夏 紅,向姝霖,2,曾 穎,陸麗峰,劉 芳,凌 暉,蘇 波,蘇 琦
(1.湖南省胃癌研究中心南華大學(xué)腫瘤研究所, 湖南省高校腫瘤細(xì)胞與分子病理學(xué)重點(diǎn)實(shí)驗(yàn)室,湖南 衡陽 421001;2. 南華大學(xué)附屬懷化醫(yī)院,懷化市第一人民醫(yī)院,湖南 懷化 418000)
?
DADS對Chk1/2基因高表達(dá)人胃癌MGC803細(xì)胞G2/M期的影響
夏紅1,向姝霖1,2,曾穎1,陸麗峰1,劉芳1,凌暉1,蘇波1,蘇琦1
(1.湖南省胃癌研究中心南華大學(xué)腫瘤研究所, 湖南省高校腫瘤細(xì)胞與分子病理學(xué)重點(diǎn)實(shí)驗(yàn)室,湖南 衡陽421001;2. 南華大學(xué)附屬懷化醫(yī)院,懷化市第一人民醫(yī)院,湖南 懷化418000)
中國圖書分類號:R329.24;R329.28;R345.57;R735.202.2;R916.4;R979.1
摘要:目的在建立Chk1/2基因高表達(dá)人胃癌MGC803細(xì)胞基礎(chǔ)上,探討DADS對Chk1/2高表達(dá)MGC803細(xì)胞G2/M期的作用。方法分別采用集落形成實(shí)驗(yàn)、流式細(xì)胞術(shù)、RT-PCR、Western blot等方法,檢測DADS對Chk1/2高表達(dá)MGC803細(xì)胞增殖、細(xì)胞周期分布、Chk1與Chk2 mRNA與蛋白、p-Chk1與p-Chk2及CDC25C與cyclinB1的表達(dá)。結(jié)果軟瓊脂集落形成實(shí)驗(yàn)顯示,30 mg·L-1DADS作用Chk1與Chk2高表達(dá)MGC803細(xì)胞組集落形成率均明顯低于對照組與空載體組(P<0.05)。流式細(xì)胞術(shù)顯示,30 mg·L-1DADS作用12、24、36、48 h后,Chk1/MGC803細(xì)胞G2/M期分別為41.3%、57.4%、68.9%、42.9%,較MGC803細(xì)胞與Chk2/MGC803細(xì)胞明顯增加(P<0.05)。而Chk2/MGC803細(xì)胞與MGC803細(xì)胞差異沒有顯著性(P>0.05)。RT-PCR顯示,Chk1/MGC803與Chk2/MGC803細(xì)胞Chk1與Chk2 mRNA水平較對照組無明顯變化;并且,Western blot顯示,Chk1與Chk2總蛋白及p-Chk2的表達(dá)無明顯改變,但p-Chk1呈時間依賴性上調(diào),CDC25C與cyclinB1呈時間依賴性下調(diào)(P<0.05)。結(jié)論DADS可阻滯Chk1/MGC803細(xì)胞于G2/M期,與上調(diào)磷酸化Chk1和下調(diào)CDC25C與cyclinB1有關(guān)。
關(guān)鍵詞:二烯丙基二硫;人胃癌細(xì)胞;G2/M期;Chk1/Chk2激酶;CDC25C;cyclinB1
二烯丙基二硫(diallyl disulfide,DADS)是大蒜中的脂溶性有效成分,可抑制腫瘤細(xì)胞增殖、誘導(dǎo)腫瘤細(xì)胞分化與凋亡、阻滯細(xì)胞周期、抑制血管形成及侵襲等,是一種很有開發(fā)潛力的抗腫瘤藥物[1]。我們已經(jīng)證實(shí),DADS抑制人胃癌細(xì)胞增殖和G2/M阻滯與激活p38、抑制ERK/AP-1、上調(diào)組蛋白乙酰化、p21 WAF1等有關(guān)[2-4]。但是,誘導(dǎo)G2/M阻滯的機(jī)制尚未完全闡明。G2/M期檢查點(diǎn)失活在細(xì)胞癌變過程中起著重要的作用,Chk1和Chk2是G2/M期檢查點(diǎn)的兩個關(guān)鍵激酶,而Chk1是重要靶點(diǎn)[5]。本研究在構(gòu)建Chk1/2基因高表達(dá)MGC803細(xì)胞的基礎(chǔ)上[6],進(jìn)一步探討DADS對Chk1/2高表達(dá)人胃癌細(xì)胞周期阻滯的作用及其機(jī)制。
1材料與方法
1.1細(xì)胞培養(yǎng)人胃癌MGC803細(xì)胞株由本實(shí)驗(yàn)室保存,置于含10%小牛血清的RPMI 1640培養(yǎng)基中,37℃、5% CO2、飽和濕度的培養(yǎng)箱內(nèi)傳代培養(yǎng)。取對數(shù)生長期的細(xì)胞用于實(shí)驗(yàn)。
