• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      景觀和能源

      2016-04-15 08:42:42作者德克西蒙斯教授翻譯李佳懌
      風(fēng)景園林 2016年11期
      關(guān)鍵詞:鹿特丹能源

      作者:德克·西蒙斯教授翻譯:李佳懌

      校對:吳曉彤

      景觀和能源

      作者:德克·西蒙斯教授翻譯:李佳懌

      校對:吳曉彤

      現(xiàn)在各主要國家都已在2015年巴黎協(xié)定上簽字,致力于大幅度較少CO2排放量的具體行動正在展開。其中最可行的方案是實現(xiàn)從化石燃料向可再生能源和其他產(chǎn)生CO2較少的能源進行轉(zhuǎn)變。從定量的角度來說,除了生產(chǎn)生物能源的可能性外,空間并不是這一能源轉(zhuǎn)變的關(guān)鍵因素。但從定性的角度來說,空間將以“景觀”作為外衣成為這一轉(zhuǎn)變是否能夠成功的關(guān)鍵戰(zhàn)場。一個問題一開始看似是直觀的技術(shù)問題,(也)是一個文化問題,應(yīng)該得到相應(yīng)的解決??臻g規(guī)劃和設(shè)計師可以在這里發(fā)揮重要的作用。本論文基于兩個通過設(shè)計進行研究的近期案例。鹿特丹的例子是與當(dāng)?shù)氐睦嫦嚓P(guān)者一同努力為2014年《景觀與能源》一書的出版完成所啟動的。這個以土地為導(dǎo)向的案例得到了另一個位于北海項目的補充,后者所構(gòu)想的未來能源景觀是《2050:一次能源旅行》這一IABR-2016項目的組成部分。特別是最后一個案例,不僅證明了風(fēng)景園林可以在能源節(jié)省上發(fā)揮作用,也證明了通過設(shè)計進行研究是在政策制定方面的非常強有力的工具途徑。

      能源轉(zhuǎn)變;空間規(guī)劃;風(fēng)景園林師的角色;通過設(shè)計進行研究;歐洲;鹿特丹地區(qū);北海;近海風(fēng)

      1 簡介

      2015年巴黎氣候協(xié)議指出,到2050年大多數(shù)國家都渴望減少80-90%的當(dāng)?shù)谻O2排量。為了達(dá)到這個目標(biāo),我們需要一個完整的能源重組系統(tǒng),成熟的轉(zhuǎn)型將滲透到社會的每個脈絡(luò)。報告中顯示,路標(biāo)、表格和變遷路徑已經(jīng)為我們畫出,但是似乎沒有人提出這樣一些問題:這些新設(shè)施將會占用多少空間?我們的文化景觀是否可以應(yīng)付這些改變?以及在2050年我們的景觀和城市將會變成什么樣子?為滿足人們的好奇心,我開始了一個叫做“千瓦時/平方米”的項目,項目的成果以景觀與能源書籍的形式在2014年出版①。這本書在2015年的《風(fēng)景園林》中再次出現(xiàn)。文章簡練概述了設(shè)計調(diào)查的結(jié)果,全面深入的分析了其中一個案例:鹿特丹地區(qū),中國讀者似乎對它的主要港口非常感興趣。在2016年,這個項目作為未來能源景觀,在另一個北海海景項目中的完善。這篇文章的結(jié)尾段不僅從風(fēng)景園林功能的方面進行總結(jié),也從本調(diào)查設(shè)計對政策制定的重要性方面對這個項目進行了展示。

      2 千瓦時/平方米:一個調(diào)查設(shè)計項目

      當(dāng)我成為荷蘭的風(fēng)景顧問的時候,我開始對能源的轉(zhuǎn)型產(chǎn)生興趣,同時面臨著有關(guān)風(fēng)力渦輪機的熱議。其中的一部分人認(rèn)為這些機器可能會影響視野,其他人認(rèn)為這是應(yīng)對氣候改變首要的引領(lǐng)方式。在向3個部門推薦的過程中②,我很快發(fā)現(xiàn),這其中的阻力不僅僅是因為受到空間條件限制,還受很多層面的限制:威脅到未來將要發(fā)生的“存在的恐懼”③, 因為守舊的表現(xiàn)主義逐漸走向盡頭,以這些新紀(jì)元的符號作為象征④。針對空間或風(fēng)景園林的組成,有許多反對意見逐漸出現(xiàn)。我慢慢意識到,非常明確的技術(shù)問題也同樣是文化問題,需要相應(yīng)地解決。

      我在2010年啟動了這個名為“千瓦時/平方米”的調(diào)查設(shè)計項目,項目嘗試從兩個方面處理能源轉(zhuǎn)型:基礎(chǔ)結(jié)構(gòu)和社會/文化。它的目標(biāo)也是在能源專家與空間專家間建立聯(lián)系,現(xiàn)在這兩者似乎僅限于自己的領(lǐng)域,而且通常是對立的。

      作為演練,對來源于熱能、電能和燃料多種形式的制造進行了足跡分析。這3方面是能源轉(zhuǎn)型的主要部分。在突出空間的表現(xiàn)上,對足夠的熱能、電能和燃料建立了系統(tǒng)的比較,用以支持維靈厄梅爾的一百萬戶家庭日常耗能(2010年荷蘭),就好像這些能源來自圩田⑤(圖1-3) 。

      調(diào)查的第一步是建立能源方案。我們與荷蘭環(huán)境評估機構(gòu)和荷蘭能源中心兩家公司建立了兩個不同方案。這兩種方案展示了到2050年,CO2的排放量將減少80%。第一種方案假設(shè)到2050年能源消耗將增加30%,第二種方案則假設(shè)相比2010年,能源消費將極端緊縮30%。根據(jù)顧問的意見,如果你想要擁有一個舒適的工業(yè)社會環(huán)境,這是涉及你在能源節(jié)約上能走多遠(yuǎn)的假設(shè)。這個緊縮的方案反映了能源存儲的重要作用,是減少CO2排放最劃算的方式。由于生產(chǎn)、交通以及轉(zhuǎn)換都會產(chǎn)生損耗,根據(jù)生產(chǎn),每減少1兆瓦的能量就可節(jié)約3兆瓦的耗能。每一種情景都可以用一種叫做?;鶊D的形式表現(xiàn),直線的厚度表示了流量的大?。▓D4-5) 。

      通過對比2010年與2050年家庭日常的耗能(在上面插圖中表示、荷蘭),我們了解到這個社會面臨的巨大挑戰(zhàn)。通過觀察這些圖表,你也可看出在2050年,核能將失去作用。這就是我們制定此方案的原因之一,因為我們希望我們的設(shè)想效仿德國的“原子-放棄”公式。這個公式中必不可少的是,當(dāng)談?wù)摰侥茉崔D(zhuǎn)型對空間的影響時,我們要分4個規(guī)模層次(有些地方是3個)進行分析和設(shè)計。第一個層次是歐洲范圍內(nèi),我們列出了這塊陸地能源的潛能,以便于了解何種形式的可再生能源收集是最有成效的。

      多樣性和可再生能源供應(yīng)的可能性是充足的。歐洲有多風(fēng)的海岸,陽光充足的區(qū)域,一些大范圍的農(nóng)業(yè)用地,城市化程度很高的區(qū)域——山區(qū)和火山區(qū)。這些景觀地貌為熱能、燃料和電能的產(chǎn)生提供了豐富的機會。歐洲大陸在2050年能源建設(shè)的綜述已經(jīng)出臺(圖6-7)。

      第二,上述方案在國家層面上(荷蘭)創(chuàng)建。第三是區(qū)域級的層面,它們同時出現(xiàn)。我們創(chuàng)造具有區(qū)域特異性的情景并繪制可能的圖示,我們不僅根據(jù)需求來創(chuàng)建潛在的方案,同時也根據(jù)存在的風(fēng)景地貌,之后再進行能源的設(shè)計。我們一步一步對4個荷蘭(-比利時-德國)區(qū)域進行設(shè)計,在2020年、2030年、2040年和2050年,每10年進行一次展示。區(qū)域的設(shè)計由未上市公司和地方當(dāng)局以及利益相關(guān)者合作完成。(我們將會在下一段將會對其中之一的區(qū)域,鹿特丹,進行更深入的說明)。最后,我們將著眼于能源轉(zhuǎn)型層次對每個家庭日常的意義(圖8-9)。

      H+N+S景觀設(shè)計師對這項工作進行指

      導(dǎo),利益相關(guān)者和專家為此提供資料和指導(dǎo),代爾夫特理工大學(xué)和瓦赫寧根大學(xué)工作室進行補充。我在代爾夫特理工大學(xué)的職位使我能引起不同專業(yè)的學(xué)生對這個項目的興趣,這些學(xué)科包括工業(yè)設(shè)計、建筑學(xué)、建筑技術(shù)和風(fēng)景園林。他們都著眼于一些轉(zhuǎn)型期的空間結(jié)果。

