• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Stray radiation suppression of horseshoe Cassegrain reflecting optical system for star sensor

    2016-04-13 05:11:00HUXiaodongDINGXiaokunWANGWeikeWEIQing
    關(guān)鍵詞:透射比點(diǎn)源散光

    HU Xiao-dong, DING Xiao-kun, WANG Wei-ke, WEI Qing

    (Flight Automatic Control Research Institute, Aviation Industry Corporation of China, Xi’an 710065, China)

    Stray radiation suppression of horseshoe Cassegrain reflecting optical system for star sensor

    HU Xiao-dong, DING Xiao-kun, WANG Wei-ke, WEI Qing

    (Flight Automatic Control Research Institute, Aviation Industry Corporation of China, Xi’an 710065, China)

    A modified horseshoe-shape Cassegrain reflecting optical system is presented. The light path is folded by a scanning mirror. The modified system becomes more compact and flexible. Consequently, a new type of optical baffle with radical leaf for effective stray light suppression is proposed. The stray light in different azimuth and pitching angles is analyzed. According to the simulated result, the point source transmittance is less than 10-9when incident angles are larger than the rejection angle. Moreover, a reverse ray trace method is introduced. It describes the stray radiation suppression with stray light coefficient, which could be easily obtained without complicated computation and separate regular light from stray light. The result distinctly reflects the stray radiation suppression ability of the test system, and can provide helpful guidance for the design of optical baffle.

    celestial navigation; star sensor; Cassegrain telescopes; stray light; optical baffle

    Star sensor is an important equipment for celestial navigation, while optical design and stray light suppression are the key technology of star sensor. Any optical system, which includes only lenses and mirrors, allows scattered radiation and even direct light to bypass the optical elements and leak into the detector. As direct light is most dangerous, the telescopes are usually equipped with the appropriate baffles. The latter, in turn, induce additional scattered light and obstruction, so the ultimate system of shields and stops is rather complicated[1]. In general, direct stray light is completely eliminated by a continuous tube. Stray light can never be totally eliminated. However, it can often be reduced to a level, at which it is tolerable, with the aid of the refined procedure. However, for large telescopes, the tube is either absent in, or has insufficient length. Furthermore, the baffles are located between mirrors in the space which is filled with the image-forming rays. Such an arrangement causes appreciable light obstruction, which reduces the resolving power at medium angular frequencies and, less impor-tantly, causes additional light loss[2].

    Cassegrain telescopes, which are widely used in classic telescope design, suffer the most from stray light problems. The Cassegrain type is composed of a two-mirror-system, namely the primary mirror and secondary mirror[3]. The main tube supports, aligns and positions the primary mirror, secondary mirror, correction lenses, sensors and other components. As a matter of fact, the main tube provides the appropriate shielding to prevent the components from direct light exposure. However, there is still some stray light passing through the central hole of primary mirror if there is no baffle in the telescope. Cassegrain telescopes could also be modified into other branches. As a rule, all the elements are symmetric about the optical axis, thus the cassegrain type can be manufactured and aligned much more easily compared with other off-axis telescopes. However, for peculiar applications, such as aviation and aerospace, telescopes are needed to be designed in accordance with the requirements set by the resolution, sensor specifications, total weight, occupied space volume, construction budget and so on. Here we introduce a horseshoe Cassegrain reflecting optical system with scanning mirror, which is applied in aircraft for target detection and tracking. The baffles design and the corresponding performance analysis will be discussed in detail in the following[4].

    1 Design scheme

    1.1 Optics design

    Conventionally, tracking systems are mechanized as gimbaled, which is mechanically complex and occupied much space. Besides, the moment of inertia is large, thus it is cumbersome for fast tracking. Consequently, a folded fabrication is proposed. The schematic is shown in Fig.1. The telescope, as shown in Fig.2, is modified Cassegrain reflecting system, mounted in an all-metal unit, with an effective focal length of 347.2 mm. The aperture of the primary mirror is 95 mm, and it has a 6 arc minute full field of view. The telescope is placed horizontally, and the light path is folded by a scanning mirror, which guarantees viewing angle range from 35° to 85°. The tracker assembly encoders have the capability of measuring relative target pointing angles with respect to the inertial reference with a resolution of 1.2 arcsec. Optical encoders provide digital readout of relative bearing and elevation angles, which follow pointing angels commanded by computer. The flat quartz window is 230 mm diameter on the top for protection from dust. To avoid from vapor condensation, the whole equipment needs to be sealed and vacuumized, then full filled with inert gas.

