?張 育,常黎明,張亞軍,謝 放?
(蘭州交通大學(xué)化學(xué)與生物工程學(xué)院,甘肅 蘭州 730030)
?
食用菌有性發(fā)育相關(guān)基因的研究進展
張 育,常黎明,張亞軍,謝 放
(蘭州交通大學(xué)化學(xué)與生物工程學(xué)院,甘肅 蘭州 730030)
摘 要:從構(gòu)巢曲霉veA基因的發(fā)現(xiàn)出發(fā),以研究時間先后為順序,總結(jié)了近30 a來發(fā)現(xiàn)的與食用菌有性發(fā)育相關(guān)的基因及其作用,其中重點介紹了雙孢菇、香菇和冬蟲夏草中有性發(fā)育相關(guān)基因的功能,并對今后食用菌有性發(fā)育的研究進行了展望。
關(guān)鍵詞:食用菌;有性發(fā)育;功能基因;綜述
食用菌發(fā)育包括無性和有性兩個階段,一般以產(chǎn)生親和性交配型雙核菌絲為界線[1]。通常,子實體的發(fā)生與發(fā)育會受到外界環(huán)境的影響,但歸根結(jié)底還是基因選擇性表達的結(jié)果。早在100 a以前,人們就開始對食用菌的生物學(xué)特性、馴化育種、培養(yǎng)基質(zhì)、栽培技術(shù)、營養(yǎng)生理和病蟲防治等展開了研究[2],但關(guān)于食用菌有性發(fā)育分子機理方面的研究成果相對較少。2010年鮑大鵬等[3]完成了草菇的全基因組測序,該成果推動了一些珍稀食用菌如冬蟲夏草、羊肚菌等的分子機理研究。隨著分子生物學(xué)技術(shù)的發(fā)展,國內(nèi)外學(xué)者對食用菌發(fā)育分子機理的研究也越來越深入,取得了階段性的成果。筆者綜述了近30 a來與食用菌有性發(fā)育相關(guān)的功能基因的研究進展,以期為某些不能人工栽培的珍稀食用菌的開發(fā)利用提供參考。
早在1965年,Kafer等[4]從模式真菌構(gòu)巢曲霉的突變株中分離到veA基因的突變基因(veA1基因),因該基因和其他已知功能的蛋白質(zhì)之間無同源性,導(dǎo)致該基因的研究一直停滯。1981年,Champe等[5]發(fā)現(xiàn),veA蛋白在真菌中作為有性發(fā)育的正調(diào)節(jié)因子,調(diào)節(jié)著有性發(fā)育的整個過程。直至2002年,Kim等[6]發(fā)現(xiàn)veA突變體在適宜于野生型產(chǎn)生子囊果的條件下也不會產(chǎn)生子囊果,充分證明了veA基因的表達與有性發(fā)育的啟動是直接相關(guān)的,它是有性發(fā)育的啟動基因之一。這一結(jié)果的獲得對食用菌有性發(fā)育機理的研究起著里程碑式的作用。
2.1 雙孢菇
食用菌中,與有性發(fā)育相關(guān)的基因最早是在雙孢菇(A.bisporus)中發(fā)現(xiàn)的,在研究可利用培養(yǎng)基基質(zhì)的食用菌基因時偶然發(fā)現(xiàn)了一些基質(zhì)降解酶基因,如葡萄糖-6-磷酸脫氫酶基因、甘露醇脫氫酶基因、幾丁質(zhì)酶基因及鳥苷酸轉(zhuǎn)移酶基因等(表1),在子實體形成過程中可差異性表達,由此推測這些酶對應(yīng)的基因可能與有性發(fā)育相關(guān)。
表1中的8個基因,目前只有甘露醇脫氫酶基因,鳥苷酸轉(zhuǎn)移酶基因,PPO/HSP基因的功能得到了驗證,它們在有性發(fā)育過程中分別起到滲透壓調(diào)節(jié),產(chǎn)物分布以及調(diào)劑有性發(fā)育的作用,但其他與有性發(fā)育相關(guān)的基因的功能尚未得到驗證,還需進一步研究。
2.2 香 菇
香菇中有性發(fā)育相關(guān)基因的研究最多,進展也較快。目前,已發(fā)現(xiàn)了11個與有性發(fā)育相關(guān)的基因,如表2所示。通過研究這些基因在子實體形成過程中表達量的變化,推測這些基因可能與有性發(fā)育相關(guān)。此外,還發(fā)現(xiàn)了105個未命名的基因,也可能與有性發(fā)育相關(guān),這些基因涉及基礎(chǔ)代謝、細胞結(jié)構(gòu)、信號傳導(dǎo)和脅迫響應(yīng)等生理活動,說明子實體形成過程與多個代謝途徑和信號轉(zhuǎn)導(dǎo)相關(guān)。
表1 雙孢菇(A.bisporus)中與有性發(fā)育相關(guān)的基因
表2 香菇中與有性發(fā)育相關(guān)的基因
2.3 冬蟲夏草
