徐文丹,崔毓桂
(南京醫(yī)科大學(xué)第一附屬醫(yī)院生殖醫(yī)學(xué)中心,南京 210029)
?
·綜述·
睪丸間質(zhì)干細(xì)胞分化和移植
徐文丹,崔毓桂*
(南京醫(yī)科大學(xué)第一附屬醫(yī)院生殖醫(yī)學(xué)中心,南京210029)
【摘要】睪丸間質(zhì)細(xì)胞是男性體內(nèi)合成雄激素的主要細(xì)胞,胚胎發(fā)育期中腎胚的間質(zhì)細(xì)胞及生精小管周成纖維樣細(xì)胞可能是睪丸間質(zhì)細(xì)胞的干細(xì)胞。在胚胎期間質(zhì)干細(xì)胞分化為胎兒型間質(zhì)細(xì)胞;出生后間質(zhì)干細(xì)胞經(jīng)間質(zhì)祖細(xì)胞、未成熟間質(zhì)細(xì)胞分化為成熟間質(zhì)細(xì)胞。老年期間質(zhì)細(xì)胞數(shù)量可能不變,但雄激素合成下降。間充質(zhì)干細(xì)胞及脂肪干細(xì)胞等干細(xì)胞經(jīng)誘導(dǎo)可分化為分泌雄激素的睪丸間質(zhì)細(xì)胞,因此,間質(zhì)干細(xì)胞移植可望成為治療男性性腺功能不全和中老年雄激素缺乏的創(chuàng)新方法,本文對睪丸間質(zhì)干細(xì)胞的分化及移植方面研究進(jìn)行綜述。
【關(guān)鍵詞】間質(zhì)細(xì)胞;間質(zhì)干細(xì)胞;雄激素;干細(xì)胞移植
(JReprodMed2016,25(4):369-373)
睪丸間質(zhì)細(xì)胞(LCs)是男性合成雄激素的主要細(xì)胞[1],1850年Franz Leydig鑒定并命名。哺乳動物發(fā)育過程中會出現(xiàn)兩種間質(zhì)細(xì)胞:胎兒型間質(zhì)細(xì)胞(FLCs)和成熟型間質(zhì)細(xì)胞(ALCs)[2]。目前已分離鑒定嚙齒類動物睪丸間質(zhì)干細(xì)胞(Stem Leydig cell,SLCs)為胚胎發(fā)育期的中腎胚的間質(zhì)細(xì)胞及睪丸小管周成纖維樣細(xì)胞(也稱作間充質(zhì)干細(xì)胞),胚胎期中腎胚的間質(zhì)干細(xì)胞分化為可分泌雄激素的FLCs。出生后成熟型間質(zhì)細(xì)胞產(chǎn)生分為4步:由睪丸局部的小管周成纖維樣細(xì)胞經(jīng)間質(zhì)細(xì)胞祖細(xì)胞(Progenitor leydig cells,PLCs)、未成熟型間質(zhì)細(xì)胞(ILCs)最終分化為ALCs[3],人也類似[4]。到了老年期或遲發(fā)性性腺功能減退癥即LOH,睪丸間質(zhì)細(xì)胞數(shù)量可能不變、但功能逐漸下降,而間質(zhì)干細(xì)胞還存在[5]。目前臨床普遍采用睪酮補(bǔ)充療法(TST)來緩解老年人及遲發(fā)性性腺功能減退癥引起的骨質(zhì)疏松、性欲下降等癥狀?,F(xiàn)多文獻(xiàn)報道間質(zhì)干細(xì)胞的移植可恢復(fù)雄激素水平,且可接收到軀體信息的反饋,更符合生理需求,故有望成為治療雄激素缺乏相關(guān)疾病的方法[6]。本文將對睪丸間質(zhì)細(xì)胞的分化及間質(zhì)干細(xì)胞移植治療方面進(jìn)行綜述。
一、睪丸間質(zhì)干細(xì)胞的起源