    Fig.2 3-D Schematic of the optical system

    1.2 Baffle design

    For a typical all-reflective Cassegrain system, among all possible stray light path[5-6]. There are three main sources of stray light which form most stray light radiation on the image plane of the optical system: (1) aperture diffraction (single diffraction), (2) optical surface scatter (single scatter), and (3) baffle scatter plus optical surface scatter (multiple scatter). Single scatter stray light occurs when a stray light source directly illuminates the optics in the system. Some portion of the light will scatter in a direction that causes it to reach the focal plane. That is to say it scatters into the field of view. Once light has scattered into the field of view, it becomes stray light. Thus a basic goal of baffle design is to keep light from shining on the optics. Multiple scatter stray light occurs when stray light sources indirectly illuminate the optics. These paths cause stray light indirectly, by first scattering from the baffle surfaces and then illuminating the optics. Stray light from this source will always be smaller than direct scatter, but it may still be large enough to be of concern.

    For a given minimum off-axis field angle of stray light source θ, a simple baffle tube is arranged in front of the primary mirror to reduce the shading factor S(θ) down to zero conventionally. However, the baffle tube is alwaysrather long, and the length is usually given by the following equation.

    The fundamental principle is utilizing a long tube with ring vanes on the inside wall to produce multireflection. Each time the incident light hit on the baffle, the energy intensity is greatly attenuated. Consequently, after several reflections, the stray light is exhausted. Therewith the image corruption becomes neglectable. Although the performance of conventional outer baffle was convinced upstanding, in some cases where the structure dimensions are limited and the long optical baffle cannot be allowed.

    In this paper, we propose a type of optical baffle with radical leaf for effective stray light suppression, in which some radial thin leaves are fixed within the main baffle tube symmetrically[7], see Fig.3. These thin leaves split the baffle aperture into some small sub apertures. Substituting the maximum linear dimension of sub aperture (a) into above equation for baffle length to replace (D) gives a shorter baffle length (L), which can still block the radiation from stray light source at a given field angle (θ) to the primary mirror.

    Fig.3 Schematic of baffle with radical leaf

    The main parameters of radical leaf baffle design should be inner-diameter (d), outer-diameter (D), subaperture width (a), leaf thickness (b) and length (L). The rejection angle (α) is decided by both sub aperture width (a) and length (L).

    Here, we define a obscuration coefficient (Ф), which is a ratio of the area blocked by the baffle and the total aperture. When the inner-diameter (d) and the outerdiameter (D) are set, the obscuration coefficient (Ф) of the baffle is related to both of the thickness (b) and the number of leaves (n). Apparently, thicker b and larger n lead to larger Ф.

    For instance, let the inner-diameter (d) and outerdiameter (D) are 30 mm and 95 mm, separately. There are six radial leaves. The sub aperture width (a) is 40 mm. Assuming stray light suppression field angle (θ) is 30°, the length of the conventional baffle (L) is defined as D/tanθ, thus the value is 165 mm, however, for baffle with radical leaf, the length is a/tanθ ≈ 70 mm.

    In order to guarantee the suppression of the stray light, the baffle in this paper is designed with two rings and six leaves, as shown in Fig.4. Apparently, the obstruction is increased. As a matter of fact, it is considered at the very beginning of the optics design. The effective aperture is superfluous by increasing the size of the optics slightly. Thus, the obstruction caused by the baffle would not corrupt the performance of the optical system.

    Fig.4 The view of baffle with radical leaf

    As shown in Fig.5, the design of primary mirror baffle and secondary mirror baffle is follow by method mentioned by Hu et al.[8].

    Fig.5 Side view of primary and secondary mirror baffles

    The protection of the detector from stray light is not restricted, of course, only by placing of two conic baffles. They are destined for shielding from direct light and radiation, scattered by the tube walls. As shown in Fig.4, in order to prevent the stray light scattered from the bottom, vanes are introduced. Usually the first-order scattering properties of the vane structures are more important than whether the vanes are angled or not. Many results convinced that angled vanes would have a significant advantage over annular vanes[9]. Thus, considering the incident angle and the scanning range, the vane angle is chosen 45°. As a matter of fact, this accounts for the subtle but important difference in the results. The whole equipment is shown in Fig.6.

    Fig.6 Side view of the system

    Another important factor for the stray light analysis is the choice of coating. The use of aluminum suggests the use of black anodization. Some measurements indicate that the absorption of that coating could not be satisfying. Improvement could have been reached by sandblasting the aluminum sheet. This solution has been considered too risky due to the very low thickness of the sheet. The choice has thus been made to use Aeroglaze Z306 which is a well known paint for space application. Measurement made on samples indicates that BRDF was close to the modeled one[10].

    2 Simulation analysis

    As one of the common ways to define the merit function of stray light in an optical system, the point source transmittance (PST) is usually used to evaluate the baffle-blocking efficiency and generally obtained by Monte-Carlo analysis on computer. The PST formula is the ratio of the focal plane irradiance Ed(θ, λ) to the entrance aperture irradiance Ei(θ, λ).

    For a rotational symmetry system, once the wavelength is fixed, the PST curve is easy to get by calculating the ratio under different off-axis incident angles in some certain direction. However, for axis asymmetrical situation such as the one in this paper, it becomes complicated. Both the azimuth and pitching are needed to be considered. The growth of computation complexity is square.