1.2主要試劑DADS為Fluka公司產(chǎn)品。DADS與Tween 80以1 ∶2的比例充分溶解后,加入體積分?jǐn)?shù)為0.90%的生理鹽水稀釋100倍,作為母液保存于-20℃冰箱中。RT-PCR逆轉(zhuǎn)錄試劑盒為Promega公司產(chǎn)品;BCA蛋白定量試劑盒為Pierce公司產(chǎn)品;Chk1、Chk2、CDC25C、cyclin B1與β-actin抗體及ECL發(fā)光檢測試劑盒購自Santa Cruz公司;p-Chk1(Ser345)、p-Chk2(Thr68)抗體與Anti-rabbit IgG購自Cell Signaling Technology;新生牛血清購自杭州四季青生物工程公司。引物用Primer Premier 5.0軟件設(shè)計(jì),由上海生工公司合成。
1.3軟瓊脂集落形成實(shí)驗(yàn)用雙蒸水制備15 g·L-1和9 g·L-1濃度的低熔點(diǎn)瓊脂糖溶液,高溫高壓滅菌后維持于40℃水浴中;同時制備3×RPMI 1640培養(yǎng)基(含300 mol·L-1小牛血清),保存于37℃溫箱中,臨用時1 ∶2混合瓊脂糖與3×RPMI 1640培養(yǎng)液,調(diào)整細(xì)胞濃度使最終細(xì)胞接種為1 000個/孔,每組3個平行樣本,2周后觀察集落形成情況并計(jì)數(shù)集落數(shù),計(jì)算集落形成率。集落形成率/%=(對照組克隆均數(shù)-實(shí)驗(yàn)組克隆均數(shù))/對照組克隆均數(shù)×100%。
1.4流式細(xì)胞儀測定收集已處理好的細(xì)胞,1 000 r·min-1離心5 min,棄去培養(yǎng)液,5 mL PBS洗2次,離心,去PBS,加入70%乙醇固定24 h,流式細(xì)胞儀分析DNA含量,檢測群體細(xì)胞中G1、S、G2/M期細(xì)胞百分率。
1.5RT-PCR分析Total RNA Kit提取細(xì)胞總RNA,在 AMV 酶作用下逆轉(zhuǎn)錄合成 cDNA。設(shè)計(jì)并合成PCR引物序列:Chk1:F 5′-CTGAAGAAGCA GTCGCAGTG-3′,R 5′-TTCCACAGGACCAAACATCA-3′,產(chǎn)物長度494 bp;Chk2:F 5′-TCCGCTTGCTGATGATCTTTATGG-3′,R 5′-GACCTACTCCTTGGGCTCG GCTAT-3′,產(chǎn)物長度498 bp;β-actin: F 5′-CGTCATA CTCCTGCTT-3′,R 5′-ATCTGGCACCACACCT-3′,產(chǎn)物長度820 bp。PCR反應(yīng)條件:Chk1:95℃,5 min;30個PCR循環(huán)(95℃,30 s;53.5℃,30 s;72℃,60 s;72℃,5 min)。Chk2:95℃,5 min;30個PCR循環(huán)(95℃,30 s;60℃,15 s;72℃,60 s;72℃,5 min)。β-actin:94℃,5 min;30個PCR循環(huán)(94℃,30 s;62.7℃,30 s;72℃,60 s;72℃,5 min)。5 μL的PCR產(chǎn)物經(jīng)1%的瓊脂糖電泳,嗅化乙啶染色,通過IS1000圖像分析軟件讀取目的條帶灰度值,相對值以目的基因與β-actin灰度值之比表示。
1.6Western blot 分析分別收集細(xì)胞,冰PBS洗2次,以1×107個細(xì)胞濃度加入100~150 μL裂解液,冰上裂解1h,低溫高速離心收集蛋白,以BCA蛋白定量測定法檢測蛋白濃度。以每孔30μg的蛋白量加樣,以5 ∶1倍體積與5×SDS加樣緩沖液混合,100℃煮沸5 min變性,經(jīng)10% SDS-PAGE凝膠電泳后,轉(zhuǎn)移至硝酸纖維素膜上,用含5%脫脂牛奶的TBST(Tris-HCl 20 mmol·L-1,NaCl 137 mmol·L-1含0.1% Tween-20)封閉2 h,TBST洗膜3次,一抗37℃孵育2 h,TBST洗3次,每次15 min,相應(yīng)的二抗孵育1 h,TBST洗3次,每次10 min,化學(xué)發(fā)光劑檢測蛋白質(zhì)印跡,薄層掃描儀測定印跡區(qū)帶的光密度值。