有報道稱體腔上皮細(xì)胞可分化為支持細(xì)胞及非支持細(xì)胞(含間質(zhì)細(xì)胞),但是間質(zhì)細(xì)胞并沒明確的鑒定出來[7]。FLCs的來源目前并不清楚,推測其前體可能同為內(nèi)分泌及類固醇生成細(xì)胞的干細(xì)胞。因此神經(jīng)脊細(xì)胞、腎上腺干細(xì)胞可能是FLCs干細(xì)胞,將它們移植至睪丸間質(zhì)最終可分化為FLCs,但是應(yīng)用基因敲除小鼠技術(shù)證實,它們并不是胎兒型間質(zhì)干細(xì)胞[8]。還有報道是中腎組織遷入到性腺中形成間質(zhì)細(xì)胞但是隨后鑒定移入的間質(zhì)干細(xì)胞也未分化為胎兒型間質(zhì)細(xì)胞[9]。2011年學(xué)者用分子標(biāo)志法發(fā)現(xiàn)體腔上皮及性腺和中腎的交界處細(xì)胞為FLCs的干細(xì)胞來源[10]。
Kilcoyne等報道經(jīng)二甲磺酸乙烷(EDS)誘導(dǎo)睪丸間質(zhì)細(xì)胞凋亡后再生證實青春期睪丸間質(zhì)干細(xì)胞是生殖小管周圍的細(xì)胞,這些細(xì)胞可表達(dá)雞卵清蛋白上游啟動子轉(zhuǎn)錄因子(COUP-TF)[11],但并未證明這些細(xì)胞是否全是間質(zhì)干細(xì)胞或只是一部分可分化為成熟型間質(zhì)細(xì)胞,也并未說明這些細(xì)胞是否由管周的細(xì)胞去分化而來。2014年Odeh的實驗也證實這一ALCs干細(xì)胞來源[12]。
二、胎兒型睪丸間質(zhì)細(xì)胞
1. SLCs向FLCs分化:1904年首次在豬胚胎中發(fā)現(xiàn)FLCs[13]。在大鼠妊娠期第12 d,來自胚胎生殖嵴的干細(xì)胞開始分化成FLCs。而小鼠在胚胎12.5~13.5 d(E12.5~13.5)于睪丸間質(zhì)中出現(xiàn)FLCs,間質(zhì)細(xì)胞處于祖細(xì)胞狀態(tài),分子標(biāo)記為SF-1(類固醇生成因子)ˉ/3β-HSDˉ(3β-類固醇脫氫酶)。E13.5即在支持細(xì)胞出現(xiàn)一天后分子標(biāo)記為SF-1+/3β-HSDˉ的細(xì)胞出現(xiàn),最終于E16.5形成分子標(biāo)記為SF+/3β-HSD+的FLCs[14]。在出生后睪丸間質(zhì)中FLCs得以保留,但很快退化,雖然對FLCs是否最終死亡不甚明確,但對于出生后雄激素的分泌,這些細(xì)胞的作用可以忽略不計[15]。
2. FLCs分化的調(diào)節(jié)因素:FLCs分化過程主要受到支持細(xì)胞旁分泌因子的調(diào)控。其中缺刻因子(NOTCH)是調(diào)節(jié)細(xì)胞間作用的跨膜受體,參與FLCs細(xì)胞的產(chǎn)生與維持[16],使用抑制劑或失活NOTCH下游受體發(fā)現(xiàn)FLCs細(xì)胞增多而持續(xù)活化此信號通路FLCs減少,故其是通過與膜配體及下游受體相互作用發(fā)揮作用的[17];另一因子通路——刺猬因子(Hh)信號通路是調(diào)節(jié)多細(xì)胞動物正常生長及細(xì)胞增殖的主要通路,此通路活化后胎兒期干細(xì)胞變少,干細(xì)胞向FLCs細(xì)胞分化增多[14]。
構(gòu)建超表達(dá)支持細(xì)胞雄激素受體(SCAR)的小鼠模型,發(fā)現(xiàn)支持細(xì)胞和精子過早成熟,同時也證實SCAR可促進(jìn)間質(zhì)細(xì)胞(包括FLCs及ALCs)的分化,但是間質(zhì)細(xì)胞數(shù)量卻下降,分泌的雄激素反而增多,原因目前不清楚[18]。
三、成熟型睪丸間質(zhì)細(xì)胞