    In this paper, the simulation is executed by TracePro, a stray light tracking software. 10 million rays have been traced. The flux per ray is 1 watt. The threshold is set 10-9. All the baffle surfaces are considered to be painted black paint. The ABg scatter parameters of the black paint is A = 0.07, B = 1, g = 0, and the absorption is 0.9. Fig.7 presents the level of stray light in different azimuth and pitching angles. According to the simulated datum, the curve shows that PST values are less than 10-9when incident angles are larger than the rejection angle (30°) which satisfies common requirement.

    Fig.7 Wireframe drawing of the PST analysis

    Although PST is a classic method to describe the stray radiation suppression for an optical system, lots of statistics data in different incident angles are needed for curve drawing. Plus, the result contains both regular light and stray light. Thus, it could only be a reference for design improvement and cannot compare with other systems[11]. Here we introduce a reverse ray trace method. That describes the stray radiation suppression with stray light coefficient (SLC), and could separate regular light from stray light. Take the center field of view for example to show how the reverse ray trace method works. Firstly, it is needed to build the same two mirror symmetrical systems as shown in Fig.8.

    Fig.8 Reverse ray trace simulation in TracePro

    In Fig.8, System 1 is the stray light filter, and System 2 is the light generator. The focus plane of System 2 is set as the source, besides, in order to guarantee covering the full field of view the emission divergence angle must be larger than the convergence angle of imaging rays. Consequently, the light transmits though system 2 reversely. The rays at the exit of system 2 could be considered as total energy reaching the focal plane. Those rays include not only regular imaging rays but also stray light. The rays keep on transmitting into system 1. The regular rays could pass though and reach the focal plane of system 1, on the contrary, the stray light is blocked. If the energy at the exit of system 2 is defined as total energy (Et) and the energy on the focal plane of system 1 is defined as effective energy (Ee). Then, the stray light coefficient (η) could be calculated by the following equation:

    For system mentioned in this paper the SLC is 0.01, when the source is set at the center field of view. SLC could be easily obtained without mass of complicated computation. Moreover, if the source traverses the whole field of view, the SLC in different position could also be got. As shown in Fig.9, the minimum (ηmin= 0.01) appears at the center field of view, while the maximum (ηmax= 0.3) locate in the perimeter. The results could reflect the stray radiation suppression ability of the test system distinctly, and easily compare with other design.

    Fig.9 Stray light coefficients for different positions in the view field

    3 Conclusions

    A new type of optical baffle with radical leaf for effective stray light suppression is proposed in this paper. Both the PST and SLC are analyzed to discuss stray radiation suppression performance of the system. Comparing to PST, the SLC could be easily obtained without mass of complicated computation. Moreover, SLC for different position in the field of view could also be got when the source traverses the whole field of view. The result reflects the stray radiation suppression ability of the test system distinctly, and affords helpful guidance for baffle design.

    [1] Wang Hai-yong, Zhou Wen-rui, Cheng Xuan, et al. Image smearing modeling and verification for strapdown star sensor[J]. Chinese Journal of Aeronautics, 2012, 25(1): 115-123.

    [2] Gautam A S, Gupta A, Singh G S. Optical design of off-axis Cassegrain telescope using freeform surface at the secondary mirror[J]. Optical Engineering, 2015, 54(2): 025113-025120.

    [3] Wilson R N. Reflecting telescope optics II[M] 1st ed. 1999. Corrected 2nd printing 2001, Berlin, New York: Springer, 1999 xviii, 554 p.

    [4] Ye Hai-shui, Gao Zhi-shan, Qin Zhen-yu, et al. Near-infrared fundus camera based on polariza- tion switch in stray light elimination[J]. Chinese Optics Letters, 2013, 11(3): 56-59.

    [5] Kumar M S, Narayanamurthy C S, Kumar A S K. Design and analysis of optimum baffle for a Cassegrain telescope[J]. Journal of Optics, 2015, Springer: 1-6

    [6] 郭力滔, 高天元, 孫景睿, 等. 卡塞格林式星敏感器雜散光分析[J]. 長(zhǎng)春理工大學(xué)學(xué)報(bào)(自然科學(xué)版), 2015(2): 21-24. Guo Li-tao, Gao Tian-yuan, Sun Jing-rui, et al. Analysis of stray light in Cassegrain star sensor[J]. Journal of Changchun University of Science & Technology, 2015(2): 21-24.

    [7] Zhang Kai-sheng, Zhang Zhi, Zhang Zhao-hui. Optical system design for lens with large relative aperture[J]. Proc. SPIE, 2015, 9676: 15-20.

    [8] Hu Xiao-dong, Wang Wei-ke, Hu Qiang, et al. Design of CASSEGRAIN telescope baffles with honeycomb entrance [J]. Chinese Optics Letters, 2014, 12(4): 072901- 072904.

    [9] Fan Zhi-gang, Hu Hai-li, Chen Shou-qian, et al. Stray light analysis for multi-target compounding hardware-inloop system[J]. Journal of Applied Optics, 2014, 35(2): 205-209.