2結(jié)果
2.1軟瓊脂集落形成實(shí)驗(yàn)Tab 1顯示,30 mg·L-1DADS作用后,Chk1與Chk2高表達(dá)MGC803細(xì)胞集落形成率均明顯低于對照組與空載體組(P<0.05)。并且,Chk1較Chk2高表達(dá)細(xì)胞組明顯降低(P<0.05)。對照組與空載體組差異無顯著性。表明Chk1與Chk2高表達(dá)可抑制MGC803細(xì)胞增殖,而Chk1高表達(dá)更為明顯。
2.2DADS對Chk1/2高表達(dá)的MGC803細(xì)胞周期影響Tab 2與Fig 1顯示,30 mg·L-1DADS作用12、24、36、48 h后,Chk1/MGC803細(xì)胞G2/M期分別為41.3%、57.4%、68.9%、42.9%,較MGC803細(xì)胞與Chk2/MGC803明顯增加(P<0.05)。而Chk2/MGC803細(xì)胞與MGC803細(xì)胞差異沒有顯著性(P>0.05)。表明DADS可阻滯Chk1/MGC803細(xì)胞于G2/M期與Chk1基因表達(dá)增加有關(guān)。
**P<0.05vsMGC803 and Chk2/MGC803
Fig 2 Total RNA in Chk1/2 MGC803 cells
A: Chk1/MGC803; B: Chk2/MGC803;1:0 h;2:12 h;3:24 h;4:36 h;5:48 h
Tab 1 The colony forming efficiency in MGC803 cells of overexpression of Chk1/2 gene
**P<0.05vsMGC803 and vector/MGC803;#P<0.05vsChk2/MGC803
Fig 3 Effects of DADS on Chk1/Chk2 mRNA expression in Chk1 or Chk2/MGC803 cells
A:Chk1/MGC803; B: Chk2/MGC803; M: Marker; 1: 0 h; 2: 12 h; 3: 24 h; 4: 36 h; 5: 48 h.
2.3DADS對Chk1/2高表達(dá)MGC803細(xì)胞Chk1與Chk2 mRNA的影響Fig 2凝膠電泳顯示28S和18S條帶濃而亮,總RNA純度高,完全符合RT-PCR要求。Fig 3顯示,30 mg·L-1DADS處理12、24、36、48 h后,Chk1/MGC803與Chk2/MGC803細(xì)胞Chk1與Chk2 mRNA表達(dá)與對照組差異無顯著性(P>0.05)。
2.4DADS對Chk1/2高表達(dá)MGC803細(xì)胞Chk1/Chk2蛋白與磷酸化的影響Fig 4顯示,30 mg·L-1DADS處理12、24、36、48 h后,Chk1與Chk2高表達(dá)MGC803細(xì)胞Chk1與Chk2總蛋白及p-Chk2表達(dá)分別較對照組無明顯改變(P>0.05)。而Chk1/MGC803細(xì)胞p-Chk1呈時間依賴性表達(dá)上調(diào)(P<0.05)。
2.5DADS對Chk1高表達(dá)MGC803細(xì)胞CDC25C與cyclinB1表達(dá)的影響Fig 5顯示,30 mg·L-1DADS處理12、24、36、48 h后,Chk1/MGC803細(xì)胞CDC25C與cyclinB1表達(dá)呈時間依賴性表達(dá)下調(diào)(P<0.05)。
3討論
G1/S和G2/M期檢查點(diǎn)失活在細(xì)胞癌變過程中起著重要的作用,靶向檢查點(diǎn)已成為腫瘤治療的新策略。研究顯示,α-pinene通過上調(diào)Chk1與Chk2和下調(diào)cyclin B、CDC25與CDK1抑制肝癌細(xì)胞增殖[7]。Jaridonin 通過上調(diào)p-ATM,激活Chk1與Chk2導(dǎo)致CDC25C、Cdc2與H2A.X磷酸化,阻滯食管癌細(xì)胞G2/M。ATM抑制劑可逆轉(zhuǎn)ATM與Chk1/2活化以及CDC25C、Cdc2與H2A.X 的磷酸化和G2/M 阻滯[8]。