1.ALCs的分化:ALCs并不來源于FLCs,且ALCs和FLCs是否由同一種細(xì)胞分化而來并不明確。但有研究報道表明ALCs與FLCs都可來源于胎兒期的SF1+細(xì)胞,且管周細(xì)胞為ALCs的干細(xì)胞[19]。間質(zhì)干細(xì)胞在生精小管周圍而非睪丸間質(zhì)中,其可增殖并在黃體生成素(LH)及胰島素樣因子1(IGF-1)的誘導(dǎo)下分化為產(chǎn)睪酮的間質(zhì)細(xì)胞[20]。
2.ALCs分化的影響因素
(1)成纖維細(xì)胞生長因子(FGF):培養(yǎng)大鼠生精管并用EDS誘導(dǎo)間質(zhì)細(xì)胞再生方法研究FGF對間質(zhì)干細(xì)胞的增殖及分化的影響,發(fā)現(xiàn)低濃度FGF可促進(jìn)SLCs的增殖及隨后的分化,也可通過增多類固醇激素生成快速調(diào)節(jié)因子(STAR)、類固醇側(cè)鏈裂解酶(CYP11A1)、3β-HSD表達(dá)促進(jìn)ALCsILCs睪酮的生成但在PLCs抑制這些酶的表達(dá)減少雄激素的產(chǎn)生。而高濃度的FGF作用相反,并指出FGF可能通過影響五種微小RNA(microRNAs) (miR-29a,-29c,-142-3p,-451和-335) 來調(diào)節(jié)雄激素的合成[21]。
(2)威廉姆腫瘤因子1(WT1):WT1是編碼4個左右鋅指結(jié)構(gòu),可以抑制腫瘤生長的轉(zhuǎn)錄因子,在睪丸中主要由支持細(xì)胞產(chǎn)生。有研究者特異性敲除支持細(xì)胞的WT1,發(fā)現(xiàn)出生后1~56 d(Postnatal1~56,P1~56) FLCs可保持其有絲分裂活性,且這些細(xì)胞表達(dá)的基因類型與FLCs有所不同,稱為胎兒樣間質(zhì)細(xì)胞。P56青春期后WT1可促進(jìn)FLCs的正常退化而促進(jìn)ALCs的分化[11],其作用機(jī)制可能為抑制WT1可下調(diào)影響間質(zhì)細(xì)胞分化的沙漠刺猬因子(Dhh)及血小板源性生長因子(PDGF-α)[22]。
(3)胰島素樣因子(IGF-1):IGF-1可促進(jìn)PLCs、ILCs的增殖,IGF-1基因敲除后小鼠的間質(zhì)細(xì)胞減少。這可能因為敲除IGF-1的小鼠的支持細(xì)胞功能下降,分泌的生長因子減少導(dǎo)致PLCs、ILCs減少,而并不影響SLCs的增殖[23]。
(4)LH和卵泡生成素(FSH):使用LH抑制劑后PLCs減少,而再加入LH后PLCs可恢復(fù),在體外LH可促進(jìn)PLCs分化,可增加PLCs增殖因子的表達(dá)[24]。另一報道[25]也證實了LH對間質(zhì)細(xì)胞的促分化增殖作用。2014年Verhagen等[26]證實恒猿猴間質(zhì)細(xì)胞的增殖分化也受到LH的刺激作用,另外也發(fā)現(xiàn)FSH的刺激作用但不如LH的作用效果。
四、老年期間質(zhì)細(xì)胞
老年期間質(zhì)細(xì)胞合成雄激素的功能逐漸下降,類固醇合成酶CYP11A、3β-HSD和 17β-HSD表達(dá)下降,目前機(jī)制不明確,但間質(zhì)細(xì)胞數(shù)量并不變,SLCs也并不隨著年老而衰減[6]。有報道雄激素受體敲除小鼠的間質(zhì)細(xì)胞凋亡增多并提前出現(xiàn),可能因為雌激素信號通路變強(qiáng)所致,表明自身分泌的雄激素可防止間質(zhì)細(xì)胞過早凋亡。雄激素減少會引起性欲下降、晨勃減少和勃起功能障礙,即LOH,2%的40~80歲的人群會發(fā)生LOH[27]。