      3 鹿特丹市案例

      在鹿特丹,城市、港口、能源都彼此密切關(guān)聯(lián)。鹿特丹的面貌主要受到運輸原油的游輪、煉油廠、大型的油碼頭和大工業(yè)中心控制。近期在馬斯萊克迪建立了適用于煤炭和生物能源的運輸站,更加固了這種現(xiàn)象。鹿特丹可以被形容為荷蘭化石燃料的主要消費者和輸入者。但是它也是一個向內(nèi)陸運輸能源的主要港口。滿足港口在目前情況下對化石巨大的能源需求(圖10)。

      在20世紀(jì)時,鹿特丹港口最開始是一個能源的港口。最初,它與魯爾區(qū)的發(fā)展緊密關(guān)聯(lián),逐漸增加了對鐵礦石和煤炭的需求。但是隨石油的重要性逐漸被發(fā)掘、石油碼頭和歐洲港的建設(shè),能源港口逐漸形成。一旦到達(dá)了海域,在馬斯萊克迪建成了兩個終端,這個港口便允許裝載更多的未加工材料和貨物的更大船只???。

      但我們知道,不僅僅是港口因?qū)δ茉吹目释晃覀兪熘?。鹿特丹本身見證了港口發(fā)展的極大進步,更顯著的是,韋斯特蘭地區(qū)(一個包括最大綜合園藝溫室的地方),也消耗巨大的能源。韋斯特蘭有利的氣候環(huán)境使它變得出色。擁有著這個國家最大的年日照總量和冬季溫和的氣候(因為這個地方處于沿海地區(qū)),在16世紀(jì)這個地區(qū)就成為園藝地區(qū)吸引著人們的興趣,最開始是葡萄種植。由于它坐落在大城市之間并且有通暢的水路連通,韋斯特蘭對園藝生產(chǎn)的需求逐漸增加,誘導(dǎo)了當(dāng)?shù)亟?jīng)濟的發(fā)展。在1880年農(nóng)業(yè)危機之后,溫室培育的引進產(chǎn)生了對熱能的需求。今天的“玻璃之城”(韋斯特蘭作為溫室的連續(xù)綜合體被授予這個稱號)是繁榮而創(chuàng)新的區(qū)域,在這里為加強園藝部門的功能發(fā)展了很多新技術(shù)??臻g的不足是主要的約束。為了保持競爭力,企業(yè)家做了一些實驗,例如空間的多重使用(重疊的溫室)和巧妙的能源消費(能夠產(chǎn)生能源的溫室),但是這些先進的技術(shù)還沒有進入主流。

      多年以來,鹿特丹地區(qū)擴大到了這樣一種程度,即現(xiàn)在蘭斯臺德集合城市的西南地區(qū)是單獨交錯的城市結(jié)構(gòu)。在這里景觀和開放空間都很稀少;只有洛特河周圍的戴爾福蘭德(Midden-Delflandand)防護綠地約束著城市擴張,這些景觀緩沖帶主要包括泥炭放牧地區(qū),也為城市的遠(yuǎn)足旅行者提供游憩功能,滿足吸引商業(yè)的關(guān)鍵條件。但是他們也對水資源管理、農(nóng)業(yè)和生態(tài)有重要作用。由于為乳牛場利益考慮而人工地將水平面控制得很低,泥炭燃燒釋放CO2。這給這個地區(qū)的轉(zhuǎn)型增加了除空間約束外的挑戰(zhàn)。

      4 可再生的挑戰(zhàn)

      鹿特丹地區(qū)作為有限空間的主要消費者,仍將多年依賴化石燃料,并且許多地方確實一直是能源輸入?yún)^(qū)。鹿特丹的第一個目標(biāo)應(yīng)該是徹底地減少能源消費和CO2排放,部分通過回收熱能,也通過捕獲和存儲CO2。就目前來說,化石能源消費必須要盡可能清潔。同時,能源轉(zhuǎn)型也必須開始進行。它將成為可再生能源與現(xiàn)存和新增城市功能巧妙組合的探索,可以加強鹿特丹工業(yè)的形象和競爭力,包括工業(yè)使用燃料從化石燃料到植物原料的逐漸轉(zhuǎn)型,這被稱為“生物基礎(chǔ)的工業(yè)”。在這樣的努力下,鹿特丹可以開拓港口以及韋斯特蘭地區(qū)的巨大范圍,這在歐洲沒誰能與之匹敵。

      5 能源轉(zhuǎn)型的機遇

      5.1 熱能

      鹿特丹地區(qū)的機遇分為兩種。在短期內(nèi),可以從能源消費和CO2的減少上獲得利益。從長期來看,可再生能源的生產(chǎn)還有充足余地,盡管空間短缺也許會帶來其他情況。

      回收余熱(在高溫下)將帶來很大效益,首先這些效益來自化學(xué)和石油化工工業(yè)和港口的發(fā)電站。這些被加熱的水直接排放到港口中,它們可以滿足地區(qū)在低溫情況下的需求,例如園藝部門和城市。這會逐漸導(dǎo)致一些燃燒氣體的聯(lián)合循環(huán)燃?xì)廨啓C發(fā)電廠和熱電聯(lián)合設(shè)施被淘汰。這個串聯(lián)的原理已經(jīng)在城市范圍得到提議(2009年“鹿特丹能源辦法和計劃”⑥),但是如果在地區(qū)范圍內(nèi)應(yīng)用會帶來更久遠(yuǎn)的收益。這需要大范圍熱網(wǎng)建設(shè)以使熱網(wǎng)的供應(yīng)滿足需求。隨著從鹿特丹區(qū)到城市的熱力管道的建成,管道連接到現(xiàn)存的市政熱力管網(wǎng)中,大型“管道運行”已邁出第一步。這個地區(qū)也為地?zé)崮芴峁┖芎玫臋C會,所以對熱網(wǎng)的投資確實是一項可持續(xù)的投資。如果高溫下的能源供給長期衰落(比如作為向生物基礎(chǔ)工業(yè)轉(zhuǎn)化的結(jié)果),這個網(wǎng)絡(luò)可以一部分以地?zé)崮転樵稀1M管規(guī)模很小,一部分地?zé)崮芤呀?jīng)在韋斯特蘭和一些城市得到使用(圖11)。

      5.2 燃料

      燃料是能源轉(zhuǎn)型的第二個主要特點。燃料代表動能、運動、運輸:總之,它代表了所有形式的運動,大到游輪,小到滑板車。在鹿特丹,“燃料”在能源轉(zhuǎn)型機遇方面有雙重意義,就像所有港口城市中呈現(xiàn)的那樣,在這些港口城市中大型運輸工具(卡車、船舶)都通過人口稠密地區(qū)擠進內(nèi)陸城市。內(nèi)燃機燃燒排放的氣溶膠和細(xì)粉塵影響了公共健康。所以,對可持續(xù)的交通解決措施的需求(甚至要求)是巨大的,這會讓鹿特丹成為使用新交通類型的試驗地區(qū)。在港口有政策支持使用以液化天然氣為燃料的船舶,有大量公眾支持電動汽車的基礎(chǔ)設(shè)施建設(shè),甚至還開展了針對部分港口主要交通軸電氣化問題的研究。

      在鹿特丹“燃料”討論的第二個方面是港口是歐洲化石燃料發(fā)電所之一。在目前情況下,石化工業(yè)、發(fā)電站、大量的煤油貯存、經(jīng)由船只的吞吐量現(xiàn)在還不能給人們提供一個可持續(xù)的、清潔的印象,但是尤其港口本身有巨大的轉(zhuǎn)型潛力。通過回收熱能、CO2和剩余的廢物流獲得利益非常有前途。為了達(dá)到這個目標(biāo),需要建立廣大的地下能源網(wǎng)。我們對于鹿特丹的設(shè)想揭示了從石油化工到生物化學(xué)工業(yè)的逐次躍遷(圖12)。

      5.3 電能

      人口密集的大城市中復(fù)合的屋頂表面、忙碌的港口和園藝地區(qū)(全部覆蓋草坪的區(qū)域)都為產(chǎn)生大量可持續(xù)能源提供了可能性。城市中建筑物的屋頂和港口通常是裸露的且沒有得到利用。向“提高的景觀”轉(zhuǎn)型可以為城市開辟新局面。

      在韋斯特蘭地區(qū),這種空間的多重運用可能不合適。在這個區(qū)域,對“產(chǎn)生能源的溫室”的實驗和研究為大量園藝地區(qū)描繪了引人注目的前景。研究基于這個原則:只有一部分陽光可以到達(dá)溫室的屋頂并益于培育農(nóng)作物。隨著新技術(shù)的發(fā)展,沒有被利用的太陽能可以被捕獲并轉(zhuǎn)化為電能和熱能,這兩者都可以被溫室利用。用風(fēng)力渦輪機組產(chǎn)生的電能僅限于港口地區(qū)和靠近岸邊的地區(qū)使用(圖13)。

