• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      利用擴展的城市代謝框架來設(shè)想未來的能源景觀

      2016-04-15 08:42:54作者凱斯勞科曼
      風(fēng)景園林 2016年11期
      關(guān)鍵詞:景觀能源資源

      作者:凱斯·勞科曼

      翻譯:劉崢

      利用擴展的城市代謝框架來設(shè)想未來的能源景觀

      作者:凱斯·勞科曼

      翻譯:劉崢

      氣候變化與資源枯竭一塊正在促發(fā)一場由化石燃料向可再生能源的轉(zhuǎn)型。這一轉(zhuǎn)變通過重新配置地方和區(qū)域資源流動以及相應(yīng)的廢物管理系統(tǒng),來為創(chuàng)造多功能性能源景觀提供機會。為此,本人通過引入“城市新陳代謝”和“修復(fù)性設(shè)計”兩個框架來闡明一種能源景觀設(shè)計方法,該方法基于具有多重社會和生態(tài)效益的循環(huán)代謝流動。本文將隨后討論一個當(dāng)代設(shè)計項目,以舉例說明設(shè)計未來能源景觀需要在地方和區(qū)域尺度之間、在提供近期和長期解決方案之間、在操縱資源流動與其相關(guān)物理景觀之間、在解決社會和生態(tài)需求之間進行轉(zhuǎn)換。

      能源景觀;城市新陳代謝;再生設(shè)計;生態(tài)系統(tǒng)服務(wù);景觀基礎(chǔ)設(shè)施

      1 引言

      在過去的10年里,氣候變化加上資源消耗的問題已經(jīng)促使化石燃料向可再生能源轉(zhuǎn)型(Stremke et al.,2012)。這種轉(zhuǎn)型將顯著影響全球物質(zhì)景觀的空間形態(tài)和功能。一方面,之前生產(chǎn)化石燃料(如煤礦)的站點已逐步被淘汰, 表明設(shè)計師需要更有適應(yīng)和創(chuàng)新性的去重新利用這些新興的“閑置風(fēng)景”(Berger,2007)。另一方面,可再生能源需要相當(dāng)大的地區(qū)土地, 從而提供給規(guī)劃和設(shè)計者更多機會來創(chuàng)造多功能景觀,生態(tài)服務(wù)集成系統(tǒng),提供休閑和娛樂活動空間, 維持或提高建筑環(huán)境的空間品質(zhì)(Stremke and Koh,2011;Stremke et al. ,2012)。可持續(xù)能源景觀的轉(zhuǎn)型同時也需要減少能源的消耗。除了改變我們的習(xí)慣, 行為和生活方式, 設(shè)計者可結(jié)合建筑節(jié)能措施, 減少城市擴張并且優(yōu)化城市交通系統(tǒng)。綜上所述,空間設(shè)計學(xué)科應(yīng)該帶頭設(shè)想如何在生態(tài),經(jīng)濟和社會三方面提供長期解決方案的未來能源景觀。

      在這種背景下,本文撰寫了通過重新配置本地和區(qū)域資源流動和廢物管理相關(guān)系統(tǒng)來創(chuàng)建多功能能源景觀的必要性。目前,為了適應(yīng)城市人口的增長, 城市會從遙遠地區(qū)(Huang and Hsu, 2003)吸引大量的資源(能源、食物、水和材料)。同時, 城市化的進程導(dǎo)致了越來越多的垃圾, 排放和營養(yǎng)負荷,那些排入環(huán)境或釋放到大氣中的污染物加劇了環(huán)境問題和地緣政治沖突。正如千禧生態(tài)評估系統(tǒng)(Millennium Ecosystem Assessment,2005)所強調(diào)的, 現(xiàn)有的生態(tài)服務(wù)系統(tǒng)——如食物和淡水的供應(yīng),控制疾病和害蟲、養(yǎng)分循環(huán)以及氣候調(diào)節(jié)——大約 60%(15/24)嚴重退化或者不能持續(xù)使用。這意味著社會不再僅僅依賴自然的物質(zhì)和服務(wù)為子孫后代提供可持續(xù)發(fā)展的基礎(chǔ)。我們需要采取行動并在恢復(fù)、設(shè)計及公平分配食物、水和垃圾能源的問題上也負起責(zé)任。主要研究問題包括:資源管理如何成為能源景觀規(guī)劃和設(shè)計的一個重要組成部分? 我們?nèi)绾卧诓煌鞘泄δ?、土地利用和生態(tài)系統(tǒng)服務(wù)之間取得協(xié)同效應(yīng)?

      因此,本文主要討論了城市代謝框架的潛力來說明可持續(xù)性和多功能能源景觀。我將通過在城市代謝方面使用城市的隱喻作為生態(tài)系統(tǒng)來設(shè)置和從跨學(xué)科的角度出發(fā)。從那里開始我將討論現(xiàn)代設(shè)計學(xué)科如何融合城市新陳代謝的概念。為了加強這個框架,我將介紹再生設(shè)計,確定4個資源相關(guān)的設(shè)計策略的概念(生產(chǎn)、使用、回收和補充)來構(gòu)建有多個生態(tài)效益的循環(huán)代謝。本文將通過設(shè)計案例來說明城市的新陳代謝和再生設(shè)計框架組合的潛力。

      2 作為城市生態(tài)系統(tǒng)的城市

      智能規(guī)劃、設(shè)計和管理城市是構(gòu)建我們的可持續(xù)未來的關(guān)鍵(Delpero,2016)。在這里,城市不應(yīng)該受政治邊界的限制從而縮減到一個空間實體, 或僅僅看作是一個計算人口密度的統(tǒng)計單元。相反,城市是在跨尺度范圍內(nèi),社會,經(jīng)濟和生態(tài)系統(tǒng)間,從局部到全局空間,角色,物質(zhì)流和關(guān)系的相互依存的最好網(wǎng)絡(luò)概念(Sassen, 1991)。這包括那些場地,供應(yīng)并生產(chǎn)關(guān)鍵資源的基礎(chǔ)設(shè)施(水、食品和能源),以及致力于處理和管理垃圾的地區(qū)(Brenner,2014)。

      在這個擴展視圖中,城市可被理解為城市生態(tài)系統(tǒng)(Rapoport,2011; Broto et al.,2012)。就像自然生態(tài)系統(tǒng), 城市是由無數(shù)的生物和非生物系統(tǒng)間的相互作用和材料組成。然而在城市里, 這些相互作用的關(guān)系主要是由人為的意志和行動來管理和持續(xù)的。

      在城市生態(tài)、政治生態(tài)和城市研究的領(lǐng)域, 有兩個關(guān)于生態(tài)和城市的觀點。第一視角著重于研究不同類型的性質(zhì)。除了提升城市里傳統(tǒng)綠色空間的效益,包括公園,園林,城市河流等等,城市生態(tài)系統(tǒng)的這種觀點也承認新型生態(tài)系統(tǒng)的出現(xiàn)是廢棄住宅和工業(yè)區(qū)重新瘋漲的結(jié)果(Desimini,2014)。在這里,生態(tài)過程得到廣泛的自由時間, 允許草地,先鋒森林和多樣性的物種重新返回這片區(qū)域。這些地方不僅保持高水平的生物多樣性, 包括稀有植物和動物物種, 還引入新的審美經(jīng)驗, 可以幫助城市居民聯(lián)系到荒野的概念。然而必然會出現(xiàn)一些限制和反對城市生態(tài)系統(tǒng)這種觀點的聲音。如斯蒂夫·皮策(Stephanie Pincetl,2012)認為 “使自然降低到城市中忽略動植物的這種程度最終會集中在基礎(chǔ)設(shè)施,建筑,以及其他方面城市更大的生態(tài)足跡,比如消費品、汽車、進口食品和城市的廢棄物流向等?!?/p>

      因此,最近出現(xiàn)了另一種聲音,焦點從城市自然,轉(zhuǎn)向了城市的生態(tài)系統(tǒng)(Gandy,2004; Swyngedouw,2006; Rapoport,2011;Pincetl,2012)。這種觀點認為,為了建造建筑, 道路, 橋梁, 甚至公園,自然系統(tǒng)和景觀過程從根本上發(fā)生了轉(zhuǎn)變。水、能源、建筑材料、土壤、植物等,被進口和重新配置,以塑造我們生活,工作,并重新創(chuàng)建的地方。結(jié)果, 自然過程和人為系統(tǒng)現(xiàn)在完全交織在一起, 總是相互作用,從而無法畫出它們之間的邊界線(Wolff,2015)。

      城市生態(tài)系統(tǒng)這個概念,也激發(fā)了新的設(shè)計方法和策略。荷蘭風(fēng)景園林師德克·西蒙斯(Dirk Sijmons)建議:“如果我們看到城市了作為自然生態(tài)系統(tǒng),分析其結(jié)構(gòu)和新陳代謝,并理解和使用其材料流動的過程,我們可以使城市更有彈性,從而有助于建立更可持續(xù)的未來世界?!保⊿ijmons,2014)。類似于自然生態(tài)系統(tǒng),城市是由在多尺度上運行的過程和關(guān)系組成,其中兩兩相互嵌套。本地事件或干預(yù)觸發(fā)更大規(guī)模的緊急過程, 進而影響在當(dāng)?shù)氐臈l件(Parrott and Meyer,2012)。這需要規(guī)劃師和設(shè)計師在不同尺度上分析和設(shè)計流程與系統(tǒng)之間的反饋機制和相互關(guān)系。