五、SLCs移植
1. 胚胎干細(xì)胞(ESCs)的移植:研究表明過表達(dá)SF-1、8-溴-環(huán)磷腺苷(8-Br-cAMP)和毛喉素(FSK)共同作用都可增加ESC向ALC分化效率,將ESCs及過表達(dá)SF-1的ESCs轉(zhuǎn)移至EDS消除原有間質(zhì)細(xì)胞的大鼠睪丸中,發(fā)現(xiàn)其可定位于睪丸間質(zhì)中并完全分化為成熟的間質(zhì)細(xì)胞,過表達(dá)SF-1的ESCs在EDS處理后14天可使下降的血清睪酮值恢復(fù)原值。但這項研究并沒闡明ESCs誘導(dǎo)向間質(zhì)樣細(xì)胞分化的機(jī)制,也沒有排除ALCs為大鼠本身間質(zhì)祖細(xì)胞分化而來或間質(zhì)細(xì)胞與間質(zhì)樣細(xì)胞的融合的可能,而且這樣移植長遠(yuǎn)的安全性也需要進(jìn)一步研究[28]。
2. 間質(zhì)細(xì)胞干細(xì)胞移植:將睪丸間質(zhì)中表達(dá)細(xì)胞標(biāo)志物CD51的SLCs打入EDS處理后或年老的的小鼠或大鼠后可定位于睪丸間質(zhì)中,并分化為成熟的間質(zhì)細(xì)胞,生成的睪酮增加且生精能力也增加[29]。
異位移植睪丸后精子存在,支持細(xì)胞也存在,間質(zhì)細(xì)胞可再生,能作為治療不育癥及雄激素低下疾病的一種方法[30]。
3. 骨髓間充質(zhì)干細(xì)胞(MSCs)移植:MSCs是存在于成體的骨髓中,屬于成體干細(xì)胞。2006年報道大鼠的MSCs移植到未成熟大鼠睪丸后,其只定位于睪丸間質(zhì)中并表達(dá)STAR、CYP11A1、3β-HSD與正常間質(zhì)細(xì)胞無區(qū)別。體外實驗也發(fā)現(xiàn)在SF-1及cAMP誘導(dǎo)刺激下可分化為間質(zhì)細(xì)胞,但是人的MSCs在上述誘導(dǎo)刺激下卻分化為分泌糖皮質(zhì)激素的腎上腺細(xì)胞,這可能是因為MSCs有種族異質(zhì)性導(dǎo)致的。肝受體類似物(LHR-1)與SF-1屬于孤核受體超家族,加入LHR-1可增強(qiáng)MSCs的分化率[31]。
4. 誘導(dǎo)性多功能干細(xì)胞(IPS):IPS細(xì)胞是將已分化成熟體細(xì)胞重編程為類似于胚胎干樣細(xì)胞(ESCs)。除成纖維細(xì)胞可誘導(dǎo)為IPS外,現(xiàn)角質(zhì)細(xì)胞、神經(jīng)干細(xì)胞、內(nèi)皮細(xì)胞、干細(xì)胞等也已用于IPS的誘導(dǎo)。IPS重編碼方法很多主要分為病毒依賴型及非病毒依賴型。向小鼠及人的皮膚細(xì)胞中轉(zhuǎn)染八聚體結(jié)合轉(zhuǎn)錄因子3/4(Oct3/4)、SRY相關(guān)的高遷移率組(HMG)盒蛋白(Sox2)、Kruppel樣因子(Klf4)和原癌基因(c-Myc)4個轉(zhuǎn)綠因子外又添加一種蛋白小鼠-β-防衛(wèi)肽-3(Mbd3),使得重編碼率達(dá)到100%[32]。IPS細(xì)胞在生長特性、表面形態(tài)、特殊標(biāo)志物及增殖及分化潛能方面類似于胚胎干細(xì)胞,并且IPS細(xì)胞來源較廣泛,可由健康或是病人的任何器官的成體細(xì)胞重編碼生成,避免了患者異體干細(xì)胞移植引起的免疫排斥反應(yīng),也無需再擔(dān)心倫理問題等,但是依然有致癌性。目前大量研究者在藥物監(jiān)測、疾病細(xì)胞模型建立,疾病的細(xì)胞治療上用IPS,但很遺憾,現(xiàn)在在IPS分化為間質(zhì)細(xì)胞這一方面還無研究。只有一IPS向腎上腺細(xì)胞分化的報道[33]。