    [10] Mazy E, Stockman Y. Design and modelisation of a straylight facility for space optical instrument[J]. Optical Systems Design, 2012, 8550(1): 07-18.

    [11] 鐘興, 張雷, 金光. 反射光學(xué)系統(tǒng)雜散光的消除[J]. 紅外與激光工程, 2008, 37(2): 316-318. Zhong Xing, Zhang Lei, Jin Guang. Stray light removing of reflective optical system[J]. Infrared and Laser Engineering 2008; 37(2): 316-318.

    [12] 胡曉東, 胡強(qiáng), 雷興, 等. 一種用于白天星敏感器的星點(diǎn)質(zhì)心提取方法[J]. 中國(guó)慣性技術(shù)學(xué)報(bào), 2014, 22(4): 481-485. Hu Xiao-dong, Hu Qiang, Lei Xing, et al. Method of star centroid extraction used in daytime star sensors[J]. Journal Chinese Inertial Technology, 2014, 22(4): 481-485.

    1005-6734(2016)02-0175-05

    星敏感器是慣性天文組合導(dǎo)航系統(tǒng)的關(guān)鍵傳感器,星敏感器的光學(xué)系統(tǒng)設(shè)計(jì)及對(duì)雜散光的抑制是決定其能否實(shí)現(xiàn)測(cè)星的主要因素。提出一種改進(jìn)型的卡塞格倫反射光學(xué)系統(tǒng),該系統(tǒng)通過(guò)擺鏡折疊光路并實(shí)現(xiàn)掃描,壓縮了系統(tǒng)的體積,增強(qiáng)了系統(tǒng)的靈活性。進(jìn)而針對(duì)該系統(tǒng)設(shè)計(jì)了一種基于基生葉結(jié)構(gòu)的遮光罩,利用光線追跡軟件在不同方位和俯仰角度入射下對(duì)系統(tǒng)進(jìn)行了仿真分析,結(jié)果表明規(guī)避角以外的點(diǎn)源透射比可以達(dá)到10-9以下,滿足系統(tǒng)使用要求。此外,鑒于傳統(tǒng)點(diǎn)源透射比方法的計(jì)算量較大,還引入了雜散光系數(shù)的概念,通過(guò)對(duì)鏡像系統(tǒng)進(jìn)行反向光線追跡可以將雜散光分離,從而計(jì)算出雜散光系數(shù),表征系統(tǒng)對(duì)雜散光的抑制能力。該方法可降低計(jì)算量,提高設(shè)計(jì)效率。

    天文導(dǎo)航;星敏感器;卡塞格倫光學(xué)系統(tǒng);雜散光;遮光罩

    A

    2015-11-25;

    2016-03-16

    航空基金支撐項(xiàng)目(61901060301)

    胡曉東(1984—),男,博士、高級(jí)工程師,從事慣性天文組合導(dǎo)航研究。E-mail: huxd@163.com

    10.13695/j.cnki.12-1222/o3.2016.02.007

    用于星敏感器的馬蹄形卡塞格倫反射式光學(xué)系統(tǒng)雜散光抑制方法

    胡曉東,丁小昆,王維科,魏 青

    (中國(guó)航空工業(yè)集團(tuán) 西安飛行自動(dòng)控制研究所,西安 710065)