      5.4 通信學(xué)會理事會

      既然這個區(qū)域在未來很長時間內(nèi)仍然需要化石能源,專注于回收和儲存CO2非常重要。這可以通過捕捉在發(fā)電站和工業(yè)過程中的產(chǎn)生的CO2來實現(xiàn)。CO2可以用于溫室園藝部門,并在儲存在北海的空燃?xì)夂陀吞镏小?/p>

      至少就來源而言,在這個風(fēng)能充足的地區(qū)有大量可持續(xù)發(fā)電的機會,還有相對充足的日照,但是如果存在一個空間至關(guān)重要的地區(qū),那么就是這里 (圖14)。

      6 一步一個腳印

      空間能源的概念闡明了鹿特丹地區(qū)未來廣闊的發(fā)展前景。對于每個空間實體,它們開拓了最合理的能源結(jié)構(gòu)和空間上的實現(xiàn)方法。改變需要一步一步地去達(dá)成,但是在鹿特丹用的時間可能會比其他地區(qū)的更長。接下來的幾個段落討論了這個轉(zhuǎn)變即將發(fā)生的方式,以及在實現(xiàn)它的過程中的每個時期需要的激勵措施。

      6.1 2020:基礎(chǔ)

      回收熱能和CO2的第一步已經(jīng)開始。鹿特丹市和鹿特丹港都參與了一系列雄心勃勃的計劃。他們起草了方案,意圖實現(xiàn)CO2排放的銳減(例如鹿特丹氣候行動計劃、荷蘭南部的供暖綠色交易)。這個地區(qū)的地?zé)崮軡摿σ舱诒话l(fā)掘,熱能也在小范圍內(nèi)得到采用,特別在是溫室園藝地區(qū)。

      在可持續(xù)的風(fēng)能利用方面已經(jīng)做了很多工作。港口地區(qū)風(fēng)能自愿協(xié)議設(shè)立了截至2020年實現(xiàn)增長3億瓦特安裝容量的目標(biāo)。涉及到重型交通的港口主要集中于減少CO2排放量,鼓勵船只將天然氣作為燃料。另外,多模式交通樞紐的數(shù)量正在增加,讓這個地區(qū)實現(xiàn)更有效率和更清潔的貨物運輸成為可能。在小范圍上,化石燃料工業(yè)產(chǎn)生的二氧化碳用泵輸送到韋斯特蘭,在那里CO2能促進溫室植物的生長。現(xiàn)在正進行CO2管網(wǎng)第一階段的鋪設(shè)。

      在這個階段,需要研究其他可持續(xù)能源形式的實現(xiàn)方法。尤其重要的是研究可持續(xù)能源形式和城市功能以及經(jīng)濟重要部門之間的可能組合,例如能生產(chǎn)能源的溫室的應(yīng)用。

      6.2 2030:潮流的轉(zhuǎn)變

      回收利用熱能已經(jīng)被提上日程,但是“熱污染法”(可能以余熱排放禁令的形式,比如哥本哈根可能在2020出臺的那個禁令)將強力推動熱網(wǎng)的建設(shè),由化石燃料產(chǎn)業(yè)共同融資。在這10年的末期,大多數(shù)的余熱將被回收利用。然而之前的10年將見證大多數(shù)小型熱網(wǎng)和小范圍方案(例如私有的地?zé)崮茉O(shè)施)的實現(xiàn),這個階段將見證港口、韋斯特蘭和城市之間聯(lián)系的建立,也包括大型網(wǎng)絡(luò)的創(chuàng)造。但是能源供應(yīng)和需求的轉(zhuǎn)換仍然存在?;瘜W(xué)和石油化工工業(yè)向生物基礎(chǔ)工業(yè)的轉(zhuǎn)化意味著能源將以更低的溫度提供熱量。同時,節(jié)能房屋將減少城市家庭的能源消耗。由于更多的溫室可以在熱量上自給自足,韋斯特蘭也將見證熱能需求的銳減。清潔的地?zé)崮芎蜔崮艿拇鎯υO(shè)備也許會連通到網(wǎng)絡(luò),讓網(wǎng)絡(luò)更強健。CO2網(wǎng)絡(luò)將進行擴展,因為將會有CO2被儲存在北海的廢棄天然氣田和油田中,魯爾區(qū)和安特衛(wèi)普將由此產(chǎn)生聯(lián)系。在這個10年中,回收利用30%的能源的目標(biāo)將被超越,并且建立基礎(chǔ)設(shè)施來解決太陽能風(fēng)能等再生能源間歇性的問題至關(guān)重要。家庭收集的太陽能被存儲在新一代的鋰離子電池中,甚至存儲在電動車中。智能電力網(wǎng)格的引入為此創(chuàng)造了條件。其他多余的電能會被運輸?shù)脚餐谀抢?,抽水蓄能設(shè)施可以使能源儲存變?yōu)榭赡埽词勾嬖诰薮蟮膫鬏敽娃D(zhuǎn)換損耗)。

      6.3 2040:后續(xù)通過

      一些很大范圍的可再生能源項目的數(shù)量將會隨著2030 CO2增值稅的引進而加速發(fā)展。卡車運輸?shù)碾姎饣贏15公路上變的可行。與船舶的液化天然氣和氫能用量相結(jié)合,這會很大程度地提升鹿特丹地區(qū)的空氣質(zhì)量,特別是在氣溶膠的含量方面。到現(xiàn)在,對太陽能的利用成為大范圍的、集合的形式。在韋斯特蘭地區(qū),溫室園藝部門通過完善中性能源溫室的方式來確保他們持續(xù)的競爭力,能源生產(chǎn)溫室的前景是非??捎^的。在港口地區(qū),現(xiàn)存的風(fēng)力渦輪機將逐漸被新型有效的種類取代,使地面風(fēng)能的生產(chǎn)能力達(dá)到最大。到目前為止間歇問題已在區(qū)域尺度得到解決,通過創(chuàng)造一個靠近海岸的、在北海的抽水蓄能水電廠提供電力緩沖的人工蓄水池。當(dāng)生產(chǎn)能力過剩時,由風(fēng)力渦輪機產(chǎn)生的電能可用于蓄水池向海洋排水。對電能的需求增加時,海水就會被再次引入蓄水池,用位于堤壩之間的水力發(fā)電車間發(fā)電。

      大型但通常分離的熱網(wǎng)在這個階段會彼此相聯(lián)系,形成單獨的大型網(wǎng)絡(luò),產(chǎn)生一個“智能的網(wǎng)格”。地?zé)崮苜Y源將取代剩余熱量(它將逐漸被淘汰)。

      6.4 2050:工業(yè)回收

      整個鹿特丹的能源轉(zhuǎn)型是無法在2050年之前完成的,但是可再生能源肯定會取代化石燃料。雖然如此,在鹿特丹地區(qū)仍然會存在對能源網(wǎng)絡(luò)的需求,這將保留對大量生物量特別的依賴。在2040年和2050年之間,鹿特丹將會成為氫能生產(chǎn)的中心。氫能將與液化天然氣競爭,并將發(fā)展成為交通燃料可選方案中的一個,不僅僅為汽車也為卡車、貨車、甚至輪船等提供燃料。這個電產(chǎn)氣工業(yè)將由北海的海上風(fēng)電項目提供燃料,采取間歇性的措施使其在工業(yè)規(guī)模上達(dá)到新水平(圖15)。

      7 北海項目案例

      在2016年國際建筑雙年展委員會中,馬丁·哈杰爾(Maarten Hajer)作為負(fù)責(zé)人,我們實施了一個關(guān)于如何讓北海發(fā)展成為歐洲能源政策發(fā)電站的項目:“2050年活力史詩”⑦。我們記敘了數(shù)千臺風(fēng)力渦輪機如何構(gòu)成能源景觀并且能夠適合于世界上最集中利用的過沿海水域。它直接分割了漁場和航線,包括指定的自然保護區(qū)和軍事區(qū),規(guī)??杀燃缒μ齑髲B的石油鉆井平臺和數(shù)不勝數(shù)的油氣管道。由投射在巨大高科技底板上(5.5x8m)的12分鐘動畫展示的敘述向展覽會解釋了這些是如何做到的。

      7.1 方案

      與“景觀和能源”研究很相似,這個敘述將方案作為主干⑧。同時,北海地區(qū)國家(英國、挪威、丹麥、德國、比利時和荷蘭)每年大約消費5 500太瓦時能源。讓我們一點一點地解決這個巨大挑戰(zhàn):

      16-17 兩張來自2050年活力史詩的劇照(H+N+S景觀設(shè)計師、埃科(Ecofys)、湯斯敦(Tungsten)2016鹿特丹國際建筑雙年展)。一個10分鐘的動畫展示了風(fēng)力渦輪機在大范圍收集北海地區(qū)風(fēng)能的逐漸發(fā)展過程。

      左側(cè): 2015:展示了石油和天然氣基礎(chǔ)設(shè)施,第一個風(fēng)電場,以及海岸上收集CO2的廢棄的天然氣和油田(在放大鏡中)。

      右側(cè): 2049:展示了風(fēng)電場的分布。綠色陰影標(biāo)示這些地區(qū)將被列入漁業(yè)保護區(qū)。緩解捕魚行動密集的北海海洋生態(tài)系統(tǒng)的壓力。在放大鏡中,風(fēng)電場在雷達(dá)探測到有鳥類遷徙時會臨時關(guān)閉。

      Two stills from ‘2050: An Energetic Odyssey’ (H+N+S Landscape architects, Ecofys, Tungsten for IABR—2016). A ten-minute animation showing the gradual occupation of wind turbine parks to harvest the wind energy of the North Sea on a massive scale.