5. 脂肪干細(xì)胞(ADSCs):ADSCs來源于脂肪,具有多分化潛能,可分化為不同細(xì)胞,也可以促進(jìn)血管生成,可能與脂肪干細(xì)胞分泌多種細(xì)胞因子有關(guān),其中脂肪干細(xì)胞分泌的生長因子不僅可促進(jìn)自身轉(zhuǎn)移到受傷組織,還可以促進(jìn)其他干細(xì)胞的增殖及分化,故可抗細(xì)胞組織損傷,又因其致癌風(fēng)險低,數(shù)量足,用其治療泌尿道及男科疾病成為可能[34]。2015年國內(nèi)學(xué)者將ADSCs靜脈注入D-半乳糖誘導(dǎo)的致衰老小鼠,發(fā)現(xiàn)此小鼠內(nèi)血清睪酮水平可上升,推測ADSCs可能分化為間質(zhì)細(xì)胞[35]。
六、結(jié)論
間質(zhì)細(xì)胞在胚胎期及出生后分化過程及具體作用都不同,但都是分泌雄激素發(fā)揮作用。目前FLCs及ALCs的干細(xì)胞并沒有明確來源,其增殖及分泌雄激素的過程受到內(nèi)分泌和局部因子的調(diào)節(jié)。另外,發(fā)現(xiàn)間質(zhì)細(xì)胞缺失或受損導(dǎo)致雄激素分泌減少時,除使用雄激素補(bǔ)充雄激素還可以嘗試采用間質(zhì)干細(xì)胞移植方法間接補(bǔ)充雄激素,目前ESCs、IPS、ADSCs等干細(xì)胞都可用于移植誘導(dǎo)為間質(zhì)干細(xì)胞,但都僅限于動物實驗,還未有間質(zhì)干細(xì)胞移植用于人體疾病。相信不久的未來就會出現(xiàn)間質(zhì)干細(xì)胞移植應(yīng)用于臨床,治療雄激素減少的相關(guān)疾病。
【參考文獻(xiàn)】
[1]Yeap BB. Testosterone and cardiovascular disease risk[J]. Curr Opin Endocrinol Diabetes Obes,2015,22:193-202.
[2]Habert R,Lejeune H,Saez JM. Origin,differentiation and regulation of fetal and adult Leydig cells[J]. Mol Cell Endocrinol,2001,179:47-74.
[3]Chen H,Ge RS,Zirkin BR. Leydig cells:From stem cells to aging[J].Mol Cell Endocrinol,2009,306:9-16.
[4]Svechnikov K,Landreh L,Weisser J,et al. Origin,development and regulation of human Leydig cells[J]. Horm Res Paediatr,2010,73:93-101.
[5]Chen H,Stanley E,Jin S,et al. Stem Leydig cells:from fetal to aged animals[J]. Birth Defects Res C Embryo Today,2010,90:272-283.