Tab 2 Effects of DADS on G2/M arrest in
**P<0.05vsMGC803 and Chk2/MGC803
大量研究表明,Chk1是G2/M 阻滯的關(guān)鍵靶點(diǎn)。Selvarajah等[9]報道,沉默mTOR或采用mTORC1/2激酶抑制劑可防止etoposide 誘導(dǎo)G2/M阻滯,阻止Chk1磷酸化與下調(diào)Chk1,而不是Chk2,表明mTOR抑制劑可通過mTORC2-Chk1途徑克服乳腺癌治療的抵抗。mTOR抑制劑RAD001可增加口腔癌SCC4細(xì)胞放療敏感性,并且與放療結(jié)合可通過活化Chk1增加G2/M阻滯[10]。惡嗪衍生物ZGDHu-1通過上調(diào)Chk1和下調(diào)cyclin B1與CDC2誘導(dǎo)胰腺癌PANC-1細(xì)胞凋亡與G2/M阻滯[11]。ZGDHu1可上調(diào)Chk1、p53、p27、pcdc25c, pChk1與pp53和下調(diào)cyclin B1、CDC2與CDC25c阻滯白血病Kasumi1細(xì)胞于G2/M,而Chk1抑制劑CHIR-124可消除ZGDHu1誘導(dǎo)G2/M阻滯[12]。gossypin可通過活化Chk1引起CDC25C磷酸化,誘導(dǎo)惡性膠質(zhì)瘤U251細(xì)胞G2/M阻滯[13]。Chk1抑制劑與沉默Chk1通過ATR-Chk1途徑,而不是ATR-Chk2可廢除熱應(yīng)激誘導(dǎo)Jurkat細(xì)胞凋亡與G2/M檢查點(diǎn)活化[14]。氯雷他定可直接損傷DNA,活化Chk1從而促進(jìn)G2/M阻滯,使細(xì)胞對輻射誘導(dǎo)DNA損害易感[15]。
Fig 4 Effect of DADS on expression of Chk1/2
A:Chk1/MGC803; B: Chk2/MGC803; 1:0 h;2:12 h;3:24 h;4:36 h; 5:48 h;*P<0.05vscontrol.
Fig 5 Effect of DADS on CDC25C and cyclinB1
**P<0.05vscontrol
我們先前證明,DADS可通過ATR/Chk1/CDC25C/cyclin B1通路,磷酸化ATR,激活Chkl,下調(diào)CDC25C 和cyclinB1,阻滯MGC803細(xì)胞G2/M[16-17]。DADS通過特異性磷酸化Chk1,而不是Chk2,抑制CDC25C/cyclin B1途徑,阻滯人胃癌BGC823細(xì)胞于G2/M期。沉默Chk1可消除G2/M期阻滯和下調(diào)CDC25C與cyclin B1,但沉默Chk2作用不明顯。提示沉默Chkl基因可消除DADS誘導(dǎo)BGC823細(xì)胞G2/M期阻滯[18]。然而,闡明DADS阻滯MGC803細(xì)胞G2/M阻滯的作用靶點(diǎn)是Chkl或Chk2,必須建立高表達(dá)Chkl/Chk2胃癌細(xì)胞證實(shí)。
本研究在建立Chk1/Chk2基因高表達(dá)MGC803細(xì)胞的基礎(chǔ)上,進(jìn)一步研究顯示,DADS作用12、24、36、48 h后,Chk1/MGC803細(xì)胞G2/M期較MGC803細(xì)胞與Chk2/MGC803細(xì)胞明顯增加(P<0.05)。但是,Chk1/MGC803細(xì)胞G2/M期較MGC803細(xì)胞沒有明顯差異。并且,Chk1、Chk2 mRNA與總蛋白和p-Chk2表達(dá)無明顯變化,而Chk1/MGC803細(xì)胞p-Chk1上調(diào)和CDC25C與cyclin B1下調(diào)(P<0.05)。表明DADS通過Chk1/CDC25C/cyclin B1途徑阻滯Chk1/MGC803細(xì)胞于G2/M期,進(jìn)一步證實(shí)DADS阻滯人胃癌細(xì)胞G2/M阻滯的作用靶點(diǎn)是Chkl。
參考文獻(xiàn):
[1]Yi L, Su Q. Molecular mechanisms for the anti-cancer effects of diallyl disulfide[J].FoodChemToxicol,2013,57:362-70.