      Left: 2015: showing the oil and gas infrastructure, the first wind farms, and (in the magnifying glass) the empty gas and oilfields where CO2from on-shore industries will be injected.

      Right: 2049: showing the distribution of the wind farms. The green shade indicates that these areas will add fishery lee zones. A relieve for the marine ecosystem of the North Sea that is very intensively being trawled. In the magnifying glass: wind farm shutting down temporarily when the bird radar detects a flock of migratory birds approaching.

      當(dāng)前,北海國家每年的能源消耗中有8-9%(或約500太瓦時)來自可再生能源。

      首先,節(jié)能在歐洲的議程上需要得到重視,這就是為什么我們把目標(biāo)定得盡可能地高,并說明達(dá)到相對于2015年的30%的減排量是可行的:節(jié)約了不少于1 500太瓦時。

      在范圍的另一端,我們要重視那些在2050年之前仍然沒有尋找到可代替化石燃料能源的多種部門,例如采礦業(yè)、重型運輸機生產(chǎn)和鋼鐵生產(chǎn)等。我們估算約900太瓦時能夠滿足北海地區(qū)每年的需求。

      考慮到正確的目標(biāo),我們的研究表明每年通過離岸風(fēng)生產(chǎn)1 200太瓦時的電能是可行的。這將提供滿足北海國家90%的總電力需求,和大約1/3的總能源需求。通過地區(qū)合作,北海將成為歐洲在能源轉(zhuǎn)型項目上最大的資產(chǎn)。

      要注意的是,即使北海項目的規(guī)模是巨大的,但它仍然為地面基礎(chǔ)能源項目留下了一個令人印象深刻的任務(wù)。盡管考慮到高人口密度、程序上的障礙和NIMBY(對本地發(fā)展持反對態(tài)度的)型挫折,余下的1 400太瓦時的可再生能源項目仍然可以完成,通過這6個國家之間大型和小型的、集中和分散的舉措的拼接。這將由有潛力生產(chǎn)其余的可再生能源的項目組成,這些能源有太陽產(chǎn)生的熱量和燃料、水能、風(fēng)能、地?zé)崮?、生物能和潮汐能?/p>

      這些數(shù)字都是抽象的,直到我們意識到這意味著在2050年我們將需要建造25 000臺風(fēng)力渦輪機,他們的平均容量為10萬瓦特,加在一起他們將會形成一個能夠覆蓋約5 700km2面積的網(wǎng)絡(luò)。

      這意味著每個星期要安裝15臺風(fēng)力渦輪機。很顯然我們需要從不同的范圍開始思考。這是非常艱巨的任務(wù),要求在計劃、資金、設(shè)計和實施方面達(dá)到極限。在就業(yè)上的積極影響是非常重要的。從供應(yīng)鏈的所有層次和階段上,將會為所有技術(shù)層次的工人提供工作:經(jīng)濟的藍(lán)色增長⑨(圖16-17)。

      7.2 創(chuàng)新和增長的腳步

      歸因于這個歐洲的大型項目的范圍和時間節(jié)點,它將是是孵育創(chuàng)新的平臺:新材料的開發(fā),越來越大的風(fēng)力渦輪機,海上渦輪機的促進維護技術(shù),為了利用北海深層的漂浮風(fēng)力渦輪機。任務(wù)本身會激發(fā)創(chuàng)新。比我們想象的更快的是,為了收集風(fēng)能,新的技術(shù)將會出現(xiàn),不僅僅在深水中收集,也可以用大型風(fēng)箏在更高的大氣層收集。這些創(chuàng)新和規(guī)模經(jīng)濟會減少風(fēng)能的平均成本。這個驟然下跌的價格將會成為兩種觀察之間的臨界點,其一是事情所用的時間的將比你想象的更長,其二是他們的發(fā)生將比你預(yù)期的更快。

      在能源匱乏的時期,將需要其他要素和獨創(chuàng)技術(shù)儲存剩余能源。當(dāng)前,對于間歇性問題來說向氫能的轉(zhuǎn)型是很有希望的。作為燃料,氫能也為柴油機提供了燃料選擇。

      7.3 風(fēng)景和海洋生態(tài)

      運行好的規(guī)劃和設(shè)計可以確保北海海洋生態(tài)最優(yōu)。大約25 000座高塔和水下石結(jié)構(gòu)增加了好客的人工魚塘,所有種類的水下動植物都能附著于其上。使用最先進的打樁技術(shù)或以重力為基礎(chǔ)的解決方案可以極大地緩和建造過程中產(chǎn)生的消極影響,確保海洋哺乳動物遷徙不受影響。

      結(jié)合自由漁業(yè)區(qū)和海陽保護區(qū)的風(fēng)電場的建設(shè)形成了一個有前途的協(xié)同作用。

      最后一點是,空間規(guī)劃在選擇風(fēng)農(nóng)場的位置時應(yīng)該考慮鳥類的遷徙路線。鳥類用以定位的離海岸最近的空間,應(yīng)該盡可能不做干預(yù)。另外,如果雷達(dá)檢測到有一大群遷徙鳥類即將到來,發(fā)電廠可以臨時停止運轉(zhuǎn)。

      這個細(xì)致規(guī)劃的積極影響是海岸風(fēng)景不會受到影響。地球的曲率降低了晴朗天氣下的能見度,渦輪葉片放置在12英里(約19.31km)之外的地方,看起來就好像地平線上的白色渾濁物。

      7.4 條件

      實現(xiàn)這些想法的唯一途徑就是引導(dǎo)一股以現(xiàn)實定價為形式的強勁順風(fēng),或者增收CO2稅,這將給市場提供一個無形的綠色之手。一個有活力的社會在與能源轉(zhuǎn)型的斗爭中需要一個由堅定的政治路線引導(dǎo)的企業(yè)型國家作為后盾⑩。

      7.5 研究型設(shè)計的力量

      本文以陳述風(fēng)景園林設(shè)計師在能源轉(zhuǎn)型中可以擔(dān)當(dāng)起建設(shè)性角色作為開始。我們主要的任務(wù)是(再)設(shè)計“接收的景觀”這一新的基礎(chǔ)設(shè)施,在21世紀(jì)建設(shè)有意義的能源風(fēng)景。但是我想以一個我們能做的特別貢獻作為結(jié)束,以及對研究式設(shè)計的地位和力量展開一些評論。

      《風(fēng)景園林與能源》這本書和《2050年活力史詩》裝置都是研究式設(shè)計軌跡下的產(chǎn)品。我們不僅可以作為插畫家的角色美其名曰展示“未來將會是什么樣”,研究式設(shè)計也可以開啟政策制定者與利益相關(guān)人之間的對話,并向他們說明“他們可以期望什么”(11)。通過這種設(shè)計方式,我們能夠打破我們一直與之斗爭的想象力危機。我們一直很清楚排放CO2的風(fēng)險,但是我們卻好像被車頭燈嚇壞的兔子一樣目瞪口呆。僅有風(fēng)險無法使我們投入行動。我們需要重新制定計劃。我們需要將風(fēng)險框架轉(zhuǎn)變?yōu)闄C遇框架。為了這個目標(biāo),我們需要可以給我們遠(yuǎn)景和希望的新的“設(shè)想”,一個未來可以運作的景象,這正是研究式設(shè)計需要提供的。

      這本書在空間和能源貯藏方面提供專業(yè)知識,這兩個方面需要一起合作才能讓轉(zhuǎn)型發(fā)揮作用。正如阿爾伯特·愛因斯坦提出的著名的能量守恒定律E=mc2,能量和質(zhì)量是相互關(guān)聯(lián)的。能源和空間也能尋找到互相之間的關(guān)系。在人類歷史的長河中,能源和空間之間存在顯著地關(guān)聯(lián)。風(fēng)景園林設(shè)計與能源賦予空間一個在能源事務(wù)中的角色,賦予能源一個在空間事務(wù)中的角色。

      2050年活力史詩將對話進一步推進。在文化領(lǐng)域,裝置的交互式生產(chǎn)將重要角色關(guān)聯(lián)起來。它是設(shè)計師與科學(xué)家密切協(xié)作的結(jié)果,還是專家輸入下團隊擴展的雪球效應(yīng),這些專家來自建筑、近海學(xué)家、政府部門、能源公司、傳輸系統(tǒng)運營商、港口當(dāng)局與環(huán)境非政府組織。利益相關(guān)者用最初的版本進行審議。環(huán)境非政府組織組織了一個關(guān)于北海海洋生態(tài)的會議,用動畫作為背景幕來討論這種操作經(jīng)營的優(yōu)勢和劣勢,以及他們確認(rèn)的生態(tài)發(fā)展可能。展示的早期概念引起了反響,消息到處傳播,最后我們在荷蘭作為歐盟輪值主席國期間受到邀請去為歐洲28個國家的能源部進行這個巨大的水平投射展示。在2016年6月6日,英國、愛爾蘭、挪威、瑞典、法國、丹麥、德國、比利時、荷蘭簽署了同意協(xié)議,促進合作,將北海建設(shè)為能源中心。當(dāng)然,這個協(xié)議不是設(shè)計驅(qū)動的。但是根據(jù)部長的新聞稿,向同行展示動畫和敘事在這個進程中扮演了謙虛但重要的角色。

      研究式設(shè)計能扮演重要角色(圖18-19)!