[6]Shang XJ,Huang YF. Risks and benefits:new concepts of treatment of late-onset hypogonadism[J].Zhonghua Nan Ke Xue,2014,20:483-489.
[7]Schmahl J,Eicher EM,Washburn LL,et al. Sry induces cell proliferation in the mouse gonad[J]. Development,2000,127:65-73.
[8]Svingen T,Koopman P. Building the mammalian testis:origins,differentiation,and assembly of the component cell populations[J]. Genes Dev,2013,27:2409-2426.
[9]Combes AN,Wilhelm D,Davidson T,et al. Endothelial cell migration directs testis cord formation[J]. Dev Biol,2009,326:112-120.
[10]DeFalco T,Takahashi S,Capel B. Two distinct origins for Leydig cell progenitors in the fetal testis[J]. Dev Biol,2011,352:14-26.
[11]Kilcoyne KR,Smith LB,Atanassova N,et al. Fetal programming of adult Leydig cell function by androgenic effects on stem/progenitor cells[J]. Proc Natl Acad Sci U S A,2014,111:E1924-1932.
[12]Odeh HM,Kleinguetl C,Ge R,et al. Regulation of the proliferation and differentiation of Leydig stem cells in the adult testis[J]. Biol Reprod,2014,90:123.
[13]Wen Q,Zheng QS,Li XX,et al. Wt1 dictates the fate of fetal and adult Leydig cells during development in the mouse testis[J]. Am J Physiol Endocrinol Metab,2014,307:E1131-1143.
[14]Orth JM. Proliferation of Sertoli cells in fetal and postnatal rats:a quantitative autoradiographic study[J]. Anat Rec,1982,203:485-492.
[15]Barsoum IB,Kaur J,Ge RS,et al. Dynamic changes in fetal Leydig cell populations influence adult Leydig cell populations in mice[J].FASEB J,2013,27:2657-2666.
[16]Tang H,Brennan J,Karl J,et al. Notch signaling maintains Leydig progenitor cells in the mouse testis[J]. Development,2008,135:3745-3753.
[17]Barsoum IB,Yao HH. Fetal Leydig cells:progenitor cell maintenance and differentiation[J]. J Androl,2010,31:11-15.
[18]Hazra R,Jimenez M,Desai R,et al. Sertoli cell androgen receptor expression regulates temporal fetal and adult Leydig cell differentiation,function,and population size[J]. Endocrinology,2013,154:3410-3422.
[19]Lottrup G,Nielsen JE,Maroun LL,et al. Expression patterns of DLK1 and INSL3 identify stages of Leydig cell differentiation during normal development and in testicular pathologies,including testicular cancer and Klinefelter syndrome[J]. Hum Reprod,2014,29:1637-1650.
[20]Shima Y,Miyabayashi K,Baba T,et al. Identification of an enhancer in the Ad4BP/SF-1 gene specific for fetal Leydig cells[J]. Endocrinology,2012,153:417-425.
[21]Liu H,Yang Y,Zhang L,et al. Basic fibroblast growth factor promotes stem Leydig cell development and inhibits LH-stimulated androgen production by regulating microRNA expression[J]. J Steroid Biochem Mol Biol,2014,144:483-491.
[22]Brennan J,Tilmann C,Capel B. Pdgfr-alpha mediates testis cord organization and fetal Leydig cell development in the XY gonad[J]. Genes Dev,2003,17:800-810.
[23]Hu GX,Lin H,Chen GR,et al. Deletion of the Igf1 gene:suppressive effects on adult Leydig cell development[J]. J Androl,2010,31:379-387.
[24]Guo JJ,Ma X,Wang CQ,et al. Effects of luteinizing hormone and androgen on the development of rat progenitor Leydig cells in vitro and in vivo[J]. Asian J Androl,2013,15:685-691.
[25]Wells R,Kenny AL,Duckett R,et al. Elucidation of the role of LH and FSH during neonatal testicular development and growth in the boar[J]. Anim Reprod Sci,2013,137:74-81.