      此外,高水平分化的生態(tài)系統(tǒng)有能力維持更復(fù)雜的反饋機制及更高水平的生物多樣性(Stremke,2012)。分化可能發(fā)生在時間和空間上,以及橫向(在香港)和縱向上(節(jié))。高度分化的景觀在干擾性和未知的未來發(fā)展上更有彈性。規(guī)劃師和設(shè)計師,因此,應(yīng)該致力于創(chuàng)建在時間和空間上形成層次性功能與服務(wù)的多功能景觀。

      最后,從生態(tài)系統(tǒng)的角度來看,規(guī)劃者和設(shè)計者應(yīng)該考慮材料的整個生命周期和資源流動,限制我們對不可再生原料的依賴(van Bueren,2012)參考文獻中沒有該條文獻,請作者補充。然而自然生態(tài)系統(tǒng)將廢物流動和材料變成資源,城市基于線性代謝,在線性中廢物作為不可避免的城市/農(nóng)業(yè)/工業(yè)過程結(jié)束的副產(chǎn)品被接受。這里,設(shè)計師可以想象不同利益相關(guān)者和作用物(包括人類和非人類)之間的協(xié)同效應(yīng),這樣目前丟棄的廢料可以重新利用并轉(zhuǎn)化為其他活動的有益資源。

      除了將城市作為一個生態(tài)系統(tǒng)來理解,還有其他關(guān)于提供了一系列寶貴訓(xùn)導(dǎo)的城市代謝的觀點。在討論設(shè)計師如何采用和擴大城市新陳代謝框架來設(shè)想可持續(xù)能源景觀前,我將提供一個關(guān)于這些概念和想法的簡要的概述。

      表1:關(guān)鍵生成能力(基于Cole等人2012年發(fā)表的成果)Table 1: Key Generative Capabilities (after Cole et al. 2012)

      3 城市代謝和當(dāng)代設(shè)計實踐

      馬克思首先應(yīng)用新陳代謝(stoffwechsel)這個詞來描述復(fù)雜的自然和社會間的相互作用,包括城市和農(nóng)村間的代謝關(guān)系(Karvounis et al. 2015; Foster,2000)。然而, 這是衛(wèi)生工程師艾博·沃曼(Abel Wolman)的工作,他在1965年寫了一篇核心論文題為“城市的新陳代謝”的文章, 介紹了關(guān)系到整體規(guī)劃、設(shè)計和工程社區(qū)的城市新陳代謝概念。在文章中,假想的美國城市量化了代謝的輸入(水、食物和燃料)以及輸出(污水、固體垃圾和空氣污染物)。他的研究強調(diào)了物理限制和環(huán)境問題與自然資源和商品的消費增長有關(guān)。在過去的幾十年里,持續(xù)的城市化、氣候變化、資源枯竭、和可持續(xù)性科學(xué)的出現(xiàn),“城市代謝”的概念已經(jīng)在學(xué)術(shù)界發(fā)現(xiàn)大量的牽引(Kennedy et al.,2007; Pincetl, 2012;Newell and Cousins,2014)。

      用于城市代謝研究最突出的方法是物質(zhì)流分析。這種分析可以提供定量和定性的輸入、輸出以及存儲能源、水、營養(yǎng)物質(zhì)、城市地區(qū)的材料和廢物(Kennedy et al.,2010;Voskamp and Stremke, 2014)。是否專注于建筑、街區(qū)或整個城市,這些研究旨在回答這樣的問題:進出區(qū)域的是什么樣的材料和資源流量?這些流量的數(shù)量和質(zhì)量是什么? 資源和廢物管理是如何從一個區(qū)域連接到其他空間和時間尺度的另一區(qū)域? 資源流動的效率如何提高呢? 如何將廢棄材料轉(zhuǎn)變?yōu)橘Y源?

      但除了對資源和廢物流向的定量分析,城市新陳代謝還關(guān)注使這些材料發(fā)生交流和轉(zhuǎn)換結(jié)果的社會和環(huán)境條件(Rapoport,2011;Pincetl et al.,2012)。 皮策(Pincetl et al.)等人(2012) 最近建議擴大城市新陳代謝的框架,將物流分析和生態(tài)服務(wù)系統(tǒng)連接起來(從生態(tài)系統(tǒng)中受益),地理特異性(政策和社會經(jīng)濟條件), 和政治生態(tài)學(xué)(權(quán)力和金錢的結(jié)構(gòu))(圖1)。雖然這個擴展框架理應(yīng)強調(diào)代謝過程固有的社會和政治影響,但它還是忽略了城市規(guī)劃,設(shè)計對材料流動性的影響以及開發(fā)新的城市化的空間模型的重要作用。我們建筑環(huán)境的形式對其功能和城市新陳代謝產(chǎn)生了深刻的影響是非常令人驚訝的事。例如城市擴張,通過促進汽車代步的文化增加了碳足跡,同時也需要更高水平的人均物質(zhì)和能量輸入。此外,這些低密度的建設(shè)有很大的空間足跡,從而棲息地被破壞,并危及生態(tài)系統(tǒng)服務(wù)。此外,強調(diào)系統(tǒng)有理性和創(chuàng)造性的解決問題可以促進資源流動和各種生物物理和生態(tài)過程的空間特征之間的聯(lián)系。

      目前,有許多不同方向的設(shè)計學(xué)科正在解決城市新陳代謝的概念。首先,流動性的代謝過程和流向的概念促進了在固定空間形式上專注于過程(定相、靈活性和開放性)的設(shè)計方法(Ibanez and Katsikis,2014)。第二,對可持續(xù)性發(fā)展的日益重視促進了如LEED和關(guān)于可持續(xù)的網(wǎng)站等方案的出現(xiàn),這些主要是由資源流動,建筑物的性能和效率,以及城市景觀等定量問題所激發(fā)的。第三,越來越多的設(shè)計師和工程師被仿生學(xué)的概念所迷惑,該概念主要通過模仿自然形式和系統(tǒng)來發(fā)展針對緊迫的社會環(huán)境問題的可持續(xù)性解決方案。最后,正如前面提到的,設(shè)計師們運用城市新陳代謝框架來抽象和想象資源流向的數(shù)量和質(zhì)量,通常主要集中在一個規(guī)模下(地區(qū)、城市、地區(qū)或建筑)。

      雖然每一個方法都有其優(yōu)點,但是這些方法的結(jié)果表明,他們要么當(dāng)應(yīng)用在城市新陳代謝中顯得過于松散(在指導(dǎo)設(shè)計策略上沒有空間概念), 要么太像目錄冊 (LEED的情況或其他定量設(shè)計方法), 要么僅僅是作為一個基于自然的形式產(chǎn)生工具(在生物仿生的情況下)。與此同時,這些設(shè)計實踐過分強調(diào)城市代謝的技術(shù)方面的問題來支持社會經(jīng)濟和生態(tài)條件(Voskamp and Stremke,2014)。

      相反,我認為城市新陳代謝框架渴望設(shè)計師開發(fā)一個集成和多指標方法使其能夠在自然抽象和具體表示形式之間:操作流程和相關(guān)的物理景觀之間,滿足社會需求和生態(tài)需求之間進行轉(zhuǎn)換(The International Architecture Biennale Rotterdam, 2014)。這種方法承認人類機構(gòu)想象和重新配置材料流向是為了塑造資源意識的城市形態(tài),同時解決緊迫的社會和環(huán)境問題。這里,再生設(shè)計理論近來成為一個有用的概念,它追求人類和自然系統(tǒng)的共同演化,同時促進可持續(xù)利用,以及重新利用能源,水,和物質(zhì)流向。下面的段落將演示城市再生設(shè)計如何代入城市新陳代謝的框架。

      4 再生設(shè)計

      再生設(shè)計是一個概念,它關(guān)注的是空間(定性和審美)和建筑環(huán)境的定量方面的內(nèi)容,以此來促進社會文化和生態(tài)系統(tǒng)之間的協(xié)同進化關(guān)系。根據(jù)瑞酷兒(Ray Cole),再生設(shè)計的主要倡導(dǎo)者之一,其概念目標是“建設(shè)行為…通過土地和資源流動——能量/水和材料來同時得并積極得致力于人類和自然系統(tǒng)的健康(Cole et al., 2012)。它給予設(shè)計師思考,如何使建筑或周圍環(huán)境有更大發(fā)展的直接和間接影響的挑戰(zhàn)。同時,再生設(shè)計理論利用標量所提供的機會來連接不同地點和發(fā)展區(qū)域的材料流向。在這種情況下,它包含了生態(tài)系統(tǒng)和資源流動,這是獨一無二的。因此,比起一般的或規(guī)范的解決方案,再生設(shè)計理論主要是研究富有想象力的空間干預(yù)措施以及社會空間和特定地區(qū)生態(tài)環(huán)境的反射。