      1 Introduction

      For most countries, the Paris Climate agreement of 2015 implies that by 2050, we will have to reduce the CO2eq by 80-90%. That is very ambitious. To attain that goal, a complete reset of our energy system is needed, a full-blown transition that will be felt down to the very veins of our society. In reports, roadmaps, and Excel sheets, the transition paths are mapped out for us, but no one seems to have asked the questions of how much space all these new infrastructures would need. Or, the question of whether our cultural landscapes can cope with these changes, and ultimately what our landscapes and cities will look like in 2050. To gratify this curiosity I started a project called kWh/m2 that ultimately resulted in the 2014 book publication of 'Landscape and Energy'①. The book was reviewed in ‘Landscape Architecture, # 2015. This article concisely describes the results of this research-by-design project and goes in depth on one of the cases: the Rotterdam region and its major harbour seemed interesting for the Chinese reader. In 2016 this project was complemented by a project on the seascape of the North Sea as a future energy landscape. The presentation of the last project serves as the closing paragraph of the article allowing not only the conclusion that landscape architecture can play a role but also that research-by-design is a strong instrument to help policy making

      2 kWh/m2: a research-by-design project

      My interest in the energy transition started when I was the State Advisor on Landscape for the Netherlands, and was confronted with theheated debates on wind turbines that for some were supposedly a form of horizon pollution, and for others were the first and long-overdue steps in the battle against climate change. In the process of making recommendations for the three ministries involved,②I soon found out that the resistance was not only spatial, but had many layers, from hindrance to real 'existential fear’of what will happen now that the age of fossil expressionism③was gradually coming to an end, symbolized by these tokens of the new era④. Many of the objections were projected on space, or formulated in landscape terms, but went deeper. It dawned on me that what at fi rst seemed a rather straightforward technical problem is (also) a cultural problem, and should be dealt with accordingly.

      The research-by-design project kWh/m2that I started in 2010 tried to address both angles of the energy transition: the infrastructural and the societal/cultural. It also aims to construct a link between the worlds of the energy expert and the spatial expert, both of whom seem to be stuck in their own silos, and often stand back-to-back.

      As an exercise, a footprint analysis was made of all the modalities of producing heat, electricity, and fuels. These three aspects are the main players in the energy transition. A systematic comparison was constructed by projecting the spatial expression of the production of enough heat, electricity, and fuels to supply 1 million (Dutch, in 2010) households onto the ‘Wieringermeer’ (our fi rst Zuiderzee polder), as if this energy had been produced in the polder.⑤(Figures 1, 2 and 3)

      The first step in the research was the construction of energy scenarios. We produced two different scenarios in corporation with the Dutch Environmental Assessment Agency (PBL) and the energy think-tank ECN (Energy Centre of the Netherlands). Both scenarios show an 80% reduction of CO2by 2050. The first scenario assumed that energy consumption will rise by 30% by 2050, and the second assumed an extreme austerity of 30% savings compared to 2010; according to both advisors, that is about as far as you can go in terms of energy savings if you still want to have a comfortable industrial society. The austerity scenario reflects the important role that conservation has to play, being by far the most cost-effective way of reducing CO2emissions. Because of production losses, transportation losses, and conversion losses, every reduction of one MW saves a stunning 3 MW in terms of production. Both scenarios are represented in so-called Sankey diagrams where the thickness of the lines indicates the size of the fl ow. (Figures 4 and 5)

      By comparing the 2050 energy household of 2010 (in this illustration, in the Netherlands) with that of 2050, one gets the idea of the enormous challenge that our societies face. By looking at these diagrams, you will also see that there is no role for nuclear energy in 2050. That is one of the reasons that we had these scenarios custom made, because we wanted our assumptions to follow Germany in their ‘Atom-Ausstieg’. Essential to our approach is that we analysed and designed on four different levels of scale [elsewhere you say 3 levels] when discussing the spatial impact of the energy transition. The fi rst is on the European scale. We mapped out the energy potentials of our continent to know where which form of renewable energy harvesting is the most promising.

      The possibilities for a varied and completely renewable energy supply are plentiful. Europe has windy coasts, sunny regions, several large-scale agricultural areas, highly urbanized metropolitan zones, mountain ranges, and volcanic areas. These landscapes offer bountiful opportunities for generating heat, fuel, and electricity. An overview of the European energy infrastructure in 2050 is presented. (Figures 6 and 7)

      Second, on the national level (of the Netherlands), we produced the scenarios mentioned above. And third, on the regional level, it all comes together. We made region-specific scenarios and created potential mapping, and then confronted these not only with the demand, but also with the existing landscape, and then made energy designs. We made a step-by-step design for four Dutch (-Belgian-German) regions, where progress is shown for every decade: 2020, 2030, 2040, and 2050. The regional designs were produced in close corporation with the local authorities and stakeholders. (We will go into more depth for one of those regions, Rotterdam, in the next paragraph). Finally, we looked at the implications of the energy transition on the level of the individual household. (Figures 8 and 9)

      The work was lead by H+N+S Landscape architects, informed by many stakeholders and specialists, and complemented by master studios at TUDelft and Wageningen University. My position at TUDelft helped me to interest design students in different disciplines: industrial design, architecture, building technology, and landscape architecture. They all looked at elements of the spatial consequences of the transition.

      3 The Rotterdam case

      In Rotterdam, the city, the port, and energy are all inextricably linked. Rotterdam's appearance is largely dominated by super-tankers carrying crude oil, ref i neries, large oil terminals, and petrochemical industrial complexes. The power stations recently built on the Maasvlakte, favourably situated for coal and biomass deliveries, have reinforced this image. Rotterdam could be described as the major consumer and importer of fossil fuels in the Netherlands. But it is also a major transit harbour for fuel to the hinterland. The port’s huge energy needs are largely met, as things stand, by fossil fuels.(Figure 10)

      It was in the 20th century that Rotterdam’s harbour fi rst started to present itself as an energy port. Initially, this was linked to the rise of the Ruhr Region and the growing demand for iron ore and coal. But it was with the discovery of the importance of petroleum and the construction of the petroleum docks and the Europort that the energy port really took shape. Once it reached the sea, and the two Maasvlakte terminals were built, the harbour was equipped to allow even larger ships with even more raw materials and cargo to dock there.

      But it is not only the port that is known for its thirst for energy. The City of Rotterdam itself, which witnessed astronomical growth with the rise of the port, and more notably still the Westland region (which contains the largest greenhouse horticulture complex in the Netherlands), also consume vast quantities of energy. The Westland’s favourable climate conditions have made it great. With the greatest annual amount of sunshine in the country and relatively mild winter temperatures (because of its coastal location), the region was already attracting interest as a horticultural area in the 16th century, initially for grape-growing. Since it was located between growing cities and was well connected to them by waterways, the demand for the Westland's horticultural produce gradually increased, inducing economies of scale. The introduction of greenhouse cultivation, after the agricultural crisis of 1880, generated increased demand for energy in the form of heat. Today, the 'City of Glass', as the continuous complex of greenhouses has been dubbed, is a prosperous and innovative region, in which many new techniques are developed to enhance the functionality of the horticulture sector. Lack of space is the primary constraint here. To remain competitive, entrepreneurs experiment with ideas such as multiple uses of space (stacked greenhouses) and smart energy consumption (energy-producing greenhouses), but such advanced technologies have not yet permeated the mainstream..

      Over the years, the Rotterdam region has expanded to such an extent that the southwest area of the Randstad conurbation is now a single interlaced urban fabric. It is a region in which landscape and open spaces are scarce; only Midden-Delfland and the area around the Rotte River lie like green buffers amid the urban sprawl. These landscape buffer zones consist mainly of peat-grazing areas, which have a recreational function for day-trippers from the city, fulf i lling a key condition for attracting businesses. But they are also signif i cant in terms of water management, agriculture, and ecology. Since the water levels are kept artificially low in the peat-grazing areas for the benef i t of dairy farms, peat is burned, releasing CO2. This, in addition to the spatial constraints, adds to the challenges of the transition for this region.

