www.熟女人妻精品国产| www国产在线视频色| 久久香蕉激情| 中文字幕最新亚洲高清| 黄片播放在线免费| 好看av亚洲va欧美ⅴa在| 亚洲三区欧美一区| 男女下面进入的视频免费午夜 | 国产伦一二天堂av在线观看| 一边摸一边做爽爽视频免费| 中文字幕人成人乱码亚洲影| 日本a在线网址| 精品熟女少妇八av免费久了| 窝窝影院91人妻| 侵犯人妻中文字幕一二三四区| 国产免费av片在线观看野外av| 变态另类丝袜制服| 久久久久久亚洲精品国产蜜桃av| 精品不卡国产一区二区三区| 女生性感内裤真人,穿戴方法视频| 成人三级做爰电影| 国产精品亚洲一级av第二区| 国产精品免费一区二区三区在线| 男人的好看免费观看在线视频 | 一区二区三区高清视频在线| videosex国产| 国产一区二区在线av高清观看| 国产极品粉嫩免费观看在线| 亚洲成人国产一区在线观看| 十八禁人妻一区二区| 精品午夜福利视频在线观看一区| 亚洲专区字幕在线| 搡老岳熟女国产| 久久精品国产清高在天天线| 少妇粗大呻吟视频| 男女做爰动态图高潮gif福利片 | 天天躁夜夜躁狠狠躁躁| av欧美777| 国产一区二区三区综合在线观看| 丝袜人妻中文字幕| 欧美一级毛片孕妇| 精品卡一卡二卡四卡免费| 欧美一区二区精品小视频在线| 亚洲精品久久成人aⅴ小说| 国产伦人伦偷精品视频| 国产熟女午夜一区二区三区| 欧美大码av| 成年女人毛片免费观看观看9| 中文字幕高清在线视频| 日本免费一区二区三区高清不卡 | 亚洲精华国产精华精| 日本撒尿小便嘘嘘汇集6| 日本三级黄在线观看| 久久 成人 亚洲| 久久人妻av系列| 操美女的视频在线观看| 亚洲精品av麻豆狂野| 亚洲全国av大片| 国产私拍福利视频在线观看| 欧美激情高清一区二区三区| 久久精品国产99精品国产亚洲性色 | 精品久久久精品久久久| 少妇粗大呻吟视频| 亚洲欧美日韩无卡精品| 国产精品,欧美在线| 免费女性裸体啪啪无遮挡网站| 国产成人影院久久av| 国产成人啪精品午夜网站| 999精品在线视频| 他把我摸到了高潮在线观看| 中国美女看黄片| 久99久视频精品免费| 亚洲 欧美一区二区三区| 咕卡用的链子| 久久婷婷成人综合色麻豆| 91字幕亚洲| 亚洲精品久久成人aⅴ小说| 日本免费a在线| 久久草成人影院| 国产99久久九九免费精品| 亚洲欧美精品综合一区二区三区| 国产xxxxx性猛交| 99精品欧美一区二区三区四区| 99精品久久久久人妻精品| 91精品国产国语对白视频| 每晚都被弄得嗷嗷叫到高潮| 亚洲黑人精品在线| 成人国语在线视频| 中文字幕高清在线视频| 午夜视频精品福利| 母亲3免费完整高清在线观看| 色婷婷久久久亚洲欧美| 中文字幕另类日韩欧美亚洲嫩草| 真人做人爱边吃奶动态| 亚洲色图av天堂| 久久婷婷成人综合色麻豆| 天堂√8在线中文| 欧美日韩亚洲综合一区二区三区_| 亚洲成国产人片在线观看| 香蕉久久夜色| 一区福利在线观看| 中亚洲国语对白在线视频| 我的亚洲天堂| 啦啦啦免费观看视频1| 亚洲一码二码三码区别大吗| 国产成人啪精品午夜网站| 亚洲精品一区av在线观看| 叶爱在线成人免费视频播放| 亚洲第一电影网av| 男女下面进入的视频免费午夜 | 一级毛片女人18水好多| 亚洲成人久久性| 久久久久久久精品吃奶| 一级毛片精品| 男女床上黄色一级片免费看| av片东京热男人的天堂| 麻豆成人av在线观看| 在线观看午夜福利视频| 变态另类成人亚洲欧美熟女 | 亚洲色图av天堂| 一级片免费观看大全| 成年版毛片免费区| 国产精品久久久久久人妻精品电影| 女性被躁到高潮视频| 日日干狠狠操夜夜爽| www日本在线高清视频| 