2009年,Yao等[26]研究了子座形成初期中國被毛孢基因轉(zhuǎn)型突變和蝙蝠蛾擬青霉基因的表達,發(fā)現(xiàn)GC和AT基因轉(zhuǎn)型酶可能來自于中國被毛孢,該酶可能在促進冬蟲夏草無性發(fā)育到有性發(fā)育的連接過程中起關(guān)鍵性作用。
2010年,Zhang等[27]克隆得到了冬蟲夏草僵蟲和子座兩部分的cDNA文庫,并將這兩個文庫的序列進行了聚類分析,發(fā)現(xiàn)在發(fā)育過程中,核酸水平存在高度的復(fù)雜性,而蛋白質(zhì)水平依舊很保守;Zhu等[28]在研究冬蟲夏草由無性發(fā)育向有性發(fā)育過渡時GC-AT基因轉(zhuǎn)型時發(fā)現(xiàn),冬蟲夏草的成熟不僅與蝙蝠蛾擬青霉和冬蟲夏草突變體基因子實體的增加聚集有關(guān),而且與含有GC-AT基因轉(zhuǎn)型的冬蟲夏草菌基因的特異性表達有關(guān),這個發(fā)現(xiàn)對明確冬蟲夏草由無性型向子座形成過程起到至關(guān)重要的作用。
2011年,Zhu等[29]對有性發(fā)育過程中基因的轉(zhuǎn)換和顛換及其隨子實體成熟發(fā)生的變化做了進一步研究,發(fā)現(xiàn)基因轉(zhuǎn)型可能是冬蟲夏草菌子座萌發(fā)和成熟所必須的。
2012年,Gao等[30]對冬蟲夏草菌基因轉(zhuǎn)型在子座成熟階段的變化進行了研究,發(fā)現(xiàn)冬蟲夏草中至少有5個轉(zhuǎn)換和顛換突變基因型同時出現(xiàn),該基因型在子實體產(chǎn)生過程中顯著性表達可能為冬蟲夏草子座萌發(fā)和成熟提供重要的信息,使冬蟲夏草由無性型轉(zhuǎn)換為有性型;Yao等[31]研究了兩種冬蟲夏草獨特成熟模式下GC偏差基因型的變化,結(jié)果表明冬蟲夏草中含有兩個特殊的GC偏差基因型,這2個GC偏差基因和冬蟲夏草的其他基因型是否為內(nèi)部或外部的物種突變還有待進一步的研究。
2013年,李建宏[32]構(gòu)建了中國被毛孢有性發(fā)育起始階段cDNA文庫,該文庫中存在一段與其他真菌有性發(fā)育相關(guān)基因有極大相似性的veA基因。
近年來,在冬蟲夏草有性發(fā)育過程中的研究取得了階段性的進展,但總體來講,這些研究缺乏系統(tǒng)性,希望在以后的研究中多做一些與實際相關(guān)的研究。
2.4 其 他
有關(guān)裂褶菌發(fā)育分子機理的研究起步較早,Mulder等[33]在研究裂褶菌子實體形成過程中單核菌絲和雙核菌絲中RNA的差異性表達時發(fā)現(xiàn),在子實體形成初期,有性發(fā)育相關(guān)基因的表達量遠低于其成熟期的表達量。Schuren等[34]研究了子實體形成過程中Sc7/Sc14基因家族編碼胞外蛋白的特異性表達,發(fā)現(xiàn)Sc7蛋白在培養(yǎng)基和子實體內(nèi)均存在,并可看到蛋白松散地錨定在菌絲壁表面。此外,還有一些其他食用菌中的研究成果,詳見表3。
表3 其他食用菌中與有性發(fā)育機理相關(guān)的研究概況
20世紀(jì)80年代至今,對食用菌的研究一直沒有中斷過,雖然已經(jīng)取得了一些階段性成果,但還存在很多問題未能確定:(1)與有性發(fā)育相關(guān)的基因已發(fā)現(xiàn)較多,但其具體作用位置還有待進一步驗證;(2)子實體形成是一個復(fù)雜的過程,其分化受多個基因調(diào)控,各基因之間的相互關(guān)系如何,具體怎么調(diào)控有待進一步深入研究;(3)食用菌有性發(fā)育的研究對象較分散、研究內(nèi)容較籠統(tǒng)、研究成果不系統(tǒng)??偠灾秤镁行园l(fā)育是一個系統(tǒng)而龐大的課題,需要各方面協(xié)同努力才能攻克這一難題。
參考文獻:
[1] 劉化民. 食用菌遺傳育種[J]. 食用菌,1985,(5):39-41.
[2] 《食用菌》1985年總目錄[J]. 食用菌,1985,(6):45-48.
[3] 鮑大鵬,趙國屏,譚 琦,等. 草菇全基因組框架圖[J]. 食用菌,2010,(1):1-5.
[4] Kafer E. Origin of transcriptions in Aspergillus nidulans[J]. Genetics,1965,52:217-232.
[5] Champe S P,Kurtz M B,Yager I N,et a1. Spore formation in Aspergillus nidulans:competence and other developmental processes[M]. New York:Academic Press,1981.