      圖1是再生設(shè)計過程的關(guān)鍵部分的二維表現(xiàn)。該圖表強調(diào)了人類系統(tǒng)被包含在內(nèi)以及由自然系統(tǒng)提供的約束條件和機遇之間相互依存的關(guān)系(Cole et al.,2012)。能源、水和材料資源在人類和生態(tài)系統(tǒng)之間流通。由自然系統(tǒng)所提供的資源通過使用和回收,和/或返回到城市生態(tài)系統(tǒng)。作為這種再生方法的一部分,這些資源流向的質(zhì)量必須保持或增強,

      以創(chuàng)造“資源循環(huán)和當(dāng)?shù)厣鷳B(tài)系統(tǒng)之間積極協(xié)同的關(guān)系”(Cole et al., 2012)。在這種方法下,該設(shè)計機構(gòu)既校準地方和區(qū)域資源的流動,又塑造一個富有成效和有吸引力的(城市)的環(huán)境,來擔(dān)起社會、文化和生態(tài)的挑戰(zhàn)(表1)。這里, 庫爾等人(Cole et al.,2012)已經(jīng)確定了再生設(shè)計理論的4個具體的設(shè)計策略(我已經(jīng)改編了這些策略的描述,使它們與我們討論的內(nèi)容有更多的相關(guān)性):

      生產(chǎn):資源是可再生的并且是在本地或區(qū)域內(nèi)采購和生成。上下文中的能量的含義是:(城市)景觀應(yīng)該通過利用獨特的生物條件和社會經(jīng)濟背景整合能源(風(fēng)能、太陽能、水、生物質(zhì)能、地?zé)?、波)產(chǎn)生的多種方法和尺度。

      使用:資源被有效地用于滿足人類需求。通過重新考慮源和匯間的關(guān)系,我們可以使用剩余的資源(水/食物/能量)和有缺陷的位置來設(shè)計區(qū)域之間更好的作用關(guān)系。

      回收:資源有多種用途和好處。城市景觀包括不同消耗速度,數(shù)量和質(zhì)量的投入。通過更好地理解隨著時間和空間的變化如何使用和轉(zhuǎn)換資源,設(shè)計可以幫助調(diào)整和回收材料流向,從而發(fā)展多種功能和使用的合并效應(yīng)。

      補充:而不是減少在資源和吸收“廢棄物”的生產(chǎn)過程中的自然資本,補充并構(gòu)建自然資本。不只 是簡單的地層能量,可持續(xù)能源景觀的規(guī)劃設(shè)計包括在人類和生態(tài)系統(tǒng)之間建立共生關(guān)系。設(shè)計應(yīng)渴望通過結(jié)合生境創(chuàng)造和能源生產(chǎn)加強生態(tài)系統(tǒng)的功能,如碳封存,土建筑、水處理、空氣凈化、植物修復(fù)等等。

      這個框架表明了一個在規(guī)劃,設(shè)計和實施過程之間更加開放的關(guān)系。重點從對固定景觀形式的規(guī)劃轉(zhuǎn)變?yōu)檫m應(yīng)共同管理策略,為應(yīng)對持續(xù)的建筑環(huán)境的轉(zhuǎn)換,這個策略依靠多方利益相關(guān)者的參與以及不斷的學(xué)習(xí)。

      5 介紹設(shè)計實例

      為了促進關(guān)于可持續(xù)能源景觀設(shè)計的討論以及說明城市新陳代謝和再生設(shè)計的概念如何被應(yīng)用的,本文研究了在澳大利亞拉籌伯峽谷的項目案例。項目名為“重組”流動,是國際設(shè)計競賽“過境城市——低碳期貨”的獲獎?wù)撷?。比賽組織者要求設(shè)計師來想象拉特羅布山谷如何從燃煤經(jīng)濟轉(zhuǎn)變?yōu)橐环N基于可再生能源的經(jīng)濟資源。在討論項目的再生設(shè)計策略之前,我現(xiàn)在簡要介紹當(dāng)今在拉籌伯峽谷與能源相關(guān)的社會和環(huán)境問題。

      澳大利亞在各縣之間有世界上最高的人均碳足跡(The Economist, 2015)(圖2和圖3)。在這種背景下,在澳大利亞煤礦地區(qū)的適應(yīng)性重要十分緊迫。拉特特別是羅布山谷,是一個關(guān)鍵的例子。4個棕色的碳煤發(fā)電站的故鄉(xiāng),被廣泛的認為是世界上最高的能源碳排放模式,該地區(qū)提供了維多利亞州85%的電力供應(yīng)(5 295兆瓦)。而在煤炭行業(yè)繁榮的20世紀的大部分時間里,到1980年代初私有化導(dǎo)致主要的失業(yè),工廠正式員工從1980年初的10 500名工人減少到2002年的1 800名(Tomaney and Sommerville,2010)。最近,能源改革外加提出的溫室氣體排放交易計劃要求在2020年前關(guān)閉4個拉特羅布山谷中的3個電站(Latrobe City Council,2009)。

      因為它需要更大容量的褐煤來產(chǎn)生如黑煤一樣的能量,這些露天煤礦和共存發(fā)電站極大的改變了當(dāng)?shù)氐乃牟⑶遗c生態(tài)系統(tǒng)相聯(lián)系。目前,大量的水從河中溪流和含水層對采礦作業(yè)中提取,造成不穩(wěn)定的土壤條件并且增加了河岸失敗的機會。根據(jù)維多利亞的環(huán)境,僅黑澤爾伍德(Hazelwood)電站每年就消耗270億升水,這幾乎相當(dāng)于墨爾本全部人口(近500萬人)一個月的使用量。

      采礦作業(yè)也是該地區(qū)地表水和地下水污染的主要原因(Australian Government Department of the Environment,2013)。此外,由于產(chǎn)生大量的糞便,牛和乳品業(yè)的操作使地下水的污染更加嚴重,目前由于瀉湖處理能力的不足使病原體逃離到周圍環(huán)境中。

      出于減少溫室氣體排放和對可再生能源的渴望,恢復(fù)退化的生態(tài)系統(tǒng),創(chuàng)造新的就業(yè)機會和發(fā)展的需要;拉特羅布山谷的未來是不確定的。這就提出了以下問題:在多大程度上拉籌伯峽谷的社會生態(tài)系統(tǒng)可以重新配置,以適應(yīng)到可持續(xù)能源生產(chǎn)的一個過渡?如何適應(yīng)現(xiàn)有的基礎(chǔ)設(shè)施和土地的利用來提供新的機遇?這個地方本身如何參與其未來的形成?

      6 重組流程:一種再生能源景觀

      我們現(xiàn)在來檢測組裝流程是如何通過描述的四種代謝策略(生產(chǎn)、使用、回收、補充)應(yīng)用在城市新陳代謝和再生設(shè)計的框架中的②。

      6.1 生產(chǎn)

      拉籌伯(Latrobe)無論在本地還是全球的定位上主要在其傳統(tǒng)工業(yè),如認為其未來發(fā)展是空頭和不現(xiàn)實的,就否定了傳統(tǒng)產(chǎn)業(yè)的重要性。因此,項目提出了隨著時間的推移,逐步從當(dāng)前煤炭行業(yè)向清潔能源的轉(zhuǎn)型。這為改變現(xiàn)有的土地利用和基礎(chǔ)設(shè)施以及制定新的生產(chǎn)和消費之間的關(guān)系提供了新契機。

      而當(dāng)前的能源還是依賴不可再生資源的開采,被提議的網(wǎng)絡(luò)通過利用獨特的生物區(qū)環(huán)境和生態(tài)經(jīng)濟條件合并多種方式及可再生能源發(fā)電的尺度,獲得地區(qū)電力需求和離網(wǎng)的機會。隨著時間的推移礦山慢慢消失,膨潤土防水毯可以實現(xiàn)限制污染物運輸和地下水污染的作用。在這重要的第一步,礦山可以在未來使用中,包括抽水蓄能水電發(fā)電,地區(qū)沼氣發(fā)電廠,以及通過農(nóng)林生產(chǎn)獲得能源(圖4、5、6和7)。

      6.2 使用

      為了更可持續(xù)和有效的使用資源(特別是水),我們建議將黑澤爾伍德礦井轉(zhuǎn)變?yōu)槌樗钅茉O(shè)備。抽水蓄能是一個被證實的技術(shù),它可以允許存儲電力從而在高峰需求期間提供能量。利用現(xiàn)有的層級和底部露天煤礦之間巨大的高度差,在上水庫(前冷卻池)和新創(chuàng)建的降低采礦坑水庫之間水是循環(huán)的。上水庫有2 500萬m3容量和70 - 75m的液壓頭,有一個容量1 050 mw每天發(fā)電6個小時的站點。隨著氣候變化可能導(dǎo)致更頻繁且更極端的降雨、水庫也可以用來臨時存儲從摩威(Morwell)河流多余的水,Middle小溪和Billy溪流可以減少下游洪水的幾率。水庫也可以用來存儲和為相鄰建筑物的發(fā)展提取熱/冷,減少能源消耗和CO2排放(圖8和圖9)。