    猜你喜歡
    透射比點(diǎn)源散光
    關(guān)于對(duì)GB 39552.1-2020檢測(cè)方法的探討
    關(guān)于GB 10810.3與GB 39552.1-2020中透射比要求的探討
    一種星敏感器雜散光規(guī)避方法
    寶寶體檢有散光需要配眼鏡嗎
    驗(yàn)光中散光問(wèn)題的處理
    關(guān)于脈沖積累對(duì)雙點(diǎn)源干擾影響研究
    靜止軌道閃電探測(cè)性能實(shí)驗(yàn)室驗(yàn)證技術(shù)研究
    基于標(biāo)準(zhǔn)化點(diǎn)源敏感性的鏡面視寧度評(píng)價(jià)
    星敏感器雜散光抑制方法及仿真分析
    太陽(yáng)鏡的檢測(cè)方法
    熟女电影av网| 日韩欧美精品免费久久| 亚州av有码| 久久精品久久久久久噜噜老黄| 寂寞人妻少妇视频99o| 人体艺术视频欧美日本| 精品人妻视频免费看| 男女边吃奶边做爰视频| 99热全是精品| 久久久久久久久久成人| 亚洲欧美精品专区久久| 成人漫画全彩无遮挡| 狂野欧美白嫩少妇大欣赏| 成人综合一区亚洲| 日韩av不卡免费在线播放| 国产精品一区二区三区四区久久| 春色校园在线视频观看| 成人综合一区亚洲| 亚洲精品亚洲一区二区| 淫秽高清视频在线观看| 女人被狂操c到高潮| 国产又色又爽无遮挡免| 91aial.com中文字幕在线观看| or卡值多少钱| 建设人人有责人人尽责人人享有的 | 91精品一卡2卡3卡4卡| 免费观看av网站的网址| 中文欧美无线码| 纵有疾风起免费观看全集完整版 | 亚洲欧美日韩无卡精品| ponron亚洲| 久久国产乱子免费精品| www.色视频.com| 欧美另类一区| 亚洲av男天堂| 久久人人爽人人爽人人片va| 久久人人爽人人爽人人片va| 两个人视频免费观看高清| 国产亚洲精品久久久com| 欧美3d第一页| 九九爱精品视频在线观看| 最后的刺客免费高清国语| 777米奇影视久久| 蜜臀久久99精品久久宅男| 亚洲av国产av综合av卡| 1000部很黄的大片| 少妇高潮的动态图| 日韩欧美一区视频在线观看 | 亚洲国产精品成人综合色| 九色成人免费人妻av| 在线观看一区二区三区| 边亲边吃奶的免费视频| av福利片在线观看| 国产精品.久久久| 日本熟妇午夜| 亚洲精品一二三| 赤兔流量卡办理| 午夜精品国产一区二区电影 | 亚洲av二区三区四区| 久久久欧美国产精品| 国产在视频线在精品| 女人被狂操c到高潮| 精品一区二区三区视频在线| 欧美xxxx黑人xx丫x性爽| 国产黄片视频在线免费观看| 久久精品综合一区二区三区| eeuss影院久久| av.在线天堂| 日本熟妇午夜| 免费看不卡的av| 99久久精品一区二区三区| 在线观看人妻少妇| 亚洲一区高清亚洲精品| 久久午夜福利片| 美女xxoo啪啪120秒动态图| 亚洲熟妇中文字幕五十中出| www.色视频.com| 国产 一区精品| 国产爱豆传媒在线观看| 美女脱内裤让男人舔精品视频| 亚洲人成网站高清观看| 99热全是精品| 国产精品熟女久久久久浪| 一二三四中文在线观看免费高清| 国产av不卡久久| 久久久午夜欧美精品| 91狼人影院| videos熟女内射| 麻豆精品久久久久久蜜桃| 能在线免费观看的黄片| videossex国产| 一级二级三级毛片免费看| 97在线视频观看| 国产成人福利小说| 久久人人爽人人爽人人片va| 在线免费观看的www视频| 菩萨蛮人人尽说江南好唐韦庄| 国产精品无大码| 亚洲乱码一区二区免费版| 精品国产露脸久久av麻豆 | 亚洲精品aⅴ在线观看| 欧美xxⅹ黑人| 看十八女毛片水多多多| 免费看光身美女| 赤兔流量卡办理| 国产伦精品一区二区三区四那| 国产一区有黄有色的免费视频 | 人人妻人人看人人澡| 一级毛片aaaaaa免费看小| 免费黄频网站在线观看国产| 亚洲精品乱码久久久v下载方式| 国产精品一区www在线观看| 日日摸夜夜添夜夜爱| 日韩av在线大香蕉| 久久6这里有精品| 久久久精品欧美日韩精品| 国产精品三级大全| 麻豆国产97在线/欧美| 亚洲国产欧美在线一区| 色吧在线观看| 一级毛片 在线播放| 搡女人真爽免费视频火全软件| 街头女战士在线观看网站| 三级国产精品欧美在线观看| 亚洲电影在线观看av| 日本-黄色视频高清免费观看| 欧美区成人在线视频| 精品国产露脸久久av麻豆 | av在线观看视频网站免费| 婷婷色麻豆天堂久久| 亚洲欧洲国产日韩| 