免费女性裸体啪啪无遮挡网站| 亚洲专区字幕在线| 99国产综合亚洲精品| 黄色毛片三级朝国网站| 国产成人精品无人区| 亚洲va日本ⅴa欧美va伊人久久| 制服丝袜大香蕉在线| 精品久久久精品久久久| 亚洲精品美女久久av网站| 国产精品永久免费网站| 国产在线观看jvid| 操出白浆在线播放| 亚洲精品一卡2卡三卡4卡5卡| 丝袜美腿诱惑在线| 国产在线精品亚洲第一网站| 午夜免费观看网址| 天堂影院成人在线观看| 国产蜜桃级精品一区二区三区| 欧美中文综合在线视频| 在线观看免费视频网站a站| 熟女少妇亚洲综合色aaa.| 99re在线观看精品视频| 亚洲精品国产一区二区精华液| 国产又色又爽无遮挡免费看| 中文字幕色久视频| 嫩草影视91久久| 99久久国产精品久久久| 亚洲国产高清在线一区二区三 | 成人特级黄色片久久久久久久| 精品国产乱子伦一区二区三区| 成人18禁高潮啪啪吃奶动态图| 自线自在国产av| 老鸭窝网址在线观看| 日韩精品中文字幕看吧| 成在线人永久免费视频| 黄色毛片三级朝国网站| 亚洲第一青青草原| 国产区一区二久久| 黄色 视频免费看| 国产激情欧美一区二区| 日本精品一区二区三区蜜桃| 色尼玛亚洲综合影院| 国产精品香港三级国产av潘金莲| 精品午夜福利视频在线观看一区| 波多野结衣av一区二区av| 后天国语完整版免费观看| 久久久久久免费高清国产稀缺| 一边摸一边抽搐一进一小说| 国产精品免费视频内射| 69av精品久久久久久| 欧美乱码精品一区二区三区| 亚洲av日韩精品久久久久久密| 制服人妻中文乱码| 午夜免费观看网址| 国产av一区在线观看免费| 亚洲片人在线观看| 亚洲精品国产色婷婷电影| 国产精品久久久久久精品电影 | 最近最新免费中文字幕在线| 国产乱人伦免费视频| 叶爱在线成人免费视频播放| 咕卡用的链子| 成在线人永久免费视频| 午夜日韩欧美国产| 亚洲无线在线观看| 波多野结衣巨乳人妻| 国产精品九九99| 热re99久久国产66热| 成人免费观看视频高清| 精品卡一卡二卡四卡免费| 亚洲av电影在线进入| 黄色a级毛片大全视频| 国产精品免费一区二区三区在线| av天堂久久9| 日韩精品免费视频一区二区三区| 国内久久婷婷六月综合欲色啪| 久久精品国产亚洲av香蕉五月| 亚洲成国产人片在线观看| 欧美日本亚洲视频在线播放| 性少妇av在线| 国产男靠女视频免费网站| 日韩一卡2卡3卡4卡2021年| 日韩精品青青久久久久久| a在线观看视频网站| 国产精品亚洲一级av第二区| 久久久久国内视频| 精品不卡国产一区二区三区| 丝袜人妻中文字幕| 中文亚洲av片在线观看爽| 日韩高清综合在线| 国产亚洲av高清不卡| 岛国在线观看网站| 国产精品爽爽va在线观看网站 | 成人亚洲精品一区在线观看| 搡老熟女国产l中国老女人| 满18在线观看网站| 国产亚洲av高清不卡| 制服诱惑二区| 午夜视频精品福利| 亚洲欧美激情综合另类| 一级a爱片免费观看的视频| 亚洲av电影不卡..在线观看| 午夜福利一区二区在线看| 黄色a级毛片大全视频| 亚洲中文av在线| 热re99久久国产66热| 欧美日韩亚洲综合一区二区三区_| 激情在线观看视频在线高清| 最近最新免费中文字幕在线| 国产一级毛片七仙女欲春2| 一进一出抽搐动态| 人人妻人人澡欧美一区二区| 亚洲一区高清亚洲精品| 搡老岳熟女国产| 国产真实乱freesex| 老司机深夜福利视频在线观看| 噜噜噜噜噜久久久久久91| 欧美日韩国产亚洲二区| 亚洲七黄色美女视频| 久久久久国产精品人妻aⅴ院| 哪里可以看免费的av片| 99久久精品一区二区三区| 久久久久国产精品人妻aⅴ院| 久久久久久久久久成人|