      6.3 回收

      通過定位與觀察在不同尺度間多種重合的行動者和行為,我們確定了由現(xiàn)有工業(yè)和農(nóng)業(yè)生產(chǎn)所產(chǎn)生的廢物的位置和數(shù)量 (如糞便、生產(chǎn)廢水、溫室氣體)。因此,為了實現(xiàn)有效重用這些資源,關(guān)鍵是:將現(xiàn)有的丟棄的“廢物”產(chǎn)品轉(zhuǎn)換成有價值的資源(圖10)。

      例如,牛奶、牛肉和小牛是拉籌伯(Latrobe)峽谷最重要的農(nóng)產(chǎn)品,貢獻高達75%(9.75億美元)的地區(qū)的生產(chǎn)總值。農(nóng)場不僅僅是食物來源, 通過將牛糞沼氣轉(zhuǎn)化為電能,農(nóng)場也成為拉籌伯轉(zhuǎn)換到可再生能源的一個重要組成部分。在區(qū)域范圍內(nèi), 亞羅恩礦山的現(xiàn)有的地下污水管道網(wǎng)絡(luò)已經(jīng)調(diào)整為:從周圍的牛場和奶牛場向推薦的沼氣設(shè)施運輸液體肥料。在這里,收集和運輸糞便進入?yún)捬跸鳎簿褪羌毦鷮⒂袡C物轉(zhuǎn)化成廢物的場所,產(chǎn)生的甲烷和其他沼氣可以用來燃燒發(fā)電。在該地區(qū)擁有超過850 000頭奶牛,在滿負荷的情況下,這個系統(tǒng)可以產(chǎn)生2 125兆瓦的電力。對于養(yǎng)牛農(nóng)民甚至整個礦山,現(xiàn)在有機會開發(fā)農(nóng)場規(guī)模的沼氣發(fā)電廠。通過這種方式, 1 000頭牛產(chǎn)生的廢物可以每天生產(chǎn)250到250千瓦的電力,足夠供應(yīng)300到350個家庭。此外,作為循環(huán)系統(tǒng)的一部分,處理糞便分為液體和固體。液體可以作為作物肥料,而固體用來制造牛床或堆肥(圖11和圖12)。

      同樣,多余的熱量和收集的CO2從燃煤電廠(能源過渡期間同時操作)和沼氣工廠被重新導(dǎo)向到溫室。這樣,高濃度的CO2刺激溫室作物的生長和產(chǎn)量,而多余的熱量可以用于優(yōu)化冬季的生長條件。

      6.4 補充

      拉籌伯山谷位于連接墨爾本的吉普斯蘭湖區(qū)和威爾遜士岬國家公園高山國家公園的主軸上。因此,這項提案的一個關(guān)鍵方面是要提升生態(tài)功能和連接性,尤其是水文條件。在2012年的夏天,暴雨造成據(jù)說能抵抗千年一遇的洪水的人造河摩威河的崩潰。因此,亞羅恩(Yallourn)煤礦被600億公升的水淹沒了,導(dǎo)致電站的發(fā)電能力的減少,嚴重影響當(dāng)?shù)氐乃h(huán)境。為了防止未來再次發(fā)生這樣的洪水災(zāi)害,提議包含了為了當(dāng)?shù)氐纳鷳B(tài)系統(tǒng)發(fā)展,在沿著主要河流和小溪的關(guān)鍵洪水區(qū)域設(shè)置河岸緩沖區(qū)和防洪公園用以保留、存儲、凈化和再利用水的系統(tǒng)。在回收的曠地和濱河緩沖區(qū)的部分重造林有助于過濾空氣,吸收碳和提供棲息地。同時,可以管理和選擇性的收獲木質(zhì)生物質(zhì)能源。雖然當(dāng)?shù)剞r(nóng)民可能不得不犧牲幾公頃的土地發(fā)展這些新的景觀類型;但是作為交換,他們將獲產(chǎn)生能量,干凈的水和營養(yǎng)豐富的土壤的機會。此外,礦山復(fù)墾結(jié)合增強生態(tài)系統(tǒng)以及提升景觀品質(zhì)來為拉籌伯山谷提供發(fā)展獨特文化和生態(tài)旅游業(yè)的機會;擴大道路網(wǎng)絡(luò),露營營地和床上/早餐機構(gòu)(圖13)。

      拉籌伯山谷基于能量轉(zhuǎn)換/可用資源和廢物材料的重新配置也提供一個發(fā)展新的經(jīng)濟和文化身份的機會。這里,廢棄煤礦鐵路改造成高速電車軌道,連接不同的采礦坑以及摩威和密蘇里州的中心。這個系統(tǒng)成為新的城市發(fā)展的中央脊柱,包括小規(guī)模的制造業(yè)、教育和研究中心,將開放性的創(chuàng)新和知識生產(chǎn)的前景。例如, 我們建議在摩威建設(shè)一個新的RMIT大學(xué)的分校,主要研究可再生能源系統(tǒng)和可持續(xù)資源管理。這不僅使該地區(qū)更吸引高度熟練的工人,也使現(xiàn)有勞動力提高他們的技能來獲得新的就業(yè)機會。此外,建議包含了在現(xiàn)有的輸電線路下,連接分散的棲息地的土地和空間,用以提供新型的綠色空間和提供休閑娛樂的機會。強調(diào)該地區(qū)能源發(fā)展的遺贈,這所謂的“能源之路”連接前礦業(yè)場地以及未來所有生產(chǎn)場地,讓居民和游客體驗從化石燃料景觀轉(zhuǎn)變成可再生能源景觀(圖14)。

      7 結(jié)語

      城市代謝的框架正變得越來越重要,以幫助規(guī)劃師,設(shè)計師和工程師測量和分析——能源,材料和廢舊產(chǎn)品如何流入和流出城市地區(qū)(Kennedy and Hoornweg,2012)。 目前,城市代謝的研究幾乎完全集中在物質(zhì)流分析上。雖然在本地和區(qū)域資源流量這種類型的分析上獲得更好的量化是非常關(guān)鍵的,但這些研究仍忽視了城市資源的社會和空間變化。隨著氣候的變化,持續(xù)的城市化,和即將到來的資源稀缺問題,建立一個更大的框架關(guān)系到定量,定性和空間方面的城市新陳代謝是至關(guān)重要的。

      本文重點介紹了設(shè)計機構(gòu)在推進城市能源轉(zhuǎn)型的新陳代謝方面的知識。尤其是再生設(shè)計,提供了可被用來擴大城市代謝框架資源意識的設(shè)計方法。通過將設(shè)計思維和創(chuàng)造性的解決問題與科學(xué)知識和生態(tài)原則相融合,再生設(shè)計在想象力和功能性方面促進了景觀的發(fā)展,跨越空間和時間去解決問題。利用未被開發(fā)的潛力和地方的獨特屬性, 這個框架促使站在更高的角度去提供解決方案, 但技術(shù)和設(shè)計原則也可以部署在其他地方。本文提供的設(shè)計示例就說明了城市新陳代謝擴展框架在未來會將廢物轉(zhuǎn)換成資源,同時在共同演化社會和生態(tài)系統(tǒng)的基礎(chǔ)上創(chuàng)建一個高度差異化的能源格局。

      到目前為止,城市新陳代謝知識主要存在于學(xué)術(shù)界和公共政策的領(lǐng)域。我們?nèi)杂性S多工作要去做。如果規(guī)劃者和設(shè)計者想要在城市可持續(xù)發(fā)展領(lǐng)域有所見地,那么城市新陳代謝的實現(xiàn)需要更廣泛的群眾參與。一方面,城市居民將了解到他們每天消耗的資源(這些資源從何而來,他們的數(shù)量,和生態(tài)足跡)。同時,利益相關(guān)者和公眾參與者是促進可持續(xù)城市新陳代謝的關(guān)鍵, 他們可以建立起一個跨文化知識的學(xué)習(xí)與合作的平臺。雖然重組流程已經(jīng)呈現(xiàn)給公眾,設(shè)計標準和優(yōu)先級并不是由參與式規(guī)劃方法引導(dǎo)。例如,遠景規(guī)劃可能會為空間設(shè)計、利益相關(guān)參與者和從全面的物質(zhì)流分析得出的見解提供一個完善的框架。這為進一步提高城市新陳代謝的應(yīng)用框架和促進可持續(xù)能源景觀的規(guī)劃與設(shè)計的研究提供了令人興奮的機遇。

      Introduction

      Over the past decade, climate change coupled with resource depletion has motivated a transition from fossil fuels to renewable energy sources (Stremke et al., 2012). This transition has a significant impact on the spatial form and functioning of physical landscapes globally. On the one hand, former sites of fossil fuel production (such as coal mines) are being phased out, presenting the need for designers to adaptively and innovatively reuse these emerging ‘waste landscapes’ (Berger, 2007). On the other hand, renewable energy sources require considerable areas of land, providing planners and designers the opportunity to envision productive landscapes that are multifunctional, integrate ecosystem services, afford leisure and recreational activities, and maintain or enhance the spatial qualities of the built environment (Stremke and Koh, 2011; Stremke et al., 2012). The transition to sustainable energy landscapes also needs to be coupled with reductions in energy consumption. In addition to changing our habits, behaviours and lifestyle, designers can integrate energy-efficient building practices, reduce urban sprawl and optimize urban transportation systems. Taken together, spatial design disciplines should lead the way in terms of envisioning future energy landscapes by offering long-term solutions that work ecologically, economically and socially.