[2]Yuan J P, Wang G H, Ling H, et al. Diallyl disulfide-induced G2/M arrest of human gastric cancer MGC803 cells involves activation of p38 MAP kinase pathways[J].WorldJGastroenterol, 2004, 10(18):2731-4.
[3]Su B, Xiang S L, Su J, et al. Diallyl disulfide increased histone acetylation and p21WAF1 expression in human gastric cancer cellsinvivoandinvitro[J].BiochemPharmacol, 2012,1(7): 1-10.
[4]Ling H, Zhang L Y, Su Q, et al. Erk is involved in the differentiation induced by diallyl disulfide in the human gastric cancer cell line MGC803[J].CellMolBiolLett, 2006, 11(3): 408-23.
[5]Pabla N,Bhatt K,Dong Z. Checkpoint kinase 1(Chk1)-short is a splice variant and endogenous inhibitor of Chk1 that regulates cell cycle and DNA damage checkpoints[J].ProcNatlAcadSciUSA,2012,109(1):197-202.
[6]陸麗峰, 蘇波, 姜浩, 等. Chk1/2轉(zhuǎn)基因MGC803細(xì)胞系的建立與鑒定[J]. 中南醫(yī)學(xué)科學(xué)雜志, 2013,41(2):140-5.
[6]Lu L F, Su B, Jiang H, et al. Construction and identification of transfection of human Chk1/2 gene in gastric cancer MGC803 cells[J].MedSciJCentSChina, 2013, 41(2):140-5.
[7]Chen W, Liu Y, Li M, et al. Anti-tumor effect of α-pinene on human hepatoma cell lines through inducing G2/M cell cycle arrest[J].JPharmacolSci, 2015, 127(3):332-8.
[8]Ma Y C, Su N, Shi X J, et al. Jaridonin-induced G2/M phase arrest in human esophageal cancer cells is caused by reactive oxygen species-dependent CDC2-tyr15 phosphorylation via ATM-Chk1/2-CDC25C pathway[J].ToxicolApplPharmacol, 2015, 282(2):227-36.
[9]Selvarajah J, Elia A, Carroll V A, et al. DNA damage-induced S and G2/M cell cycle arrest requires mTORC2-dependent regulation of Chk1[J].Oncotarget,2015,6(1): 427-40.
[10]Yu C C, Hung S K, Liao H F, et al. RAD001 enhances the radiosensitivity of SCC4 oral cancer cells by inducing cell cycle arrest at the G2/M checkpoint[J].AnticancerRes, 2014, 34(6): 2927-35.
[11]Chen S F, Xia J, Lv Y P, et al. N,N′-di-(m-methylphenyi)-3,6-dimethyl-1,4-dihydro- 1,2,4,5-tetrazine-1,4-dicarboamide(ZGDHu-1) suppresses the proliferation of PANC-1 pancreatic cancer cells via apoptosis and G2/M cell cycle arrest[J].OncolRep, 2015, 33(4): 1915-21.
[12]Xia J, Chen S F, Lv Y P, et al. ZGDHu-1 induces G2/M phase arrest and apoptosis in Kasumi-1 cells[J].MolMedRep, 2015, 11(5):3398-404.
[13]Shi L,Chen J,Wang Y Y,et al. Gossypin induces G2/M arrest in human malignant glioma U251 cells by the activation of Chk1/CDC25C pathway[J].CellMolNeurobiol,2012, 32(2): 289-96.
[14]Furusawa Y,Iizumi T,Fujiwara Y,et al. Inhibition of checkpoint kinase 1 abrogates G2/M checkpoint activation and promotes apoptosis under heat stress[J].Apoptosis, 2012, 17(1): 102-12.
[15]Soule B P,Simone N L,DeGraff W G,et al. Loratadine dysregulates cell cycle progression and enhances the effect of radiation in human tumor cell lines[J].RadiatOncol,2010,5:8.