[26]Verhagen I,Ramaswamy S,Teerds KJ,et al. Time course and role of luteinizing hormone and follicle-stimulating hormone in the expansion of the Leydig cell population at the time of puberty in the rhesus monkey (Macaca mulatta) [J]. Andrology,2014,2:924-930.
[27]Huhtaniemi I,F(xiàn)orti G. Male late-onset hypogonadism:pathogenesis,diagnosis and treatment[J].Nat Rev Urol,2011,8:335-344.
[28]Katib AA,Al-Hawsawi K,Motair W,et al. Secondary infertility and the aging male,overview[J]. Cent European J Urol,2014,67:184-188.
[29]Jiang MH,Cai B,Tuo Y,et al. Characterization of Nestin-positive stem Leydig cells as a potential source for the treatment of testicular Leydig cell dysfunction[J]. Cell Res,2014,24:1466-1485.
[30]Sato Y,Nozawa S,Yoshiike M,et al. Xenografting of testicular tissue from an infant human donor results in accelerated testicular maturation[J]. Hum Reprod,2010,25:1113-1122.
[31]Yazawa T,Inanoka Y,Mizutani T,et al. Liver receptor homolog-1 regulates the transcription of steroidogenic enzymes and induces the differentiation of mesenchymal stem cells into steroidogenic cells [J]. Endocrinology,2009,150:3885-3893.
[32]Kaji K,Nichols J,Hendrich B. Mbd3,a component of the NuRD co-repressor complex,is required for development of pluripotent cells[J]. Development,2007,134:1123-1132.
[33]Sonoyama T,Sone M,Honda K,et al. Differentiation of human embryonic stem cells and human induced pluripotent stem cells into steroid-producing cells[J]. Endocrinology,2012,153:4336-4345.
[34]Kim WS,Park BS,Sung JH. Protective role of adipose-derived stem cells and their soluble factors in photoaging[J].Arch Dermatol Res,2009,301:329-336.
[35]Yang C,Du YK,Wang J,et al. Transplanted adipose-derived stem cells ameliorate testicular dysfunction in a D-galactose-induced aging rat model[J].J Cell Physiol,2015,230:2403-2414.
[編輯:辛玲]
Differentiation and transplantation of testicular Leydig stem cell
XUWen-dan,CUIYu-gui*
ClinicalCenterofReproductiveMedicine,FirstAffiliatedHospital,NanjingMedicalUniversity,Nanjing210029
【Abstract】
Testicular Leydig cells are main cells which synthesize testosterone in male. Mesonephric stromal cells and fibroblast-like cells around seminiferous tubules are the stem Leydig cells (SLCs) during fetal development. In mammalian, the fetal Leydig cells (FLCs) are differentiated from SLCs at fetal stage. The neonate SLCs differentiated to the adult Leydig cells (ALCs) via progenitor Leydig cells (PLCs), immature Leydig cells (ILCs). Testosterone production in Leydig cells decreases along with aging, while total number of Leydig cell may not changed. It was reported that marrow stromal cells (MSCs) and adipose-derived stem cells, as well as some other stem cells, could beinvitroinduced to differentiate to SLC with the function of testosterone production. SLCs transplantation could be a new method for clinical treatment of male hypogonadism and andropouse. The differentiation of SLCs and transplantation are reviewed in this paper.
【Keywords】Leydig cell; Stem Leydig cell;Androgen;Stem cell transplantation
【作者簡介】徐文丹,女,山東棗莊人,碩士研究生,生殖醫(yī)學(xué)專業(yè).(*通訊作者,Email:cuiygnj@njmu.edu.cn)
【基金項目】國家自然科學(xué)基金(81170559,81370754);江蘇省衛(wèi)生廳科教興衛(wèi)工程(ZX201110)
【收稿日期】2015-06-25;【修回日期】2015-08-06
DOI:10.3969/j.issn.1004-3845.2016.04.016