      In this context, this article addresses the need to create multifunctional energy landscapes by reconfiguring local and regional resource flows and associated waste management systems. Currently, in order to support the growth of urban populations, cities are drawing large amounts of resources (energy, food, water and materials) from far off areas (Huang and Hsu, 2003).At the same time, ongoing urbanization is generating increasing quantities of waste, emissions and nutrient loads, which are discharged into the surroundings or released into the atmosphere-further exacerbating environmental problems and geopolitical conf l ict. As stressed by the Millennium Ecosystem Assessment (2005), of the existing ecosystem services-such as provisioning of food and fresh water, disease and pest control, nutrient cycling, and climate regulation-approximately 60 % (15 out of 24) are severely degraded or used unsustainably. This means society can no longer solely rely on natural goods and services to provide a sustainable basis for future generations. We need to take an active and responsible role in restoring, designing, and equitably distributing flows of food, water, waste and energy. Key research questions include: How can resource management become an integral part of planning and designing energy landscapes? How can we create synergies between different urban functions, land uses and ecosystem services?

      As such, this article discusses the potentials of the urban metabolism framework to inform sustainable and multifunctional energy landscapes. I will begin by using the metaphor of the city as an urban ecosystem to setup and interdisciplinary perspective on urban metabolism. From there I will discuss how contemporary design disciplines are addressing the concept of urban metabolism. To strengthen this framework, I will introduce the concept of regenerative design, which identifies four resource-related design strategies (produce, use, recycle and replenish) to structure circular metabolic flows with multiple social-ecologicalbenefits. The article will then illustrate the potentials of this combined urban metabolism and regenerative design framework by examining a design example.

      The City as an Urban Ecosystem

      Intelligent planning, design and management of our cities is key to a sustainable future of our planet (Delpero 2016). Here, the city should not be reduced to a spatial entity conf i ned by political boundaries, or as a statistical unit def i ned in terms of population densities. Instead, the city is best conceptualized as an interdepend network of spaces, actors, material flows, and relationships between social, economic and ecological systems across a range of scales, from the local to the global (Sassen, 1991). This includes those sites and infrastructures that supply and produce critical resources (water, food, and energy), as well as areas dedicated to processing and managing waste (Brenner, 2014).

      In this expanded view, cites can be understood as urban ecosystems (Rapoport, 2011; Broto et al., 2012). Just like natural ecosystems, cities are made up of countless relationships and material interactions between biotic and antibiotic systems. In cities, however, these interactions and relationships are primarily managed and sustained by the intentions and actions of human agents.

      Drawing from the fields of urban ecology, political ecology and urban studies, there are two perspectives with respect to ecology and the city. The first perspective focuses on the study of different types of nature in the city. In addition to the promoting benef i ts of traditional green spaces in the city, including parks, greenways, urban rivers and so on, this view of urban ecosystems also recognizes the emergence of novel ecosystems as a result of the ‘re-wilding’ of abandoned residential or industrial areas (Desimini, 2014). Here, ecological processes have been given free reign for extensive periods of time, allowing meadows, pioneer forests and a diversity of species to re-inhabit these areas. These places not only maintain high levels of biodiversity, including rare plants and animal species, but also introduce new aesthetic experiences that might help urban residents connect with notions of wilderness. However there are certain limitations and objections with this view of an urban ecosystem. Stephanie Pincetl (2012), for example, argues, "to reduce nature to the living fauna and flora in a city neglects the larger ecological footprint of the city that ends up concentrated in infrastructure, buildings, and much more, such as consumer goods, automobiles, imported foods and the waste fl ows of the city."

      As such, recently another perspective has emerged-one that shifts the focus from nature in the city, to the ecology and ecosystems of the city (Gandy, 2004; Swyngedouw, 2006; Rapoport, 2011; Pincetl, 2012). This view acknowledges that in order to construct buildings, roads, bridges, and even parks, natural systems and landscape processes are radically transformed. Water, energy, construction materials, soil, plants, and so on, are imported and reconfigured to shape the places in which we live, work, and recreate. As a result, natural processes and anthropogenic systems are now fully intertwined and always interacting, making it impossible to draw a distinct line between them (Wolff, 2015).

      This conceptualisation of the city as an urban ecosystem also inspires new design approaches and strategies. Dutch landscape architect Dirk Sijmons has suggested: “if we see the city as our natural ecology, analyse its structure and metabolism, and understand and use the process of its material flows, we can make the city more resilient and thus act to contribute to a more sustainable future world.” (Sijmons, 2014). Similar to natural ecosystems, the city is comprised of processes and relationships that operate at multiple scales, where each scale is nested within another. Local events or interventions trigger the emergence of processes at larger scale, which in turn can affect conditions at local scales (Parrott and Meyer, 2012). This requires planners and designers to analyse and design interrelationships and feedback mechanisms between systems and processes at these different scales.

      Moreover, ecosystems with high levels of differentiation are capable of sustaining more complex feedback mechanisms and higher levels of biodiversity (Stremke, 2012). Differentiation can happen spatially and temporally, and both horizontally (across the territory) and vertically (in section). Highly differentiation landscapes are more resilient to disturbances and unknown future developments. Planners and designers, therefore, should aim to create multifunctional landscapes that layer a variety of functions and services in both space and time.

      Finally, from an ecosystems point of view, planners and designers should consider the entire lifecycle of material and resource flows, limiting our reliance on non-renewable raw materials (van Bueren, 2012). Whereas natural ecosystem turnwaste flows and materials into resources, cities are based on a linear metabolism where waste is accepted as an inevitable by-product at the end of urban/agricultural/industrial processes. Here, designers can envision synergies between different stakeholders and actors (both human and nonhuman) so that currently discarded ‘waste materials’can be reused and repurposed as a beneficial resource for other activities.

      In addition to understanding the city as an urban ecosystem, there are other perspectives on urban metabolism that have proven valuable for a range of disciplines. In the discussion that follows, I will provide a brief overview of these concepts and ideas before discussing how designers can adopt and expand on the urban metabolism framework to envision sustainable energy landscapes.

      Urban Metabolism and Current Design Practices

      Marx first applied the term metabolism (stoffwechsel) to characterize the complex interactions between nature and society, including the metabolic relations between the urban and the rural (Karvounis et al. 2015; Foster 2000). However, it was the work of sanitary engineer Abel Wolman, who in 1965 wrote a seminal article entitled “The Metabolism of Cities”, that introduced the concept of urban metabolism concept to the broader planning, design and engineering communities. In the essay, Wolman quantif i ed the metabolic inputs (water, food, and fuel) as well as outputs (sewage, solid refuse and air pollutants) of a hypothetical American city. His study emphasised the physical limitations and environmental issues associated with the growing consumption of natural resources and goods. Over the past several decades, sparked by on-going urbanization, climate change, resource depletion, and the emergence of the sustainability science, the concept of ‘urban metabolism’has found substantial traction within academia (Kennedy et al., 2007; Pincetl 2012; Newell and Cousins 2014).

      The most prominent method used for urban metabolism studies is Material Flow Analysis. Such analyses can provide quantitative and qualitative insight in the inputs, outputs and storage of energy, water, nutrients, materials and wastes of urban regions (Kennedy et al., 2010; Voskamp and Stremke, 2014). Whether focusing on buildings, neighbourhoods or entire cities, these studies aim to answer questions such as: What materials and resource fl ows are coming in and out of an area? What is the quantity and quality of these flows? How is resource and waste management in one area connected to that at other spatial and temporal scales? How can the efficiency of the resources flows be improved? How can waste materials be turned into resources?

      But beyond a quantitative analysis of resource and waste fl ows, urban metabolism also concerns the social and environmental conditions that emerge as a result of these material exchanges and transformations (Rapoport, 2011; Pincetl et al., 2012). Pincetl et al. (2012) have recently suggested an expanded urban metabolism framework, which couples material flow analysis to ecosystem services (benefits obtained from ecosystems), geographic specif i city (policies and socio-economic conditions), and political ecology (structures of power and money) (Figures 1). And while this expanded framework rightfully emphasises the inherent social and political implications of metabolic processes, it still leaves out the critical role of urban planning and design in reconfiguring material flows and developing new spatial models of urbanization. This is surprising since the form of our built environment has profound impacts on its function and urban metabolism. Urban sprawl, for example, increases the carbon footprint by promoting a car-dependent culture, while also requiring higher levels of material and energy inputs per capita. In addition, these low-density developments have large spatial footprints, thereby fragmenting habitats and compromising ecosystem services. Moreover, an emphasis on systems thinking and creative problem solving can facilitate new connections between resource flows and the spatial characteristic of various biophysical and social-ecological processes.