[6] Kim H S,Han K Y,Kim K J,et al. The veA gene activates sexual development in Aspergillus nidulans[J]. Fungal Genetics and Biology,2002,37:72-80.
[7] Hannond J B W. Variations in enzyme activity during periodic fruiting of Agaricus bisporus[J]. New Phytol,1981,89(3):419-428.
[8] Stoop J M,Mooibroek H. Cloning and characterization of NADP-mannitol dehydrogenase cDNA from the button mushroom Agaricus bisporus,and its expression in response to NaCl stress [J]. Applied and Environmental Microbiology,1998,64(12):4689-4696.
[9] De Groot P W J,Schaap P J,Van Griensven L J L D,et al. Isolation of developmentally regulated genes from the edible mushroom Agaricus bisporus[J]. Microbiology,1997,143:1993-2001.
[10] Sreeniva S S,Burton K S,Wood D A. Cloning and characterisation of a chitin synthase gene cDNA from the cultivated mushroom Agaricus bisporus and its expression during morphogenesis[J]. FEMS Microbiology Letters,2000,189(1):73-77.
[11] Wagemaker M J M,Eastwood D C,Welagen J,et al. The role of ornithine aminotransferase in fruiting body formation of the mushroom Agaricus bisporus[J]. Mycological Research,2007,111(8):909-918.
[12] Largeteau M L,Latapy C,Minvielle N,et al. Expression of phenol oxidase and heat-shock genes during the development of Agaricus bisporus fruiting bodies,healthy and infected by Lecanicillium fungicola[J]. Applied Microbiology and Biotechnology,2010,85(5):1499-1507.
[13] Kajiwara S,Yamaoka K,Hori K,et al. Isolation and sequence of a developmentally regulated putative novel gene,priA,from the basidimycete Lentinus edodes [J]. Gene,1992,114(2):173-178.
[14] Ishizaki T,Kanno T,Kajiwara S,et al. Increased heavy metal sensitivity of Escherichia coli producing the expression product of priA gene derived from the basidiomycete Lentinus edodes[J]. FEMS Microbiology Letter,1999,171:141-146.
[15] Miyazaki Y,Sakuragi Y,Yamazaki T,et al. Target genes of the developmental regulator PRIB of the mushroom Lentinula edodes[J]. Bioscience Biotechnology Biochemistry,2004,68 (9):1898-1905.