欧美性猛交╳xxx乱大交人| 日本欧美国产在线视频| 又爽又黄无遮挡网站| 成人欧美大片| 色网站视频免费| 91av网一区二区| 夫妻午夜视频| 18禁裸乳无遮挡免费网站照片| 亚洲精品中文字幕在线视频 | 亚洲欧美中文字幕日韩二区| 亚洲一区高清亚洲精品| 国产亚洲av片在线观看秒播厂 | 色综合色国产| 赤兔流量卡办理| 美女被艹到高潮喷水动态| 免费av观看视频| 少妇的逼水好多| 国产探花在线观看一区二区| 国产在视频线在精品| 男女那种视频在线观看| 乱码一卡2卡4卡精品| 久久久a久久爽久久v久久| 中文字幕人妻熟人妻熟丝袜美| 男女那种视频在线观看| 可以在线观看毛片的网站| 国产午夜精品一二区理论片| 免费av观看视频| 精品少妇黑人巨大在线播放| 色综合色国产| 美女脱内裤让男人舔精品视频| 亚洲电影在线观看av| 两个人的视频大全免费| 国产精品国产三级专区第一集| 国产三级在线视频| 少妇丰满av| 久久久久久伊人网av| 国产男人的电影天堂91| 国产精品三级大全| 激情 狠狠 欧美| 嫩草影院新地址| 毛片一级片免费看久久久久| 精品久久久精品久久久| 国产亚洲精品久久久com| 国产精品熟女久久久久浪| 国产精品美女特级片免费视频播放器| 久久人人爽人人片av| 国产精品伦人一区二区| 亚洲人成网站在线播| 国产免费又黄又爽又色| 亚洲丝袜综合中文字幕| 国产伦一二天堂av在线观看| 欧美不卡视频在线免费观看| 欧美日韩一区二区视频在线观看视频在线 | 97超视频在线观看视频| www.色视频.com| 国产欧美另类精品又又久久亚洲欧美| 七月丁香在线播放| 国产男人的电影天堂91| 亚洲最大成人av| 嫩草影院新地址| 午夜福利视频精品| 久久久久九九精品影院| 亚洲av免费高清在线观看| 免费黄色在线免费观看| 成人亚洲精品av一区二区| 久久久久久久亚洲中文字幕| 午夜免费观看性视频| 日日摸夜夜添夜夜添av毛片| 国产成人freesex在线| 欧美日韩综合久久久久久| 97人妻精品一区二区三区麻豆| 搡老乐熟女国产| 一本一本综合久久| 日日啪夜夜爽| 黄色配什么色好看| av播播在线观看一区| 亚洲欧洲日产国产| av在线播放精品| 一区二区三区乱码不卡18| 中文乱码字字幕精品一区二区三区 | 一级av片app| 亚洲精品第二区| 青春草国产在线视频| 亚洲av不卡在线观看| 国产大屁股一区二区在线视频| 日韩电影二区| 色5月婷婷丁香| 在线a可以看的网站| 久久热精品热| 国产 一区精品| 在线免费观看的www视频| av一本久久久久| 午夜福利视频精品| 日韩 亚洲 欧美在线| 成人鲁丝片一二三区免费| 亚洲国产精品国产精品| 成人一区二区视频在线观看| 不卡视频在线观看欧美| 你懂的网址亚洲精品在线观看| 久久久亚洲精品成人影院| 日韩伦理黄色片| 午夜激情久久久久久久| 久久99热这里只频精品6学生| 亚洲va在线va天堂va国产| 国产视频内射| 中文字幕免费在线视频6| 日韩电影二区| 国产精品.久久久| 男女边摸边吃奶| 又大又黄又爽视频免费| 麻豆国产97在线/欧美| 国产成人a∨麻豆精品| 久久久久精品性色| 久久久久久久国产电影| av专区在线播放| 内射极品少妇av片p| 国产免费福利视频在线观看| 美女大奶头视频| 一边亲一边摸免费视频| 国产精品久久久久久av不卡| 狂野欧美白嫩少妇大欣赏| 中文字幕免费在线视频6| 久久久久久久亚洲中文字幕| 不卡视频在线观看欧美| 国产午夜福利久久久久久| 免费高清在线观看视频在线观看| 国产不卡一卡二| 午夜激情久久久久久久| 久久6这里有精品| 在线免费十八禁| 精品亚洲乱码少妇综合久久| av在线亚洲专区| 国内精品美女久久久久久| 久久久久精品久久久久真实原创| 美女黄网站色视频| 欧美一区二区亚洲| 男插女下体视频免费在线播放| 午夜爱爱视频在线播放| 国产单亲对白刺激| 大又大粗又爽又黄少妇毛片口| 国产探花极品一区二区| 欧美日韩一区二区视频在线观看视频在线 | 女人十人毛片免费观看3o分钟| 特大巨黑吊av在线直播| 人人妻人人澡人人爽人人夜夜 | 女人十人毛片免费观看3o分钟| 超碰97精品在线观看| 麻豆成人av视频| 久久99蜜桃精品久久| 超碰av人人做人人爽久久| 国产乱来视频区| 伦精品一区二区三区| 91aial.com中文字幕在线观看| 美女xxoo啪啪120秒动态图| 欧美丝袜亚洲另类| 国产毛片a区久久久久| 亚洲熟妇中文字幕五十中出| 久久久久性生活片| 在线a可以看的网站| 99热网站在线观看| 淫秽高清视频在线观看| 久99久视频精品免费| 九九爱精品视频在线观看| 九草在线视频观看| 日韩制服骚丝袜av| 国产老妇伦熟女老妇高清| 亚洲无线观看免费| 最新中文字幕久久久久| 久久国内精品自在自线图片| 美女被艹到高潮喷水动态| 神马国产精品三级电影在线观看| 搡老妇女老女人老熟妇| 免费黄网站久久成人精品| 免费观看av网站的网址| 国产精品爽爽va在线观看网站| 极品教师在线视频| 亚洲电影在线观看av| 综合色av麻豆| 欧美成人精品欧美一级黄| 永久网站在线| 国产成人精品婷婷| 久久精品久久久久久久性| 伦理电影大哥的女人| 亚洲熟妇中文字幕五十中出| 秋霞在线观看毛片| 国产精品.