      Currently, there are a number of different ways design disciplines are addressing the concept of urban metabolism. First, notions of fl ows and fluidity of metabolic processes have promoted design approaches that focus on process (phasing, flexibility, and open-endedness) over fixed spatial forms (Ibanez and Katsikis, 2014). Second, an increased emphasis on sustainability has prompted the emergence of initiatives such as LEED and Sustainable Sites, which are motivated by quantitative questions related to resource flows, performance and efficiency of buildings and urban landscapes. Third, designers and engineers are increasingly captivated by the concept of biomimicry, where nature-based forms and systems are imitated in order to develop sustainablesolutions to pressing social and environmental issues. And lastly, as mentioned before, designers are applying the urban metabolism framework to abstract and visualise the quantity and quality of resources flows, often focusing primarily of one scale (the region, city, neighbourhood or building).

      While there is benefit in each of these approaches, outcomes of these approaches reveal that they either apply urban metabolism too loosely (in guiding design strategies without spatial definition), too checklist-driven (in the case of LEED or other quantitative design methods), or simply as a nature-based form-generating tool (in the case of biomimicry). At the same time, these design practices overemphasise the technological aspects of urban metabolism in favour of socioeconomic and ecological conditions (Voskamp and Stremke, 2014).

      Instead, I would argue that the urban metabolism framework aspires designers to develop an integrated and multi-scalar approach that shifts between abstract and concrete representations of nature; between manipulating flows and associated physical landscapes, and; between addressing social and ecological needs (The International Architecture Biennale Rotterdam, 2014). This approach acknowledges human agency in visualising and reconfiguring material flows in order to shape urban forms that are resourceconscious and simultaneously address pressing social and environmental. Here, regenerative design has recently emerged as a useful concept aspiring the co-evolution of human and natural systems while fostering sustainable use and reuse of energy, water, and material fl ows. The following paragraphs will demonstrate how urban regenerative design can be brought into the urban metabolism framework.

      Regenerative Design

      Regenerative design is a concept that focuses on both the spatial (qualitative and aesthetic) and quantitative aspects of the built environment in order to promote a co-evolutionary relationship between socio-cultural and ecological systems. According to Ray Cole, one of the main advocates of regenerative design, the concept aims that “the act of building…contributes simultaneously and positively to both human and natural systems health through the way that it relates to the land and engages resource flows—energy, water and materials” (Cole et al., 2012). It challenges designers to think about the direct and indirect impacts of a building or larger developments to the surrounding context. At the same time, regenerative design harnesses the opportunities provided by scalar thinking in order to link material fl ows between different sites and development. In doing so, it embraces social-ecological systems and resource fl ows that are unique to location. As such, rather than generic or checklist-driven solutions, regenerative design cultivates spatial interventions that are imaginative and ref l ective of socio-spatial and ecological conditions of a specif i c region.

      Figure 1 shows a two-dimensional representation of key aspects of the regenerative design process. The diagram emphasizes that human systems are set within and interdependent of the constraints and opportunities afforded by natural systems (Cole et al., 2012). Energy, water and material resources are circulated between human and ecological systems. Resources provided by natural systems are used and recycles, and/or returned to the urban ecosystem. As part of this regenerative approach, the quality of these resource fl ows is maintained or enhanced, creating "positive synergistic connections between resource cycles and local ecological systems" (Cole et al., 2012). Within this approach, the agency of design is to both calibrate local and regional resource fl ows, and to shape a productive and attractive (urban) environments that afford social, cultural and ecological opportunities [Table 1]. Here, Cole et al. (2012) have identified four specif i c design strategies of regenerative design (I have adapted the description of these strategies to make them more pertinent to our discussion):

      Produce: resources are renewable and are sourced or generated either locally or regionally. In the context of energy, this means (urban) landscapes should integrate multiple ways and scales of energy generation (wind, solar, water, biomass, geothermal, wave) by taking advantage of unique bioregional conditions and socio-economic contexts.

      Use: resources are used effectively in satisfying human needs. By reconsidering the relationships between sources and sinks, we can design better interactions between areas with a surplus of resources

      Recycle: resources are used for multiple purposes and benefits. Urban landscapes consist of material inputs that are consumed at different speeds, quantities and qualities. By better understanding how resources are used and transformed over time and space, design can help to recalibrate and recycle material fl ows in order to develop synergies between multiple functions and uses.

      Replenish: rather than diminish natural capitalduring the production of resources and assimilation of ‘waste’, replenishes and builds natural capital. More than simply producing energy, the planning and design of sustainable energy landscapes encompasses establishing symbiotic relationships between human and ecological systems. Designs should aspire to enhance ecosystem functioning by coupling energy generation with habitat creation, carbon sequestering, soil building, water treatment, air purif i cation, phytoremediation and so on.

      This framework suggests a more openended relationship between planning, design and implementation processes. The focus here shifts from planning for fixed landscape forms to adaptive co-management strategies that rely on multi-stakeholder participation and learningby-doing in order to respond to on-going transformations of the built environment.

      Introduction Design Example

      In order to advance the discussion on the design of sustainable energy landscapes and to illustrate how the concepts of urban metabolism and regenerative design can be applied, this paper examines a design project in Latrobe Valley, Australia. The project, entitled “Reassembling Flows”, was the winning entry of the international design competition “Transiting Cities – Low Carbon Futures”○1. The competition organizers challenged designers to envision how Latrobe Valley could transition from a coal-based economy to an economy based on renewable energy resources. Before discussing the regenerative design strategies of the project, I now briefly introduce the present-day energy-related social and environmental issues in Latrobe Valley.

      Australia is among the counties with the highest carbon footprint per capita in the world (The Economist, 2015) [Figures 2 and 3]. In this context, the adaptation of coalmining regions in Australia is of pressing importance. Latrobe Valley, in particular, is a key example of this. Home to four brown coal-fired power stations—widely understood to be the highest carbon-emitting mode of energy generation in the world—the region supplies the state of Victoria with 85% of its electricity (5,295MW). While the coal industry prospered during most of the twentieth century, by the early 1980s privatisation led to major job loss, with direct employment in the industry falling from around 10,500 workers in the early 1980s to about 1,800 by 2002 (Tomaney and Sommerville, 2010). More recently, energy reforms coupled with proposed greenhouse gas emissions trading schemes have pushed for closure of three of the four Latrobe Valley power stations would close by 2020 (Latrobe City Council, 2009).

      Because it requires much larger volumes of brown coal to produce the same amount of energy as black coal, these open-cut mines and co-located power stations have significantly altered the local hydrology and associated ecosystems. Currently, large amounts of water are extracted from rivers, streams and aquifers for mining operations, causing destabilization of soil conditions and increasing chances of riverbank failures. According to Environment Victoria, Hazelwood power station alone consumes 27 billion litres of water each year, which is nearly the same amount the entire population of Melbourne (nearly 5 million) use in a month.

      Mining operations are also the main source of surface and groundwater pollution in the region (Australian Government Department of the Environment, 2013). Moreover, cattle and dairy farming operations intensify groundwater pollution by producing large amounts of manure, which are currently disposed of in inadequately sized lagoons that allow pathogens to escape into the surrounding environment.

      With a need to cut down greenhouse gases and desires to incorporate renewable energies, regenerate degraded ecosystems, and create new jobs and developments; the future of Latrobe Valley is uncertain. This raises the following questions: To what extent can existing social-ecological systems in Latrobe Valley be reconfigured to accommodate a transition to sustainable energy production? How can existing infrastructures and land uses be adapted to provide new opportunities? How can the place itself play a part in the formation of its future?

      Reassembling Flows: A Regenerative Energy Landscape

      We now examine how Reassembling Flows applies the frameworks of urban metabolism and regenerative design by describing the proposal through the four metabolic strategies (produce, use, recycle, replenish) discussed earlier○2.

      Produce

      Latrobe's identity on both a local and global level is deeply rooted in its mining tradition that to deny its importance for future development is short-sided and unrealistic. As such, the project proposes a gradual shift over time from the current coal oriented industries to cleanerenergy alternatives. This allows for opportunities to change existing land uses and infrastructures and to formulate new between production and consumption.

      Whereas current energy generation relies on the extraction of non-renewable resources, the proposed network incorporates multiple ways and scales of renewable energy generation by taking advantage of unique bioregional conditions and socio-economic contexts—addressing both regional power demands and off-grid opportunities. As the mines are decommissioned over time, geosynthetic clay liners are implemented to limit contaminant transport and groundwater pollution. After this important first step, the mines can be adapted for future uses, including pumped-storage hydroelectricity generation, a regional biogas plant, and agroforestry production for energy [Figures 4, 5, 6 and 7].