[16] Miyazaki Y,Tsunoka O,Shishido K. Determination of the DNA-binding sequences of the Zn (II )2Cys6 zinc-cluster-containing PRIB protein,derive d from the basidiomycete Lentinus edodes gene[J]. Biochem,1997,122(6):1088-1091.
[17] Kaneko S,Miyazaki Y,Yasuda T,et al. Cloning,sequence analysis and expression of the basidiomycete Lentinus edodes gene uck1,encoding UMP-CMP kinase,the homologue of Saccharomyces cerevisae URA6 gene[J]. Gene,1998,211(2):259-266.
[18] Miyazaki Y,Jojima T,Ono T,et al. A cDNA homologue of Schizosaccharomyces pombe cdc5+from the mushroom Lentinula edodes:characterization of the cDNA and its expressed product[J]. Biochimica et Biophysuca Acta,2004,1680(2):93-102.
[19] Miyazaki Y,Kaneko S,Sunagawa M,et al. The fruiting-specific Le.flp1 gene,encoding a novel fungal fasciclin-like protein,of the basidiomycetous mushroom Lentinula edodes[J]. Current Genetics,2007,51(6):367-375.
[20] Szeto C Y,Wong Q W,Leung G S,et al. Isolation and transcript analysis of two-component histidine kinase gene Le.nik1 in Shiitake mushroom,Lentinula edodes[J]. Mycological Research,2008,112:108-116.
[21] Katsukawa S,Yamazaki T,Kajiwara S,et al. A recQ gene homolog from the basidiomycetous mushroom Lentinula edodes:sequence analysis and expression[J]. Bioscience,Biotechnology and Biochemistry,2004,68(12):2588-2597.
[22] Miyazaki Y,Nakamura M,Babasaki K. Molecular cloning of developmentally specific genes by representational difference analysis during the fruiting body formation in the basidiomycete Lentinula edodes[J]. Fungal Genet Biol,2005,42(6):493-505.
[23] Nakazawa T,Miyazaki Y,Kaneko S,et al. Developmental regulator Le.CDC5 of the mushroom Lentinula edodes:analyses of its amount in each of the stages of fruiting-body formation and its distribution in parts of the fruiting bodies[J]. FEMS Microbiology Letter,2006,261(1):60-63.
[24] Sano H,Narikiyo T,Kaneko S,et al. Sequence analysis and expression of a blue-light photoreceptor gene,Le.phrA from the basidiomycetous mushroom Lentinula edodes[J]. Bioscience,Biotechnology and Biochemistry,2007,71(9):2206-2213.
[25] Takehito N,Shinya K,Hitoshi M,et al. The homologue of Lentinula edodes ctg1,a target for CDC5 and its interacting partner CIPB,from Coprinopsis cinerea is involved in fruiting-body morphogenesis of C. Cinerea[J]. Mycoscience,2009,50(5):331-342.
[26] Yao Y S,Zhou Y J,Chen W,et al. Transition mutations of Hirsutella sinensis genes and expressions of Paecilomyces hepiali genes during germination and early development of Cordyceps sinensis stroma[J]. The FASEB Journal,2009,23.
[27] Zhang S P,F(xiàn)eng H,Li X Y,et al. Genome research profile of two Cordyceps sinensis cDNA libraries[J]. Chinese Science Bulletin,2010,55(14):1403-1411.
[28] Zhu J S,Gao L,Yao Y S,et al. Maturational alteration of differential expressions of GC:AT-biased genotypes of Cordyceps sinensis fungi and Paecilomyces hepiali in Cordyceps sinensis[J]. The FASEB Journal,2010,24.
[29] Zhu J S,Gao L,Lu J H. Transition and transversion point mutations of Ophiocordyceps sinensis and their maturational alterations in stroma of Cordyceps sinensis[J]. The FASEB Journal,2011,25.
[30] Gao L,Li X H,Zhao J Q,et al. Maturation of Cordyceps sinensis associates with alterations of fungal expressions of multiple Ophiocordyceps sinensis mutants in stroma of Cordyceps sinensis[J]. Beijing Da Xue Xue Bao,2012,44(3):454-463.