久久久| 国产av不卡久久| 久热久热在线精品观看| 九九在线视频观看精品| 一级片'在线观看视频| 人妻系列 视频| av天堂中文字幕网| 国国产精品蜜臀av免费| 成年免费大片在线观看| 麻豆成人av视频| 菩萨蛮人人尽说江南好唐韦庄| 久久国内精品自在自线图片| 青春草视频在线免费观看| 日韩人妻高清精品专区| 18禁在线播放成人免费| 久久久久久久国产电影| 成人亚洲欧美一区二区av| 国产一区亚洲一区在线观看| 国产老妇伦熟女老妇高清| 在线观看人妻少妇| 亚洲国产高清在线一区二区三| 日韩欧美三级三区| 99久国产av精品国产电影| 精品一区二区三卡| 免费观看在线日韩| 免费播放大片免费观看视频在线观看| 18禁在线无遮挡免费观看视频| 乱码一卡2卡4卡精品| 永久免费av网站大全| 国产精品精品国产色婷婷| 国产精品一二三区在线看| 精品酒店卫生间| 天堂√8在线中文| 99热6这里只有精品| 国产精品久久久久久久电影| 最近手机中文字幕大全| 亚洲国产高清在线一区二区三| 国模一区二区三区四区视频| 久久久久久久久久人人人人人人| 日韩欧美精品免费久久| 欧美日韩综合久久久久久| 性插视频无遮挡在线免费观看| 国内精品一区二区在线观看| 一二三四中文在线观看免费高清| 国产白丝娇喘喷水9色精品| 久久97久久精品| 高清视频免费观看一区二区 | 十八禁网站网址无遮挡 | 亚洲精品日本国产第一区| 男女那种视频在线观看| 熟女电影av网| 国产成人免费观看mmmm| 99热全是精品| 成人亚洲欧美一区二区av| 激情五月婷婷亚洲| 中文字幕制服av| 亚洲第一区二区三区不卡| 一级二级三级毛片免费看| 亚洲天堂国产精品一区在线| 国产精品无大码| 男人爽女人下面视频在线观看| 成人亚洲精品一区在线观看 | 精品久久久久久久末码| 精品久久久噜噜| 中文欧美无线码| 丰满少妇做爰视频| 亚洲在线自拍视频| 免费观看av网站的网址| 色综合站精品国产| 婷婷色av中文字幕| 精品国产露脸久久av麻豆 | 久99久视频精品免费| 国产伦一二天堂av在线观看| 亚洲最大成人av| kizo精华| 校园人妻丝袜中文字幕| 色综合色国产| 成人无遮挡网站| 在线天堂最新版资源| 春色校园在线视频观看| 午夜福利网站1000一区二区三区| 国产精品一区www在线观看| 男的添女的下面高潮视频| 成人性生交大片免费视频hd| 亚洲av中文av极速乱| 久久人人爽人人片av| 日产精品乱码卡一卡2卡三| 97精品久久久久久久久久精品| 亚洲av中文av极速乱| 国产乱来视频区| 国产三级在线视频| 一级av片app| 97人妻精品一区二区三区麻豆| 国产精品蜜桃在线观看| 亚洲国产av新网站| 高清在线视频一区二区三区| 五月玫瑰六月丁香| 成年女人在线观看亚洲视频 | 2018国产大陆天天弄谢| 嘟嘟电影网在线观看| 免费无遮挡裸体视频| 97超视频在线观看视频| 一级黄片播放器| 插逼视频在线观看| 国产黄色小视频在线观看| 国产日韩欧美在线精品| 亚洲熟女精品中文字幕| 国语对白做爰xxxⅹ性视频网站| 国产伦在线观看视频一区| 少妇的逼好多水| 乱码一卡2卡4卡精品| 在线观看一区二区三区| 天堂俺去俺来也www色官网 | 久久久久久伊人网av| 国产精品一二三区在线看| 夜夜看夜夜爽夜夜摸| 一个人免费在线观看电影| 黄色欧美视频在线观看| 最新中文字幕久久久久| 性色avwww在线观看| 亚洲无线观看免费| 亚洲伊人久久精品综合| 国产视频内射| 国产高潮美女av| 观看美女的网站| 日韩一区二区视频免费看| 日本wwww免费看| 非洲黑人性xxxx精品又粗又长| 亚洲经典国产精华液单| 午夜免费激情av| 我的老师免费观看完整版| 日韩 亚洲 欧美在线| 自拍偷自拍亚洲精品老妇| 欧美日韩亚洲高清精品| 菩萨蛮人人尽说江南好唐韦庄| 成人美女网站在线观看视频| 色综合站精品国产| 国产成人freesex在线| 