      Use

      In order to use resources (particularly water) in a renewable and more efficient way, we propose to transform the Hazelwood mine into a pumped storage facility. Pumped storage is a well-proven technology that allows for storage of electricity in order to supply energy during peak demands. Taking advantage of the substantial height difference between the existing grade and the bottom of the open-cut coalmine, water is circulated between the upper reservoir (the former cooling pond) and the newly created lower reservoir in the mining pit. With an upper reservoir capacity of 25 million cubic metres and a hydraulic head of 70-75m, the station has a capacity of generating 1,050MW for up to six hours per day. As climate change is likely to result in more frequent and more extreme rainfall, the reservoirs can also be used to temporarily store excess water from the Morwell River, Middle Creek and Billy Creek to reduce chances of downstream flooding. The reservoirs can also be used to store and extract heat/cold for adjacent building developments; reducing energy costs and CO2emissions [Figures 8 and 9].

      Recycle

      By mapping and visualizing the various overlapping actors and activities across multiple scales, we identified the location and quantity of waste products generated by existing industrial and agricultural practices (such as manure, processed waste water, greenhouse gases). Consequently, a key component of the proposal aimed at reusing these resources effectively; transforming currently discarded ‘waste’ products into valuable resources [Figure 10].

      Milk, beef and veal, for example, are Latrobe Valley’s most important agricultural products, contributing up to 75 % ($975 million) of the region’s gross product. More than just food sources, farms also become an important component in Latrobe's transition to renewable energy by converting methane gas from cow manure into electricity. On a regional scale, the existing network of underground wastewater pipelines of the Yallourn mine are recalibrated to transport liquid manure from surrounding cattle and dairy farms to a proposed biogas facility. Here, manure is collected and pumped into anaerobic digesters, in which bacteria break down the organic matter in the waste, producing a mix of methane and other biogases that are burned to generate electricity. With over 850,000 cows in the region, at full capacity, this system can generate up to 2,125MW of electricity. For cattle farmers further located from the mines, there are opportunities to develop farm-scale biogas plants. This way, the waste of a 1,000-cow operation can produce 250 to 300 kilowatts of electricity daily, or enough to power 300 to 350 homes. Moreover, as part of a closed-loop system, the processed manure is separated into liquids and solids. The liquids can be used as crop fertilizer while the solids make great cow bedding or compost [Figures 11 and 12].

      Similarly, both excess heat and captured CO2 from the coal-f i red power plants (still operational during the energy transition) and biogas plants are redirected into greenhouses. Here, carbon dioxide enrichment stimulates the growth and production of greenhouse crops, whereas excess heat can be used to optimize growing conditions during the winter months.

      Replenish

      Latrobe Valley is located on the main axis connecting Melbourne to the Gippsland Lakes and Wilsons Promontory National Park to Alpine National Park. As such, a key aspect of the proposal is to improve the ecological functions and connections, in particular the hydrological conditions. In the summer of 2012, heavy rainfall caused the collapse of the artificially constructed Morwell River, supposedly capable of surviving a one-in-10,000 year fl ood. As a result, the Yallourn coalmine was inundated with 60 billion litres of water, reducing the power plant's generation capacity and seriously impacting local water conditions. In order to prevent fl ood events suchas these in the future, the proposal incorporates a system of riparian buffers and fl ood control parks along major rivers and creeks within critical fl ood plains to retain, store, cleanse and reuse water for local ecosystem development. Partial reforestation of reclaimed mining sites and riparian buffers helps to fi lter the air, capture carbon and provide habitat. At the same time the woody biomass that can be managed and selectively harvested for energy over time. And while local farmers might have to sacrifice several hectares of land for the development of these new landscape types; in exchange they will gain opportunities to produce energy, clean water and nutrient-rich soils. Furthermore, the reclamation of mines combined with the enhancement of ecosystems and landscape qualities provide opportunities to develop Latrobe Valley as a unique cultural and eco-tourism destination; expanding the trail network, campsites and bed/breakfast establishments [Figure 13].

      The reconf i guration of Latrobe Valley based on the energy transition/the available resources and waste materials also provides opportunities to develop a new economy and cultural identity. Here, decommissioned coalmine tracks are retrofitted as high-speed tramlines, linking the different mining pits as well as the centres of Morwell and Mo. This system becomes the central spine along which new urban developments, including smallscale manufacturing, education and research hubs, will open up new prospects for innovation and knowledge production. For example, in Morwell, we propose a new satellite campus of RMIT University focusing on renewable energy systems and sustainable resource management. This will not only make the region more attractive for highly skilled workers but also enables the current workforce to improve their skills to access new jobs. Furthermore, the proposal incorporates the easement and space underneath existing transmission lines to reconnect fragmented habitats, provide new types of green space and accommodate opportunities for leisure and recreation. Emphasizing the region’s legacy of energy developments, this so-called ‘Power Trail’connects all former mining sites as well as future sites of production; allowing residents and visitors to experience the transformation from a fossil-fuel landscape into one of renewable energy [Figure 14].

      Conclusions

      The framework of urban metabolism is becoming increasingly important to help planners, designers and engineers measure and analyse how energy, materials, and waste products fl ow into and out of an urban areas (Kennedy and Hoornweg, 2012). Currently, urban metabolism studies almost exclusively focus on material flow analysis. While this type of analysis is key in order to gain better insight in the quality and quantity of local and regional resource fl ows, these studies by-and-large neglect the social and spatial implications of urban resource flows. With climate change, on-going urbanisation, and looming resource scarcity, it is critical to develop a broad framework that equally concerns the quantitative, qualitative and spatial aspects of urban metabolism.

      This article has focused on the agency of design in advancing the body of urban metabolism knowledge with respect to the energy transition. Regenerative design, in particular, provides a resource-conscious design approach that can be utilised to expand the urban metabolism framework. By incorporating design thinking and creative problem solving with scientif i c knowledge and ecological principles, regenerative design facilitates the development of landscapes that are at once imaginative and functional, addressing issues across both space and time. Harnessing the latent potentials and unique attributes of place, this framework promotes solutions that are highly sitespecific, yet incorporate technologies and designprinciples that can also be deployed elsewhere. The design example presented in this article illustrates that this expanded framework of urban metabolism has the capacity to envision low carbon futures by turning waste products into resources while creating a highly differentiated energy landscape based on the co-evolution of social and ecological systems.

      But there is still much work to be done. Until now urban metabolism knowledge exists primarily in the realms of academia and public policy. If planners and designers are to advance the realm of sustainable urban development, then the implications of urban metabolism have to reach a much wider audience. On the one hand, urban residents will benefit from knowing more about the resources they consume on a daily basis (where these resources come from, their quantities, and ecological footprints). At the same time, stakeholder engagement and public participation is key to promoting sustainable urban metabolism as it establishes a platform for crosscultural learning and co-production of knowledge. And while Reassembling Flows has been exhibited and presented to the public, the design criteria and priorities were not guided by a participatory planning approach. Scenario planning, for example,might provide a robust framework in order to couple spatial design, stakeholder participation, and insights gained from comprehensive material fl ow analysis. This provides exciting opportunities for further research to improve the application of the urban metabolism framework and to advance the planning and design of sustainable energy landscapes.

      Notes:

      ①本文作者是設(shè)計團隊的成員。

      The author of this paper was an integral part of the design team.

      ②本文討論的項目主要集中在循環(huán)代謝的開發(fā)。 雖然沒有故意在再生設(shè)計的框架內(nèi)設(shè)計,它依然共享其許多的理想目標。 因此,我已經(jīng)圍繞再生設(shè)計框架的關(guān)鍵代謝策略對項目進行了討論。

      The project discussed in this article primarily focuses on developing a circular metabolism. While not knowingly designed within the framework of regenerative design, it shares many of its aspirational goals. As such, I have structured the discussion of the project around the key metabolic strategies of the regenerative design framework.

      Australian Government Department of the Environment.“National Pollutant Inventory 2012-2013.” Last accessed August 16, 2016: http://www.npi.gov.au/npidata/action/load/ individual-facility-detail/criteria/jurisdiction-facility/00004337/ state/VIC/year/2013

      Berger, Alan. Drosscape: Wasting Land in Urban America, Princeton Architectural Press, New York; Boston;, 2007.

      Brenner N. Implosions/explosions: Towards a Study of Planetary Urbanization. Berlin: JOVIS; 2014.

      Broto, Vanesa C., Adriana Allen, and Elizabeth Rapoport. "Interdisciplinary Perspectives on Urban Metabolism." Journal of Industrial Ecology, vol. 16, no. 6, 2012., pp. 851-861

      Bueren,E.v. Sustainable Urban Environments: An Ecosystem Approach. Dordrecht [Netherlands]; New York;: Springer; 2012.

      Chrysoulakis, N., Castro, E. A. d., Moors, E.J. Understanding Urban Metabolism: A Tool for Urban Planning. Abingdon: Routledge; 2015.