      4 The Renewable Challenge

      The Rotterdam region, as a major consumer with very limited space, will for many years continue to be dependent on fossil energy sources, and may indeed always be an energyimporting region. Rotterdam's fi rst goal should be to drastically reduce its energy consumption and CO2emissions, partly by recycling heat, and also by the capturing and storage of CO2. In the short term, fossil energy consumption must be made as clean as possible. At the same time, the energy transition must be initiated. This will become a quest for smart combinations of renewable energy production with existing and new urban functions that can reinforce the image and competitiveness of Rotterdam’s industries, including a gradual shift in industrial uses from fossil fuel to vegetable raw materials ? ‘bio-based industry’. In this endeavour, Rotterdam can exploit the enormous scale of the port and the Westland region, which are without equal in Europe.

      5 Opportunities for Energy Transition

      5.1 Heat

      The opportunities for the Rotterdam region come in two categories. In the short term, much can be gained from reductions in energy consumption and CO2emissions. In the longer term, there is ample scope for the generation of renewable energy, although the shortage of space might suggest otherwise.

      Great benefits can be reaped from the recycling of residual heat (at high temperatures),which is primarily produced by the chemical and petrochemical industry and the power stations in the harbour. This heated water, which is currently discharged directly into the harbour basins, could be used to meet the regional demand for heat at lower temperatures, for instance for the horticulture sector and the city. This could gradually render some of the gas-fired CCGT power plants and CHP installations obsolete. This cascading principle has already been proposed on a municipal scale (in 'Rotterdam Energy Approach and Planning', REAP 2009⑥), but could also provide far greater gains if applied on a regional scale. This calls for the construction of a largescale heat network, making it possible to link the heat supply to the demand for it. The first steps in this gigantic ‘plumbing operation’ have already been taken, with the construction of heat pipelines from the Botlek area to the city, linking up to the existing municipal heat network. Since this region also provides good opportunities for geothermal energy, investing in a heat network is by def i nition a sustainable investment. If the supply of heat at high temperatures declines in the longer term (for instance as a result of a shift to bio-based industry), the network can be partly fuelled by geothermal sources. A number of geothermal sources are already in use both in the Westland area and in the cities, albeit on a small scale(Figure 11 ).

      5.2 Fuel

      Fuel is the second main character in the energy transition. Fuel stands for kinetic energy, for movement, for transport: in short, it stands for all forms of mobility, from super-tankers to scooters. In Rotterdam, ‘fuel’ has a double meaning in terms of opportunities for the energy transition, as it does in all harbour cities where massive transport (trucks, barges) are squeezed to the hinterland through a densely populated area. The aerosols and fi ne dust that are emitted by all these combustion engines measurably inf l uencing public health. So the need, and indeed the call, for sustainable transport solutions is great, and this will turn Rotterdam into a pilot area for new kinds of transport. There is a policy in the harbour that favours LNG-fuelled barges, there is a great deal of public support for infrastructure for electrical vehicles, and studies are even being done on partially electrifying the harbour’s main transport axis for trucks.

      The second angle that the ‘fuel’ discussion takes in Rotterdam is that the harbour is one of the fossil powerhouses of Europe. As things stand, the petrochemical industry, power stations, extensive oil and coal storage, and throughput via shipping do not yet present a sustainable, clean image, but the port itself, in particular, has enormous potential for transformation. Gains that can be made from the recycling of heat, CO2, and residual waste fl ows are especially promising; to achieve them, extensive underground energy networks need to be built. Our scenario for Rotterdam shows the gradual transition from the petro-chemical to the biochemical industry(Figure 12 ).

      5.3 Electricity

      The combined roof surface of the large, densely-populated city, the busy port, and the horticultural area (which is entirely covered with glass) all provide possibilities for the generation of unprecedented quantities of sustainable energy. The roofs of the buildings in the city and port are generally bare and unused. The transformation into an 'elevated landscape' could add a new dimension to the city.

      In the Westland area, multiple uses of space of this kind would be inappropriate. In this area experiments and studies involving ‘energyproducing greenhouses’ represent an attractive prospect for the vast horticultural area. The studies are based on the principle that only part of the sunlight that reaches the glass roofs of the greenhouses is useful for cultivating crops. With new techniques, the unused solar energy can be captured and converted into electricity and heat, both of which are needed in the greenhouse. The efforts in terms of electricity production by wind parks are restricted to the harbour area and nearshore locations(Figure 13).

      5.4 CCS

      Since fossil energy sources will continue to be needed in this region for a long time to come, it will be important to focus on the recycling and storage of CO2. This can be achieved by capturing CO2in power stations and in industrial processes. The CO2can be used in the greenhouse horticulture sector, and stored in empty gas and oil fi elds in the North Sea.

      There are ample opportunities for the sustainable generation of electricity in this windrich region, with a relatively large number of hours of sunshine, at least as far as sources are concerned. But if there is one region in which space is on a critical path, it is here (Figure 14).

      6 One Step at a Time

      The spatial energy concepts illustrate highlypromising future scenarios for the Rotterdam region. For each spatial entity, they exploit the most logical energy mix and the way in which this can be achieved in spatial terms. The changes will need to be made one step at a time, however, and may perhaps take longer in Rotterdam than in other regions. The following paragraphs discuss the way in which this transition will take place, and the incentives we think are needed to achieve it, for each phase of the process.

      6.1 2020: Foundations

      The fi rst steps towards the recycling of heat and CO2have already been taken. Both the City of Rotterdam and the Port of Rotterdam are already taking part in a number of ambitious initiatives. They have drafted plans intended to achieve sharp reductions in CO2emissions (for example REAP, Rotterdam Climate Initiative, Green Deal on Heating in South Holland). The region's potential for geothermal energy is also being explored, and heat sources are being tapped on a small scale, especially in the glasshouse horticulture areas.

      Much is already being done to generate sustainable wind energy. The Voluntary Agreement on Wind Energy in the Port Region sets the goal of achieving a 300 MW increase in installed capacity by 2020. Where heavy transport is concerned, the port is largely focusing on reducing CO2emissions by encouraging the use of LNG as fuel for ships. In addition, the number of multimodal hubs is being increased, making it possible to achieve more eff i cient and cleaner forms of goods transport in the region. On a small scale, CO2from the fossil industry is being pumped to the Westland, where it boosts plant growth in the greenhouses. The fi rst stages of a CO2pipeline network are being laid.

      In this period, research will be needed into ways of implementing other sustainable forms of energy. Particularly important will be researching possible combinations of sustainable forms of energy with urban functions and with sectors that are crucial to the economy, for example the use of energy-producing greenhouses.

      6.2 2030: The Tide Turns

      The recycling of heat is already on the agenda, but the 'legislation on heat pollution', possibly in the form of a ban on the discharge of residual heat such as that introduced in Copenhagen, thought to be introduced in 2020, will provide a strong boost to the installing of a thermal grid, cofi nanced by the fossil industry. At the end of this decade, most residual heat will be reused. While the previous decade will have witnessed mostly small heat networks and small-scale initiatives (such as private geothermal installations), this period will see connections being made between the port, the Westland, and the city, as well as the creation of larger networks. But there will also be shifts in energy supply and demand. The transformation of the chemical and petrochemical industries to bio-based industries means that sources will be supplying heat at lower temperatures. At the same time, more energy-efficient homes will reduce the energy consumption of urban households. The Westland, too, will witness a sharp fall in the demand for heat, since greenhouses will increasingly be able to supply their own heat. Clean geothermal sources and thermal energy storage facilities may be added to the network, making it more robust. The CO2network will be expanded, since there will be CO2storage in empty gas and oil fi elds in the North Sea, and connections will be made with the Ruhr Region and Antwerp. In this decade, the 30% renewable target will be surpassed, and it will be vital that infrastructure is installed to counter the intermittency of the renewable sources of solar and wind. Home-produced solar energy will be stored in a new generation of lithium-ion batteries, and even in the batteries of parked electric cars. The introduction of a smart electricity grid is conditional for this development. Other superfluous electricity will be transported to Norway, where a pumped storage facility in one of the fjords will makes it possible (although with great transport and conversion losses) to store energy.

      6.3 2040: Following Through

      A number of large-scale renewable energy projects will gain momentum from the introduction of 'carbon added tax' (CAT) in 2030. The electrification of the truck transport on the A15 motorway in the port will become viable. In combination with the increased use of LNG and even hydrogen for shipping, this will strongly improve the air quality in Rotterdam region, especially with regard to aerosols. By this time, there will be large-scale, collective use of solar energy. In the Westland area, the greenhouse horticulture sector will have ensured its continuing competitiveness by completing its conversion to energy-neutral greenhouses, and the prospects for energy-producing greenhouses will be favourable. In the port, existing wind turbines will gradually be replaced by newer and more efficient types, maximizing the capacity of land-based wind energyin this region. The intermittency problem will by now also have been tackled on a regional scale, by creating an artificial reservoir as a near-shore, pumped-storage hydroelectric plant in the North Sea to provide a buffer capacity for electricity. When there is over-capacity, the electricity generated by the wind turbines can be used to drain the reservoir into the sea. As soon as the demand for electricity rises again, the seawater will be let into the reservoir again, generating electricity with a hydropower plant in the intervening dike.