[31] Yao Y S,Gao L,Zhao J G,et al. Two GC- biased genotypes of Ophiocordyceps sinensis with distinct maturational patterns in the stroma of Cordyceps sinensis[J]. The FASEB Journal,2012,26.
[32] 李建宏. 冬蟲夏草菌子實體發(fā)育起始階段cDNA文庫的構(gòu)建及ESTs分析[D]. 蘭州:蘭州交通大學(xué),2013.
[33] Mulder G H,Wessels J G H. Molecular cloning of RNAs differentially expressed in monokaryons and dikaryons of Schizophyllum ommune in relation to fruiting[J]. Experimental Mycology,1986,10(3):214-227.
[34] Schuren FH,Asgeirsdóttir SA,Kothe EM,et al. The Sc7/Sc14 gene family of Schizophyllum commune codes for extracellular proteins specifically expressed during fruit-body formation[J]. Gen Microbiol,1993,139(9):2083-2090.
[35] Mikihiro N,Akira W,Yasuhiko A. Isolation,characterization,and expression analysis of a class IV chitin synthase gene from the edible basidiomycetous mushroom Pleurotus ostreatus[J]. Mycoscience,2007,48(3):176-181.
[36] Pezzella C,Lettera V,Piscitelli A,et al. Transcriptional analysis of Pleurotus ostreatus laccase genes[J]. Appl Microbiol Biotechnol,2013,97(2):705-717.
[37] Sakamoto Y. Protein expression during Flammulina Velutipes fruiting body formation[J]. Mycoscience,2010,51:163-169.
[38] Fernandez E M T,Labarere J. Cloning and sequencing of the Aapri1 gene specifically expressed during fruiting initiation in the edible mushroom Agrocybe aegerita,and analysis of the predicted amino-acid sequence[J]. Current Genetics,1997,32(6):420-424.
[39] Muraguchi H,Kamada T. The ich1 gene of the mushroom Coprinus cinereus is essential for pileus formation in fruiting[J]. Development,1998,125(16):3133-3141.
[40] Muraguchi H,Kamad T. A Mutation in the eln2 Gene Encoding a Cytochrome P450 of Coprinus cinereus affects Mushroom Morphogenesis[J]. Fungal Genetics and Biology,2000,29(1):49-59.
[41] Berne S,Krizaj I,Pohleven F,et al. Pleurotus and Agrocybe hemolysins,new proteins hypothetically involved in fungal fruiting[J]. Biochimica et Biophysica Acta:General Subjects,2002,1570(3):153-159.
[42] Joh J H,Lee S H,Lee J S,et al. Isolation of genes expressed during the developmental stages of the oyster mushroom,Pleurotus ostreatus,using expressed sequence tags[J]. FEMS Microbiology Letters,2007,276(1):19-25.
[43] Berne S,Pohleven J,Vidic I,et al. Ostreolysin enhances fruiting initiation in the oyster mushroom(Pleurotus ostreatus)[J]. Mycological Research,2007,111(12):1431-1436.
(責(zé)任編輯:成 平)
Research? Progress?on? Sexual ?Development? Related? Genes?in? Edible? Fungi
ZHANG Yu,CHANG Li-ming,ZHANG Ya-jun,XIE Fang(School of Chemistry and Biology Engineering, Lanzhou Jiaotong University, Lanzhou 730030, PRC)
Abstract:This paper reviews the sexual development related genes and their functions in edible fungi in research time sequence in recent 30 years since the discovery of Aspergillus nidulans veA gene, mainly on Agaricus bisporus, Lentinula edodes and Cordyceps sinensis, and prospects the further reseach on the edible fungi’s sexual development in the future.
Key?words:edible fungi; sexual development; functional gene; review
作者簡介:張 育(1989-),女,甘肅天水市人,碩士研究生,主要從事資源與環(huán)境微生物研究。
基金項目:甘肅省科技支撐基金資助項目(212256)
收稿日期:2015-10-20
DOI:10.16498/j.cnki.hnnykx.2016.01.032
中圖分類號:S646.032
文獻標(biāo)識碼:A
文章編號:1006-060X(2016)01-0115-04