[16]陸麗峰, 蘇波, 姜浩, 等. 二烯丙基二硫?qū)θ宋赴㎝GC803細(xì)胞G2/M期檢查點(diǎn)Chk1與Chk2的影響[J].中國藥理學(xué)通報, 2013,29(1):79-84.
[16]Lu L F, Su B, Jiang H, et al. Effect of diallyl disulfide on G2/M checkpoint Chk1 anf Chk2 in human gastric cancer MGC803 cells[J].ChinPharmacolBul, 2013, 29(1):79-84.
[17]Ling H, Wen L, Ji X X, et al. Growth inhibitory effect and Chk1-dependent signaling involved in G2/M arrest on human gastric cancer cells induced by diallyl disulfide[J].BrazJMedBiolRes, 2010, 43(3): 271-8.
[18]Su B, He H, Wang L, et al. Chk1, but not Chk2, is responsible for G2/M phase arrest induced by diallyl disulfide in human gastric cancer BGC823 cells[J].FoodChemToxicol,2014, 68: 61-70.
Overexpression of Chk1/2 gene affects G2/M arrest in MGC803 cells induced by diallyl disulfide
XIA Hong1, XIANG Shu-lin1,2, ZENG Ying1, LU Li-feng1, LIU Fang1, LING Hui1, SU Bo1, SU Qi1
(1.CenterforGastricCancerResearchofHunanProvince,CancerResearchInstitute,KeyLaboratoryofCancerCellularandMolecularPathologyofHunanProvincialUniversity,UniversityofSouthChina,HengyangHunan
421001,China; 2.HuaihuaFirstHospitalAffiliatedtoUniversityofSouthChina,HuaihuaHunan418000,China)
Abstract:AimTo investigate the effects of diallyl disulfide(DADS) on G2/M arrest in Chk1/MGC803 and Chk2/MGC803 cells so as to establish stable human gastric cancer MGC803 cells with overexpression of Chk1/2 gene.MethodsThe colony formation, flow cytometry, RT-PCR and Western blot were used to detect the proliferation, cell cycle, and expression of Chk1/2 mRNA and protein, p-Chk1/2, CDC25C and cyclinB1, respectively.ResultsThe colony formation showed that the colony forming efficiency in Chk1/MGC803 and Chk2/MGC803 cells treated by 30 mg·L-1DADS was lower than in control group and vector group(P<0.05). Flow cytometry demonstrated that 41.3%, 57.4%, 68.9% and 42.9% of G2/M cells in Chk1/MGC803 were increased than in MGC803 and Chk2/MGC803, respectively after treated by DADS in 12,24, 36 and 48 h(P<0.05). At the same time, RT-PCR disclosed that expression of Chk1 and Chk2 mRNA had no marked change. Western blot showed that total proteins of Chk1 and Chk2 and p-Chk2 had invisible change, but expression of p-Chk1 was up-regulated, and CDC25C and cyclinB1 were down-regulated time-dependently in Chk1/MGC803 cells (P<0.05).ConclusionDADS arrests MGC803 cells at G2/M by increasing p-Chk1 expression to cause down-regulation of CDC25C and cyclinB1 simultaneously.
Key words:diallyl disulfide; gastric cancer cell; G2/M; Chk1/2 gene; CDC25C; cyclinB1
文獻(xiàn)標(biāo)志碼:A
文章編號:1001-1978(2016)02-0199-06
doi:10.3969/j.issn.1001-1978.2016.02.011
作者簡介:夏紅(1976-),女,博士生,實(shí)驗(yàn)師,研究方向:胃癌防治的分子機(jī)制,E-mail: 6970842@qq.com;向姝霖(1979-),女,碩士,主治醫(yī)師,研究方向:抗腫瘤藥物分子機(jī)制,并列第一作者,E-mail: 15074566777@163.com;蘇琦(1945-),男,教授,博士生導(dǎo)師,研究方向:胃癌發(fā)生及防治的分子機(jī)制,通訊作者,E-mail: suqi1945@163.com
基金項(xiàng)目:國家自然科學(xué)基金資助項(xiàng)目(No 81102854, 81374013);湖南省衛(wèi)生廳科研課題(No B2015-182)
收稿日期:2015-11-08,修回日期:2015-12-11
網(wǎng)絡(luò)出版時間:http://www.cnki.net/kcms/detail/34.1086.R.20160125.1557.022.html網(wǎng)絡(luò)出版地址:2016-1-25 15:57