      The larger but frequently separate heat networks will be connected in this period into a single robust network, producing a 'smart grid'. Geothermal sources will supersede residual heat sources, which will gradually be phased out.

      6.4 2050: Industrial Recycling

      The entire energy transition will certainly not be completed in Rotterdam by 2050, but renewables will definitely have ousted fossil fuels from their primary role. Even so, there will still be a net demand for energy in the Rotterdam region, which will remain particularly dependent on large quantities of biomass. Between 2040 and 2050, Rotterdam will develop into a hub for hydrogen production. Hydrogen will compete with LNG, and will develop into one of the alternatives for transport fuel, not only for cars but also for trucks, barges, and even sea shipping. This Powerto-Gas industry will be fuelled by the massive offshore wind projects on the North Sea that take intermittency measures to a new level, that of the industrial scale.(Figure 15)

      7 The North Sea case

      In commission of the International Architecture Biennale 2016,and its curator Maarten Hajer, we did a project on how the North Sea can develop into the powerhouse of European energy policy: '2050, An Energetic Odyssey'⑦. We produced a narrative on how an energy landscape of thousands of wind turbines can be fi tted in the most intensively used coastal waters in the world. It would have fi shery and shipping routes cutting straight through, containing designated nature reserves and military zones, oil rigs the size of skyscrapers, and countless oil and gas pipelines. For the exhibition, the narrative explained how this can be done, via the voiceover for a 12-minute animation, projected on a giant floor plate (5.5x8 meters) surrounded by technical side stories on fl at screens.

      7.1 Scenario

      Much like the studies in 'Landscape and Energy', the narrative uses scenarios as a backbone⑧. Together, the North Sea countries (the UK, Norway, Denmark, Germany, Belgium, and the Netherlands) annually consume approximately 5,500 TWh of energy. Let’s unravel this enormous challenge bit by bit:

      Currently, 8-9%, or about 500 TWh per year of the energy consumed by the North Sea countries, already comes from renewable sources.

      First of all, energy conservation needs to be high on the European agenda, and that is why we are setting the bar as high as possible, and stating that a 30% reduction relative to 2015 has to be attainable: a saving of no less than 1,500 TWh.

      At the other end of the spectrum, we have to take into account various sectors for which there will still be no alternative to fossil fuels by 2050, such as mining, heavy transport, steel production, etc. We estimate that some 900 TWh per year will suff i ce for the North Sea region.

      Our research indicates that it is feasible, given the right ambition, to generate 1,200 TWh of electricity per year by offshore wind. This will provide a dazzling 90% of the total electricity demand of the North Sea countries, and roughly one third of their total energy demand. Through regional cooperation, the North Sea could become Europe’s biggest asset in the energy transition.

      Please notice that even this massive North Sea project still leaves an impressive task for landbased energy projects. Even taking into account the high population density, procedural hurdles, and compensating for NIMBY type setbacks, it should still be possible to accomplish the remaining renewable objective of 1,400 TWh with a patchwork of large and small, centralised and decentralised initiatives in these six countries. This would consist of projects with the potential to produce the rest of the renewable energy, heat and fuel from solar, water, wind, geothermal, biomass, and tidal sources.

      Numbers like these remain abstract until one realizes that this means that by 2050, we will need to have installed some 25.000 wind turbines with an average capacity of 10MW, that together will have a net coverage of some 57,000 km2.

      This means installing 15 turbines a week on average. It is clear that we need to start thinking on a different scale. This is a huge undertaking, one that demands the utmost in terms of planning, funding, design, and implementation. The positive impact on employment is signif i cant. On all levelsand stages of the supply chain, there will be jobs for workers of all skill levels: blue growth for the economy⑨.( Figure 16 and 17)

      7.2 Innovation and incremental steps

      Due to its scale and timeline, this European mega-project will be a breeding ground for innovation: the development of new materials, ever-larger wind turbines, technology required to facilitate maintenance of turbines at sea, and floating wind turbines in order to utilise deeper sections of the North Sea. The mission itself will drive the innovation. Sooner than we imagine, fundamentally new technologies will emerge for harvesting wind energy, not only in deeper water, but also at higher atmospheric levels involving giant kites. All of these innovations and economies of scale will drastically reduce the levelled cost of wind energy. This plummeting price will be the tipping point between the observation that things always take longer to happen than you think, and that they happen much faster than you think they could.

      Other essential and ground-breaking technology will be needed to store superfluous energy during times of scarcity. Currently, conversion to hydrogen seems a promising option for this intermittency problem. As a fuel, hydrogen can also serve as an alternative to diesel.

      7.3 Landscape & marine ecology

      Good planning and design of the operation can ensure optimal alignment with the marine ecology of the North Sea. The roughly 25,000 towers and submerged stone structures add welcoming artificial reefs, onto which all kinds of underwater plants and animals can attach themselves. Using state-of-the-art pile-driving technologies or gravity-based solutions can largely mitigate the negative effects of the construction process, ensuring that sea mammal navigation remains undisturbed.

      Combining the construction of wind farms with the establishment of fishery-free zones and marine reserves forms a promising synergy.

      Last but not least, spatial planning is taking bird migration routes into account when selecting wind farm locations. The zone closest to the coast, which birds use for orientation, should be left untouched where possible. In addition, farms can temporarily be taken out of operation if the radar detects a fl ock of migratory birds approaching.

      A positive effect of this careful planning is that the view from the coast for tourists is not affected. Placed outside of the twelve-mile zone, the curvature of the earth reduces the visibility on a clear day to a white haze on the horizon produced by the tops of the turbine blades.

      7.4 Condition

      All of this can only be done if a strong tailwind can be organized in the shape of realistic pricing, or taxation of carbon dioxide, that would provide the invisible hand of the market with green gloves. An energetic society in its struggle with the energy transition needs an entrepreneurial state, guided by an unwavering political course⑩.

      7.5 The power of research-by-design

      I started this article by stating that landscape architects can play a productive role in the energy transition. Our main task will be the (re) designing of the 'receiving landscape' of all this new infrastructure, and making meaningful energy landscapes of the 21st century. But I want to end with a specif i c contribution that we can make, and also make some remarks on the position and power of research-by-design.

      The book Landscape and Energy and the installation 2050: An Energetic Odyssey are both products of research-by-design trajectories. We are not only able to show 'what it will look like' as glorified illustrators: research-by-design can also open up a dialogue with policy-makers and stakeholders, and can show them what they ‘can want’(11). By research-though-design, we are able to break through the crisis of the imagination that we seem to be struggling with. We have long been well aware of the risks of belching out CO2, but we seem as petrif i ed as rabbits caught in the headlights. Risks alone will not get us into action. We have to reframe. We have to exchange the frame of risk for the frame of opportunity. And for this, we need new 'imaginaries', images of a future that can work, that give us perspective and hope, and that is exactly what research-by-design has to offer.

      The book showed experts in the spatial and the energy silo that they have to work together to make the transition work. Just as energy and mass are linked in Albert Einstein’s famous formula E=mc2, energy and space can also be seen in relation to each other. Throughout human history, there has been a notable interaction between the use of energy and the use of space, between the production of energy and spatial design. Landscape and Energy contributed to giving space a role on the energy agenda, and giving energy a role on the spatial agenda.

      2050: An Energetic Odyssey took the dialogue a few steps further. The interactive production of the installation, in the cultural domain, forged a coalition of key actors. It is the result of an intense collaboration between designers and scientists, and a snowball effect of an expanding consortium with expert input from builders, offshore specialists, ministries, energy firms, a transmission system operator, port authorities, and environmental NGOs. Stakeholders used preliminary versions for their deliberations. Environmental NGOs organized a conference of marine ecologists from the North Sea countries, with the animation used as a backdrop to discuss the pros and cons of such an operation, as well as the ecological development possibilities that they could identify. Showing the early concepts of the presentation started a buzz, word got around, and ultimately we were invited to show this giant floor projection to the Energy Ministers of the 28 European countries during the Dutch presidency of the EU. On June 2016, an agreement was signed between the UK, Ireland, Norway, Sweden, France, Denmark, Germany, Belgium, and the Netherlands to boost cooperation on turning the North Sea into our central energy landscape. Of course, this agreement is not design driven. But showing the animation and the narrative to colleagues played a modest but signif i cant role in this process, according to the press release of our minister.

      Research-by-design can play a signif i cant role! (Figure 18 and 19).

      Notes:

      ①德克·西蒙斯(Dirk Sijmons)(編輯).景觀和能源,設(shè)計轉(zhuǎn)型,NAi010出版商,2014年鹿特丹.