      Cole, Raymond J., et al. "A regenerative design framework: setting new aspirations and initiating new discussions." Building Research & Information, vol. 40, no. 1, 2012., pp. 95-111.

      Delpero, C. “The Future of Sustainability will be decided in Cities.” Road to Paris. Publised on March 14, 2016 and last edited April 19, 2016. Last accessed August 17, 2016: http://roadtoparis.info/2016/03/14/the-next-big-thing-at-theun-the-future-of-cities/

      Desimini, J. “From Planned Shrinkage to Formerly Urban: Staking Landscape Architecture's Claim in the Shrinking City Debate.” Landscape Journal: design, planning, and management of the land. 2014; 33, pp. 17-35.

      Environment Victoria. “Hazelwood Power Station—The Dirty Details.” Last accessed August 19, 2016: http:// environmentvictoria.org.au/content/hazelwood-powerstation-dirty-details

      Foster, John B. Marx's ecology: materialism and nature, Monthly Review Press, New York, 2000.

      Gandy, Matthew. "Rethinking urban metabolism: water, space and the modern city." City, vol. 8, no. 3, 2004., pp. 363-379.

      Huang, SL, and WL Hsu. "Materials flow analysis and emergy evaluation of Taipei's urban construction." Landscape and Urban Planning, vol. 63, no. 2, 2003., pp. 61-74

      Huang, SL, and WL Hsu. "Materials flow analysis and emergy evaluation of Taipei's urban construction." Landscape and Urban Planning, vol. 63, no. 2, 2003., pp. 61-74

      Ibanez, D., and N. Katsikis.Grounding Metabolism, vol. 6;6.;, Harvard Graduate School of Design, Cambridge, Massachusetts, 2014.

      Kendall, K. “Carbon Taxes and trade-exposed Industries.”La Trobe University, 10 March 2009: https://www.latrobe. edu.au/news/articles/2009/opinion/carbon-taxes-and-tradeexposed-industrie

      Kennedy, C., Cuddihy, J., Engel,Yan J. “The Changing Metabolism of Cities.”Journal of Industrial Ecology. 2007;11, pp. 43-59.

      Kennedy, C., Pincetl, S., Bunje, P. “The study of urban metabolism and its applications to urban planning and design.”Environmental Pollution. 2011; 159, pp. 1965-1973. Kennedy, Christopher, and Daniel Hoornweg. "Mainstreaming Urban Metabolism." Journal of Industrial Ecology, vol. 16, no. 6, 2012., pp. 780-782

      Latrobe City Council. “Green Energy Paper.” November 2014. http://ewp.industry.gov.au/sites/prod.ewp/files/ submissions/Energy%20White%20Paper/EWPGP074-698. pdf

      Millennium Ecosystem Assessment (Program).Ecosystems and Human Well-being: Synthesis, Island Press, Washington, DC, 2005.

      Newell, JP, and JJ Cousins. "The boundaries of urban metabolism: Towards a political-industrial ecology." Progress in Human Geography, vol. 39, no. 6, 2015; 2014;., pp. 702-728

      Parrott, L., Meyer, W.S. “Future landscapes: managing within complexity. Frontiers in Ecology and the Environment.” 2012; 10, pp. 382-389.

      Pincetl, S. "Nature, urban development and sustainability -What new elements are needed for a more comprehensive understanding?" Cities, vol. 29, no. Supplement 2, 2012., pp. S32-S37

      Rapoport, E. “Interdisciplinary Perspectives on Urban Metabolism (Working Paper).”Development Planning Unit, UCL. 2011. Last accessed August 11, 2016: https://www. bartlett.ucl.ac.uk/dpu/urban-metabolism/project-outputs/ UM_Lit_Review_final.pdf

      Sassen, S.The Global City: New York, London, Tokyo. Princeton, N.J: Princeton University Press; 1991.

      Sijmons, D. Urban metabolism: sustainable development Rotterdam 2014. The International Architecture Biennale Rotterdam. [online] Available at: http://iabr.nl/urban_ metabolism_rotterdam.pdf

      Stremke, S., and J. Koh. "Integration of ecological and thermodynamic concepts in the design of sustainable energy landscapes." Landscape Journal: Design, Planning and Management of the Land, vol. 30, no. 2, 2011., pp. 194-213.

      Stremke, Sven, et al. "Integrated Visions (Part II): Envisioning Sustainable Energy Landscapes." European Planning Studies, vol. 20, no. 4, 2012., pp. 609-626.

      Swyngedouw, Erik. "Circulations and metabolisms: (Hybrid) Natures and (Cyborg) cities." Science as Culture, vol. 15, no. 2, 2006., pp. 105-121.

      The Economist. “Australia’s Carbon Footprint.”The Economist. August 11, 2015. Last accessed August 19, 2016: http://www.economist.com/blogs/ graphicdetail/2015/08/daily-chart-down-under-and-dirty

      Tomaney, John, and Margaret Somerville. "Climate Change and Regional Identity in the Latrobe Valley, Victoria." Australian Humanities Review, no. 49, 2010., pp. N_A.

      Voskamp, Ilse; Stremke, S. “The Pulse of the city: exploring urban metabolism in Amsterdam.”TOPOS Year book 2014. Wolff, J. “Where is the Edge of the Bay?” Unpublished paper presented at a symposium by the Cultural Landscape Foundation entitled Bridging the Culture-Nature Divide III: Saving Nature in a Humanized World, January 22-24 2015, San Francisco, CA. Retrieved from https://www. youtube.com/watch?v=QqmqACYgUWc

      Utilizing an Expanded Framework of Urban Metabolism to Envision Future Energy Landscapes

      Text: Kees Lokman
      Translator: LIU Zheng

      Climate change coupled with resource depletion is motivating a transition from fossil fuels to renewable energy. This transition provides the opportunity to create multifunctional energy landscapes by reconfiguring local and regional resource flows and associated waste management systems. To this end, the author introduces the frameworks of urban metabolism and regenerative design to inform the design of energy landscapes based on circular metabolic flows with multiple social-ecological benefits. The article will then discuss a contemporary design project to illustrate that designing future energy landscapes requires shifting between local and regional scales; between providing near and long-term solutions; between manipulating flows and associated physical landscapes, and between addressing social and ecological needs.

      Energy Landscapes, Urban Metabolism, Regenerative Design, Ecosystem Services, Landscape Infrastructure

      TU986

      A

      1673-1530(2016)11-0054-18

      10.14085/j.fjyl.2016.11.0054.18

      2016-08-25

      凱斯·勞科曼是英屬哥倫比亞大學(xué)風(fēng)景園林學(xué)助理教授。他擁有規(guī)劃、城市設(shè)計和風(fēng)景園林等學(xué)位。目前側(cè)重研究景觀、基礎(chǔ)設(shè)施與生態(tài)學(xué)的交叉領(lǐng)域,相關(guān)成果刊登在Journal of Architectural Education、Topos和

      Landscapes|Paysages等。凱斯也是視差景觀事務(wù)所的創(chuàng)始人,該事務(wù)所是一個多學(xué)科協(xié)作的設(shè)計與研究平臺。

      Author:

      Kees Lokman is an Assistant Professor of LandscapeArchitecture at the University of British Columbia. He holds degrees in planning, urban design and landscape architecture. Current research focuses on the intersections of landscape, infrastructure and ecology has beenpublished in the Journal of Architectural Education, Topos and Landscapes|Paysages. Kees is also founder of Parallax Landscape, a collaborative and interdisciplinary design and research platform.

      譯者簡介:

      劉崢/1994年生/女/甘肅人/北京林業(yè)大學(xué)園林學(xué)院風(fēng)景園林學(xué)碩士生/研究方向為風(fēng)景園林規(guī)劃設(shè)計與理論(北京100083)

      Translator:

      LIU Zheng, who was born in 1994, is a Master’s student at the School of Landscape Architecture, Beijing Forestry University (Beijing 100083) .

      修回日期:2016-09-28

      猜你喜歡
      景觀能源資源
      基礎(chǔ)教育資源展示
      景觀別墅
      火山塑造景觀
      一樣的資源,不一樣的收獲
      包羅萬象的室內(nèi)景觀
      第六章意外的收獲
      用完就沒有的能源
      ————不可再生能源
      家教世界(2019年4期)2019-02-26 13:44:20
      資源回收
      資源再生 歡迎訂閱
      資源再生(2017年3期)2017-06-01 12:20:59
      福能源 緩慢直銷路
      长宁县| 宜良县| 沽源县| 凤城市| 新沂市| 大足县| 瓦房店市| 石家庄市| 探索| 金平| 甘谷县| 北安市| 浑源县| 平顶山市| 喀喇沁旗| 石门县| 家居| 房产| 吴川市| 塔城市| 霍城县| 鹤山市| 剑阁县| 屯昌县| 上林县| 顺平县| 泾阳县| 江油市| 武冈市| 瑞安市| 康保县| 定安县| 三都| 山丹县| 时尚| 宜春市| SHOW| 宁德市| 日土县| 五华县| 连平县|