男女视频在线观看网站免费| 插逼视频在线观看| 能在线免费观看的黄片| 国产精品无大码| 国产69精品久久久久777片| 亚洲精品乱码久久久久久按摩| 丝袜美腿在线中文| av在线天堂中文字幕| 高清在线视频一区二区三区| 纵有疾风起免费观看全集完整版 | 丰满少妇做爰视频| 麻豆成人av视频| 国产精品三级大全| 国产亚洲av片在线观看秒播厂 | ponron亚洲| 寂寞人妻少妇视频99o| 国产成年人精品一区二区| 久久久久久久大尺度免费视频| 免费观看在线日韩| 成人午夜高清在线视频| kizo精华| 亚洲精品国产成人久久av| 亚洲三级黄色毛片| 美女黄网站色视频| 一级av片app| 亚洲经典国产精华液单| 青青草视频在线视频观看| 久久久欧美国产精品| 又粗又硬又长又爽又黄的视频| 国产精品麻豆人妻色哟哟久久 | 久久97久久精品| 人妻一区二区av| 亚洲国产欧美人成| 国产免费又黄又爽又色| 美女国产视频在线观看| 女的被弄到高潮叫床怎么办| 日本与韩国留学比较| 老司机影院成人| 天堂中文最新版在线下载 | 国产高潮美女av| 大片免费播放器 马上看| 国产成人午夜福利电影在线观看| 亚洲18禁久久av| av线在线观看网站| 在线观看一区二区三区| 男人狂女人下面高潮的视频| 国产极品天堂在线| 简卡轻食公司| 亚洲精品自拍成人| 国产91av在线免费观看| 久久久国产一区二区| 国产伦一二天堂av在线观看| 最后的刺客免费高清国语| 欧美xxxx性猛交bbbb| 亚洲精品久久久久久婷婷小说| 中文字幕久久专区| 精品一区二区三卡| 日韩人妻高清精品专区| 久久久成人免费电影| 国产精品女同一区二区软件| 久久精品国产亚洲网站| 国产欧美日韩精品一区二区| 久久久久久九九精品二区国产| 久久久国产一区二区| 日韩亚洲欧美综合| 免费少妇av软件| 永久网站在线| a级毛片免费高清观看在线播放| 久久精品国产亚洲网站| 日韩,欧美,国产一区二区三区| 最新中文字幕久久久久| 亚洲欧美日韩卡通动漫| 亚洲图色成人| 欧美xxⅹ黑人| 国产成人福利小说| 国产69精品久久久久777片| 国产成人一区二区在线| 3wmmmm亚洲av在线观看| 成人无遮挡网站| 精品国内亚洲2022精品成人| 亚洲精品自拍成人| 一夜夜www| 日韩欧美国产在线观看| ponron亚洲| 校园人妻丝袜中文字幕| 国产久久久一区二区三区| 国产一级毛片七仙女欲春2| 一级片'在线观看视频| 久久久色成人| 亚洲人成网站在线观看播放| 美女大奶头视频| videossex国产| av专区在线播放| 美女主播在线视频| 婷婷色综合www| 久久这里有精品视频免费| 免费观看在线日韩| 我要看日韩黄色一级片| 婷婷色av中文字幕| 最近中文字幕2019免费版| 国国产精品蜜臀av免费| 亚洲av不卡在线观看| 肉色欧美久久久久久久蜜桃 | 免费黄频网站在线观看国产| 免费无遮挡裸体视频| 亚洲av免费在线观看| 能在线免费观看的黄片| 一个人看视频在线观看www免费| 免费av毛片视频| 97精品久久久久久久久久精品| 国产毛片a区久久久久| 亚洲av成人av| 蜜桃亚洲精品一区二区三区| 日本-黄色视频高清免费观看| 国产视频首页在线观看| 亚洲国产精品国产精品| 男女边摸边吃奶| 嫩草影院入口| 国产精品人妻久久久久久| 久久精品夜夜夜夜夜久久蜜豆| 男人和女人高潮做爰伦理| 久久久久久久久久成人| 五月玫瑰六月丁香| 亚洲精品国产av蜜桃| 我的老师免费观看完整版| 一二三四中文在线观看免费高清| 天堂网av新在线| 五月伊人婷婷丁香| 男人和女人高潮做爰伦理| 十八禁网站网址无遮挡 | 特大巨黑吊av在线直播| 三级国产精品欧美在线观看| 最近中文字幕高清免费大全6| 成人美女网站在线观看视频| 国产 一区精品| 亚洲人与动物交配视频| 精品国产一区二区三区久久久樱花 | a级毛片免费高清观看在线播放| 免费在线观看成人毛片| 日韩成人伦理影院| 又粗又硬又长又爽又黄的视频| 国产91av在线免费观看| 亚洲av中文av极速乱| 国产亚洲精品久久久com| 黄色配什么色好看| 嫩草影院精品99| 大又大粗又爽又黄少妇毛片口| 亚洲av成人精品一二三区| 亚洲成人一二三区av| 22中文网久久字幕| 春色校园在线视频观看| 国产黄片美女视频| 免费看美女性在线毛片视频| 美女被艹到高潮喷水动态| 日韩大片免费观看网站| 晚上一个人看的免费电影| 日产精品乱码卡一卡2卡三| 日韩亚洲欧美综合| 一级毛片黄色毛片免费观看视频| 一二三四中文在线观看免费高清| 免费av观看视频|