      Dirk Sijmons (ed.).Landscape and Energy, Designing Transition, NAi010 publishers, Rotterdam 2014.

      ②政府景觀顧問部門,荷蘭園林中的風(fēng)力渦輪機,政府主建筑部,海牙,2006.

      Government Advisor for Landscape, Wind turbines in the Dutch Landscape, Chief Government Architect, The Hague, 2006.

      ③德國哲學(xué)家彼得·史路特戴(Peter Sloterdijk)的術(shù)語,安德魯布特尼克·蘇卡普(Anthropotechnik Suhrkamp)出版社,法蘭克福,2009.

      A term borrowed from the German philosopher Peter Sloterdijk Du musst dein Leben ?nderen! über Anthropotechnik Suhrkamp Verlag, Frankfurt am Main, 2009.

      ④德克·西蒙斯(Dirk Sijmons)和邁克爾·萬·多斯特(Machiel van Dorst).強烈的感受性.帶有有情感的景觀風(fēng)力渦輪機;西文·斯瑞蒙克(Sven Stremke)和安迪·萬·德比爾斯迪(van den Dobbelsteen)(編輯),可持續(xù)能源景觀、設(shè)計、規(guī)劃和開發(fā)(佛羅里達(dá)州波卡拉頓:CRC出版社,2013年,45 – 67).

      Dirk Sijmons & Machiel van Dorst.Strong Feelings. Emotional Landscape of Wind Turbines’, in: Sven Stremke and Andy van den Dobbelsteen (eds.), Sustainable Energy Landscapes. Designing, Planning, and Development (Boca Raton, FL: CRC Press, 2013, 45-67.

      ⑤電力:核電、煤、褐煤、垃圾焚燒、水電、太陽能、風(fēng)能。熱地?zé)崮?、余熱、泥炭、天然氣、頁巖氣、生物質(zhì)。燃料:石油、瀝青砂、藻類生物燃料。

      Electricity: Nuclear Power, Coal, Lignite, Waste incineration, Hydropower, Solar, Wind. Heat Geothermal Energy, Residual Heat, Peat, Natural Gas, Shale Gas, Biomass. Fuel: Petroleum, Tar Sands, Biofuel, Algae.

      ⑥安迪·萬·德比爾斯迪(Andy van den Dobbelsteen),杜贊·德佩爾(DuzanDoepel)和尼科·蒂莉(Nico Tillie). REAP(鹿特丹能源評估計劃),荷蘭代爾夫特科技,代爾夫特(Delft),2009年.

      Andy van den Dobbelsteen, DuzanDoepel and NicoTillie. REAP, RotterdamseEnergieAanpak Plan (Rotterdam Energy Assessment Plan), TU-Delft, Delft, 2009.

      ⑦H+N+S風(fēng)景園林設(shè)計師,???EcoFys),湯斯敦(Tungsten)(馬丁·哈爾·恩·德克·西蒙斯)2050:一個充滿活力的史詩:喬·布格瑪斯(George Brugmans)IABR-2016第二大經(jīng)濟體,2016年第七屆鹿特丹國際建筑雙年展目錄.

      H+N+S Landscape Architects, EcoFys, Tungsten (Maarten Hajer en Dirk Sijmons).2050: An Energetic Odyssey In: George Brugmans ed. IABR—2016 The Next Economy, Catalogue of the 7th International Architecture Biennale Rotterdam, 2016.

      ⑧在歐盟總失業(yè)率場景的基礎(chǔ)上(2050年能源路線圖),我們的顧問??疲‥coFys)創(chuàng)造了北海國家產(chǎn)生量化的場景,同時也計算了投資需求,就業(yè)的后果等等。

      On the basis of the EU-High RES scenario (Energy Roadmap 2050) our advisor EcoFys produced a quantitative scenario for the North Sea countries, and also calculated the investment needs, employment consequences, et cetera.

      ⑨埃科:北海能源收集項目期望產(chǎn)生310 000工作崗位,即使在離岸化石燃料工業(yè)上有超過280 000的工作將丟失。EcoFys: 310,000 jobs are expected to be generated by this North Sea energy harvesting, even outnumbering the 280,000 jobs that will be lost in the offshore fossil fuel industry.

      ⑩瑪麗安娜·馬祖卡托.創(chuàng)業(yè)階段.國歌出版社.倫敦.2014. Mariana Mazzucato.The Entrepreneurial State, Anthem Press, London, 2014.

      (11)德克·西蒙斯. 設(shè)計休假政策IABR.2016第二經(jīng)濟.2016年第七屆鹿特丹國際建筑雙年展目錄.

      Dirk Sijmons. When Research by Design Takes Politics on a Sabbatical Detour,IABR—2016 The Next Economy, Catalogue of the 7th International Architecture Biennale Rotterdam, 2016.

      Landscape and Energy

      Text: Prof. Dirk Sijmons
      Translator: LI Jia-yi
      Proofreading: WU Xiao-tong

      Now that the most important countries ratified the Paris agreement of 2015 concrete actions are gaining momentum to drastically reduce the CO2-emissions. The most promising way to do so is a transition from fossil fuels to renewables and other CO2poor sources. In a quantitative way space is not on the critical path in this transition, with a possible exception of producing biomass. In qualitative terms, in its guise as ‘landscape’ though, space will be the battle ground where the transition will be lost or won. What at first seems a rather straightforward technical problem is (also) a cultural problem, and should be dealt with accordingly. Spatial planning and design could play an important role here. This thesis is founded by two cases, both recent research-through-design projects. The Rotterdam case is produced with local stakeholders for the 2014 ‘Landscape and Energy’ book publication. This land-oriented case is complemented by a project on the seascape of the North Sea as a future energy landscape in the IABR-2016 project 2050: An Energetic Odyssey. Especially the last case not only justifies the conclusion that landscape architecture can play a role but also that research-by-design is a strong instrument to help in policy making.

      Energy transition;Spatial planning; Role of Landscape Architects; Research through design; Europe; Rotterdam area; North Sea; Offshore wind

      TU986

      A

      1673-1530(2016)11-0022-19

      10.14085/j.fjyl.2016.11.0022.19

      2016-08-21

      德克·西蒙斯/ H+N+S Landscape Architects 設(shè)計事務(wù)所創(chuàng)始人及高級顧問/荷蘭代爾夫特大學(xué)環(huán)境設(shè)計教授/荷蘭首席國家風(fēng)景園林師

      Author:

      Dirk Sijmons is a co-founder and senior advisor f H+N+S Landscape Architects, and Professor of Environmental Design as well as Chair of Landscape Architecture at theTechnical University in Delft, Netherland. Dirk was appointed first State Landscape Architect of the Netherlands for the period of 2004 to 2008 to advise the Dutch government on landscape matters.

      譯者簡介:

      李佳懌/ 1993年生/ 女/ 吉林人/ 北京林業(yè)大學(xué)園林學(xué)院風(fēng)景園林學(xué)碩士生/ 研究方向為風(fēng)景園林規(guī)劃設(shè)計與理論(北京100083)

      Translator:

      LI Jia-yi, who was born in 1993, is a master student in School of Landscape Architecture, Beijing Forestry University. (Beijing 100083)

      校對簡介:

      吳曉彤/女/內(nèi)蒙古人/漢族/1992年生/北京林業(yè)大學(xué)風(fēng)景園林學(xué)碩士研究生/研究方向:風(fēng)景園林規(guī)劃設(shè)計與理論

      Proofreading:

      Wu Xiao-tong, who was born in 1992 in Inner Mongolia, is a postgraduate student in Landscape Architecture, Beijing Forestry University. Her research focuses on Landscape Planning and Theories.

      修回日期:2016-10-05

      猜你喜歡
      鹿特丹能源
      第六章意外的收獲
      用完就沒有的能源
      ————不可再生能源
      家教世界(2019年4期)2019-02-26 13:44:20
      一起來看風(fēng)車——鹿特丹
      幼兒園(2018年12期)2018-09-04 23:25:02
      “英荷通”
      鹿特丹The Sax塔樓
      福能源 緩慢直銷路
      最清潔的能源
      鹿特丹的方塊樹屋
      海外星云(2016年7期)2016-12-01 04:18:09
      城市新陳代謝 — 2014年鹿特丹城市研究雙年展 荷蘭鹿特丹
      伊拉斯謨斯大橋
      太仆寺旗| 巴楚县| 拜泉县| 定陶县| 敦煌市| 湖南省| 赤峰市| 宜阳县| 伽师县| 青河县| 新乡市| 班戈县| 银川市| 梅河口市| 菏泽市| 安阳市| 余江县| 赤壁市| 易门县| 托里县| 灌阳县| 陆良县| 武威市| 绥棱县| 将乐县| 宜春市| 竹山县| 云霄县| 乐平市| 宜良县| 长武县| 百色市| 阿坝县| 安仁县| 新余市| 新绛县| 灵丘县| 泸西县| 台前县| 玉田县| 江川县|